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Abstract: Bacteria and phages are two of the most abundant biological entities in the gut microbiome,
and diet and host phylogeny are two of the most critical factors influencing the gut microbiome.
A stable gut bacterial community plays a pivotal role in the host’s physiological development and
immune health. A phage is a virus that directly infects bacteria, and phages’ close associations and
interactions with bacteria are essential for maintaining the stability of the gut bacterial community
and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from
38 mammalian species to investigate the relationship (diversity and composition) and potential
interactions between gut bacterial and phage communities and the impact of diet and phylogeny on
these communities. Our results highlight the co-evolutionary potential of bacterial–phage interactions
within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages
and identified positive correlations between bacterial and phage compositions. Furthermore, our
study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and
phage communities. We discovered that the impact of dietary factors on these communities was
more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic
characteristics had a more substantial influence at the family level. The similar omnivorous dietary
preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of
gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA)
and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study
employed co-occurrence microbial network analysis to reveal the potential interaction patterns
between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and
omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red
pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis
showed the potential role of phages in driving and maintaining the interaction patterns between
bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the
interaction between the gut microbiota and phages in mammals is of great significance, which is of
great value in promoting healthy and sustainable mammals and may provide valuable insights into
the conservation of wildlife populations, especially endangered animal species.

Keywords: bamboo-eating pandas; gut microbiomes; phage; metagenomes; co-evolution; conservation

1. Introduction

The host gut is a complex microbial ecosystem comprising prokaryotic microorgan-
isms (bacteria and archaea), eukaryotic microorganisms (including fungi, nematodes, and
protozoa), and viruses, collectively referred to as the gut microbiome [1–3]. To date, the
critical roles of gut bacterial communities in physiological development, dietary digestion,
and immune health of the host have been well described [4–11]. Phages (bacteriophages)
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are viruses that infect prokaryotic microorganisms (bacteria and archaea) and represent the
most abundant component within the virome and microbiome [12–15]. With the develop-
ment and application of high-throughput metagenomic techniques [16], the understanding
of phages has been newly propelled and deepened [17,18]. Like bacteria, phages are also
resident members of the gut microbiota [19], with approximately ten phage particles par-
asitizing each bacterial cell [20,21]. Phages can be categorized into two types: virulent
phages and temperate phages [13,22]. The former can directly enter the lytic cycle and
lyse the host bacteria through self-replication. At the same time, the latter can also choose
another infection strategy, the lysogeny cycle, in the latent phase of which temperate phages
could integrate their genomes into the chromosome of the host bacteria to form a stable
complex [23,24].

In addition, exploring the factors influencing gut microbiota is a fundamental re-
search topic in microbial ecology [25]. It has been reported that diet and phylogeny are
the two most important factors influencing the bacterial community in the mammalian
gut [26–28]. Similarly, these factors also affect the host gut phage community [29,30], and
there is evidence suggesting that diet also impacts the gut phage community and may
lead to more persistent changes in phage composition [31–33]. However, when studying
individual bacteria or phage communities in isolation, their relationships and interactions
are often overlooked. Bacteria and phages constitute the most abundant biological en-
tities on Earth [34,35], and both have complex interactions and the potential for rapid
co-evolution [36]. Virulent phages rapidly proliferate and destroy host bacteria through
the lytic cycle, enabling them to spread quickly within the host [37,38]. Temperate phages
choose the lysogenic cycle, stably coexist within the host bacteria through horizontal gene
transfer, and replicate and survive, utilizing the host’s survival advantage [39,40]. Horizon-
tal gene transfer (HGT) facilitates the co-evolution of bacteria and phages [41]. Coevolving
phages can increase bacterial diversity by various resistance patterns [36,42] and have the
most pronounced effects on bacterial pathogens [41]. For instance, phages can enhance the
beneficial characteristics and infectivity of bacterial pathogens (e.g., Escherichia coli, Vibrio
cholerae, Pseudomonas aeruginosa, Salmonella enterica, Shigella, etc.) by transferring virulence
factors through HGT [43–45], thereby further driving the evolution of bacterial pathogens.
Moreover, co-evolution and interactions between bacteria and phages are pivotal in main-
taining gut microbial diversity [46,47]. More diverse gut bacteria can potentially increase
the genomic diversity of co-evolving phages, facilitating their infection of a broader range
of host bacteria [46]. Simultaneously, HGT driven by phages also contributes to gut bacteria
heterogeneity, thereby strengthening coevolution’s effects.

Network analysis, as an excellent microbiome research tool, has been widely employed
to gain deeper insights into the intricate relationships that shape the dynamics of micro-
bial communities among different microbial ecosystems [48–52]. Additionally, network
analysis assists in identifying keystone species, functional modules, and the importance
of ecological niches [4,46,53]. Through in-depth investigations into the interactions and
functional composition patterns of microbial communities [54–56], we can further explore
the mechanisms underlying the functioning of the gut microbiota and its implications for
host health. Network analysis has been employed to investigate the functions of fungi
and protists in the giant panda gut microbiome and antibiotic resistome, yielding valuable
insights, particularly highlighting the pivotal roles played by protists within the network
modules [4]. Similarly, Cui et al. demonstrated variances in the topological characteristics
of gut microbial networks between captive and wild giant panda populations through
network module and keystone species analyses. The findings indicated that the wild
giant panda [52] gut microbiome exhibits higher complexity, stability, and resilience to
external influences. Cohesion, an innovative method for quantifying connectivity within
microbial community networks, has gained widespread acceptance in assessing the re-
lationships and interactions among diverse microorganisms in interdomain ecological
networks. Recent studies have revealed that cohesion effectively unveils interactions (coop-
eration/competition levels), stability, and complexity within bacteria–fungi interdomain
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networks in soil and composting ecosystems [57,58]. The application of these network
analysis methods presents an opportunity to attain a more profound and comprehensive
understanding of the structure and function of microbial communities. It serves to further
enrich our grasp of the intricate interactions among microorganisms within ecosystems.

The giant panda, a specialized bamboo eater, stands as the flagship species for global
biodiversity conservation. Gut bacteria play an important role in the nutrition, develop-
ment, and immunity of giant pandas, and are also affected by various external environ-
mental factors [52]. Similarly, dietary alterations have been found to influence the diversity
of gut phages in giant pandas. It was also shown that the gut phages of the giant panda
are predominantly dominated by Caudovirales and Enterobacteriaceae phages, with Cau-
dovirales displaying highly genetic diversity [59–61]. Furthermore, giant pandas exhibit
a higher diversity and abundance of phage communities in their gut compared to other
related species such as red pandas and bears [60]. An in-depth investigation of gut bacteria
and phages is essential for delving into the molecular evolution of mammalian bacterial–
phage interactions and for safeguarding the survival and well-being of endangered wildlife,
exemplified by species like the giant panda. Furthermore, positive correlations between gut
bacteria and phages in diversity and composition have been observed in humans [62] and
non-human primates [29], respectively. However, the applicability of this bacterial–phage
theoretical relationship to a broader range of mammalian taxa remains to be further ex-
plored. Here, we focused on bamboo-eating pandas with diverse geographical distributions
as the primary study subjects, concurrently comparing them with carnivores, herbivores,
and omnivores, to investigate the diversity, composition, and potential interactions of bacte-
rial and phage communities in the mammalian gut. We aim to address the following issues:
(1) determine the relationship between mammalian gut bacterial and phage communities in
diversity and composition; (2) identify the influence and extent of dietary and phylogenetic
factors on the host gut bacterial and phage communities; and (3) evaluate the potential
connections and interactions between bacterial and phage communities in the mammalian
gut. A deeper understanding of the structural composition and interactions between bacte-
ria and phages can contribute to a comprehensive comprehension of their co-evolutionary
processes. Moreover, it can provide unique insights for wildlife conservation, particularly
the endangered wild animals.

2. Materials and Methods
2.1. Data Collection

This study collected 99 published metagenomes (raw data) from 38 mammalian species.
These species include carnivores, omnivores, herbivores, as well as bamboo-eating species
(giant panda and red panda). Among them, 52 metagenomes were obtained from giant
pandas belonging to five different geographic populations: 7 (GPCD) were from a captive
population in Chengdu [63], 10 (GPYA) from a captive population in Ya’an [64], 9 (GPQIN)
from a wild population in the Qinling mountains [65], 7 (GPQIO) from a wild population in
the Qionglai mountains [64], and 19 (GPXXL) from a wild population in the Xiaoxiangling
mountains [66]. Similarly, six metagenomes (RP) of bamboo-eating red pandas were also
from the Xiaoxiangling mountains [66]. Furthermore, we integrated an additional set of
41 metagenomes [67], including 19 from carnivores (CA), 12 from herbivores (HE), and 10
from omnivores (OC). Detailed information on the sample groupings and species data is
provided in Supplementary Tables S1 and S2.

2.2. Metagenomic Analyses and Bioinformatics Analysis

Quality Control using Trimmomatic: Trimmomatic [68] was employed to conduct
quality control on raw reads from 99 metagenomes, filtering and removing reads less than
50 bp in length, reads with degenerate bases (N’s), and all duplicate sequences (where the
initial 20 nucleotides were identical, sharing an overall identity similarity of >97% through-
out the length of the shortest read). Alignment with BWA-MEM: The bioinformatics tool
BWA-MEM was used to align the sequence data, identifying and removing contamination
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sequences originating from the putative host [69]. Megahit Assembly and Salmon Quality
Control: Megahit [70] was employed for the assembly of clean reads into contigs (≥500 bp),
and Salmon [71] was applied to perform quality control on the contigs, discarding those
with coverage below 60%. Gene Prediction with Prodigal: Gene prediction was carried
out on the metagenomic contigs using the meta mode of Prodigal [72], generating gene
files. Gene Clustering with Cd-hit: Cd-hit [73] was then employed for gene clustering,
constructing non-redundant (NR) gene sets with an identity threshold of 95% and an over-
lap threshold of 90%. Mapping and Abundance Calculation using Salmon: Salmon [71]
was utilized for mapping clean reads to the reference non-redundant (NR) gene profile
and calculating transcripts per million (TPM) to determine the abundance of unigenes.
BLAST Analysis with Diamond: Finally, a BLAST analysis of those unigenes against the
NCBI-NR database was performed using Diamond [74], and the TPM for each taxonomic
group (bacteria and phages) was obtained through our customized program.

The alpha diversity of gut bacterial and phage communities among different groups
was quantified using the Shannon index, which measures species diversity within a mi-
crobial community. The Bray–Curtis dissimilarity distance, a metric commonly used in
ecological studies, was employed to quantify β-diversity, indicating the compositional dif-
ferences between communities [75]. NMDS (non-metric multidimensional scaling) analysis,
a technique that visualizes the similarity/dissimilarity of samples in a multidimensional
space, was conducted using the Vegan (Version: 2.6-4) package [76] based on Bray–Curtis
dissimilarity matrices [77]. This analysis aimed to reveal potential dissimilar clusters of gut
bacterial and phage communities across different groups [78]. To assess the statistical sig-
nificance of the impact of dietary and phylogenetic factors on the compositional variations
of host gut bacterial and phage communities, the Adonis test was applied [79]. This test
is particularly suitable for analyzing multivariate data and determining the influence of
categorical variables on community composition. Furthermore, Sørensen’s dissimilarity
was calculated using the vegdist function in the “Vegan” R package (Version: 2.6-4) [80] to
examine the relationship between the bacterial community and phage community among
different groups. Sørensen’s index measures the community similarity between two sam-
ples based on the presence or absence data of microbial species, providing insights into the
overall community structure and composition, as described previously [29].

2.3. Co-Occurrence Network Analysis

In each group, the top 1000 abundant OTUs (operational taxonomic units) in bacte-
rial communities, along with all OTUs in phage communities, were selected to conduct
network analyses encompassing bacteria, phages, and bacterial–phage interdomain com-
munity. Robust correlations with Spearman’s correlation coefficients (|ρ| ≥ 0.6) and
statistically significant p-values ≤ 0.01 (FDR-corrected details provided in Table S3) were
used to construct networks using the “Picante” R package (Version: 1.8.2) [81,82]. Subse-
quently, network visualization and module analysis were performed using Gephi v.0.9.2
platform [83]. Node-level topological features, including degree, betweenness centrality,
closeness centrality, and eigenvector centrality values, were calculated for each network
using the “Igraph” R package (Version: 2.0.3) [84]. The nonparametric Mann–Whitney U
test was employed to assess the statistical significance of differences in node-level attributes
measured across different taxa [85]. Newman’s method was used to calculate modularity
values between 0 and 1, which can be utilized to indicate the extent to which a network
can be divided into modules [86]. The Z-score value (the sum of degree and closeness
centrality values) can be utilized to identify keystone taxa in the network, as described in
previous studies [87], and all nodes with top 10 Z-score values were selected as keystone
species for each network. Cohesion can be employed as a metric for assessing microbial
interactions [88]. In accordance with the approach proposed by Herren and McMahon [89],
cohesion is calculated by multiplying the abundance of each taxon in a given sample by
its associated connectivity value and subsequently summing the products across all taxa.
Positive and negative cohesion values are obtained based on the positive and negative
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correlations between taxa, respectively. The total cohesion value is the sum of positive
cohesion and the absolute value of negative cohesion [90], providing a comprehensive
measure of microbial interactions within the given sample.

3. Results
3.1. Diversity Analysis of Gut Bacterial and Phage Communities

This study analyzed 99 published metagenomes derived from 38 mammalian species
with different dietary preferences (carnivorous, herbivorous, omnivorous, and bamboo-
eating) (Tables S1 and S2). Based on the Shannon index, α-diversity analysis showed
that the alpha diversity of the gut bacterial community was significantly higher than that
of the phage community in CA (p < 0.001), HE (p < 0.001), GPQIN (p < 0.05), GPQIO
(p < 0.01), GPXXL (p < 0.001), and RP (p < 0.01) (Figure 1a). Beta diversity analysis
using Bray–Curtis dissimilarity indicated significant distinctions between gut bacterial and
phage communities within each group (Figure 1b). Further NMDS analysis elucidated
distinct clustering patterns among gut bacterial groups (Figure 1c) and phage communities
(Figure 1d). In contrast to other groups, it was observed that samples from captive giant
pandas (GPCD and GPYA) and OC exhibited a closer distance in both gut bacterial and
phage communities. In gut bacterial communities (Figure 1c), wild bamboo-eating species
(GPQIN, GPQIO, GPXXL, and RP) displayed a more similar composition, while both
HE and CA exhibited more independent clustering patterns when compared to the other
groups. The NMDS analysis of phage communities (Figure 1d) showed no evident spatial
segregation patterns among wild bamboo-eating species (GPQIN, GPQIO, GPXXL, and
RP), CA, and HE, but they all exhibited a distinct separation trend from the sample points
of captive giant pandas (GPCD and GPYA) and OC along the x-axis (NMDS1 axis). These
observations were further supported by hierarchical clustering analysis based on bacterial
and phage compositions (Figure S1).

3.2. Compositions of Gut Bacterial and Phage Communities

In this study, Adonis analysis was utilized to examine the impacts of diet and phy-
logeny on gut bacterial and phage communities in various mammalian species (Table 1).
Our results demonstrate that diet and phylogeny significantly influenced (p = 0.001) the
composition of gut bacterial and phage communities. Furthermore, phylogenetic factors
at the family level were found to be more significant contributors to dissimilarity in bac-
terial (R2 = 0.7153) and phage (R2 = 0.44625) communities in the gut of different animals,
outweighing the influence of dietary factors (bacteria: R2 = 0.45537; phages: R2 = 0.16211).

Table 1. Testing the statistical significance of diet and phylogeny (at the levels of order and family)
on host gut bacterial and phage communities through the analysis of similarity (ADONIS) statistics.

Group Type Df F R2 p

Bacteria
Diet 3 9.4758 0.45537 0.001

Family 3 4.6384 0.7153 0.001
Order 3 4.7941 0.29726 0.001

Phages
Diet 3 2.9126 0.16211 0.001

Family 3 1.4877 0.44625 0.001
Order 3 1.9018 0.14369 0.001
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all groups (Adonis, R2 = 0.16089, p = 0.001). GPCD, captivity giant panda in Chengdu. GPYA, cap-
tivity giant panda in Ya’an. GPQIN, wild giant panda in Qinling. GPQIO, wild giant panda in 
Qionglai. GPXXL, wild giant panda in Xiaoxiangling. RP, wild red panda in Xiaoxiangling. CA, 
carnivorous mammal. OC, omnivorous mammal. HE, herbivorous mammal. 
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Figure 1. Diversity analysis of gut bacterial and phage communities. (a) Alpha diversity analysis of
gut bacterial and phage composition within each group. (b) Beta diversity analysis of gut bacterial
and phage composition within each group. (c) The non-metric multidimensional scaling (NMDS)
analysis of the compositions of gut bacteria among all groups (Adonis, R2 = 0.39781, p = 0.001).
(d) The non-metric multidimensional scaling (NMDS) analysis of the compositions of gut phage
among all groups (Adonis, R2 = 0.16089, p = 0.001). GPCD, captivity giant panda in Chengdu.
GPYA, captivity giant panda in Ya’an. GPQIN, wild giant panda in Qinling. GPQIO, wild giant
panda in Qionglai. GPXXL, wild giant panda in Xiaoxiangling. RP, wild red panda in Xiaoxiangling.
CA, carnivorous mammal. OC, omnivorous mammal. HE, herbivorous mammal.
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To further investigate the impact of diet and phylogeny on dissimilarity, we ana-
lyzed the composition of gut bacterial and phage communities in each group. Across
all groups, Proteobacteria, Firmicutes, and Bacteroidetes were the major contributors to
the gut bacterial community (Figure 2a). Specifically, both Firmicutes and Bacteroidetes
were dominant in CA and HE, and Firmicutes constituted an absolute majority in GPQIN,
while Proteobacteria exhibited significant enrichment in the OC and other bamboo-eating
panda populations (GPCD, GPYA, GPQIO, GPXXL, and RP). In the gut phage community,
Uroviricota (Figure 2b) and Caudovirales (Table S3) were dominant at the phylum and
order levels across all groups. At the family level of bacteria (Figure 2c), compared to
the other groups, Bacteroidaceae exhibited significant enrichment in CA (32.48%), Bac-
teroidales_norank (11.24%), and Oscillospiraceae (11.03%) displayed greater abundance
in HE, and Clostridiaceae constituted a substantial proportion in GPQIN (44.29%). Enter-
obacteriaceae were found to be dominant in the OC (34.71%) and captive giant pandas
(GPCD: 60.27% and GPYA: 54.52%), while Pseudomonadaceae dominated the other wild
bamboo-eating species (GPQIO: 18.56%; GPXXL: 46.17%; and RP: 61.42%). Additionally, at
the family level of gut phage communities (Figure 2d), Podoviridae exhibited a dominant
prevalence in both CA (89.53%) and HE (39.37%), Drexlerviridae demonstrated absolute
dominance in GPQIN (74.83%), and Siphoviridae and Myoviridae constituted the major
components in OC and other bamboo-eating species (GPCD, GPYA, GPQIO, GPXXL, and
RP). In addition, we further investigated the relationships between bacterial and phage
communities in composition within the gut ecosystem and observed a general positive
correlation between their composition in all examined samples and groups (Figure 2e–i).
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Figure 2. Compositional analysis of gut bacterial and phage communities. (a) Composition of the gut
bacterial community at the gate level. (b) Composition of the gut phage community at the phylum
level. (c) Composition of the gut bacterial community at the family level. (d) Composition of the gut
phage community at the family level. The relationship of compositions between the gut bacterial
community and phage community based on Sørensen’s dissimilarity in (e) all samples (Slope: 0.1268,
p-value: 2.2 × 10−16), (f) bamboo-eating panda samples (GPCD, GPYA, GPQIN, GPQIO, GPXXL, and
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RP; Slope: 0.1268, p-value: 2.2 × 10−16), (g) carnivore samples (CA; Slope: 0.1780, p-value: 0.0002),
(h) omnivore samples (OC; Slope: 0.1779, p-value: 0.0002), and (i) herbivore samples (HE; Slope:
0.2225, p-value: 0.0022). We are applying the linear model fit (solid line) to explain the relationship
between the two microbial communities.

3.3. Co-Occurrence Microbial Networks Analysis of Gut Bacterial–Phage, Bacteria, and
Phage Communities

We analyzed the co-occurrence microbial networks of bacterial, phage, and bacterial–
phage interdomain communities in each group (Figures 3 and S2). Our findings demon-
strated that bamboo-eating species (GPCD, GPYA, GPQIN, GPQIO, GPXXL, and RP) and
OC shared more similar composition patterns across these microbial networks (Figure 4a–c).
Specifically, Proteobacteria, Firmicutes, Siphoviridae, and Myoviridae were more abun-
dant in their bacterial–phage interdomain networks. Proteobacteria and Firmicutes were
identified as the primary constituents in their gut bacteria networks. In their phage net-
works, GPQIN displayed a distinct pattern characterized by a substantial abundance of
Drexlerviridae, while Siphoviridae and Myoviridae dominated in OC and other bamboo-
eating panda populations (GPCD, GPYA, GPQIO, GPXXL, and RP). In addition, CA and
HE exhibited pronounced similarities in their network compositions (Figure 4a–c). Bac-
teroidetes and Firmicutes were identified as dominant taxa in their bacterial networks,
while Podoviridae constituted the most abundant component in their phage networks.
Moreover, Bacteroidetes, Firmicutes, and Podoviridae emerged as prevailing taxa within
their bacteria–phage interdomain networks.

Different nodes serve distinct topological roles within their network, exerting varying
degrees of impact on its operation and functionality. To precisely evaluate the topologi-
cal importance of each node, we utilized a high Z-score as a metric for identifying key-
stone species in co-occurrence microbial networks (Figure 4d–f). In bacterial networks
(Figures 4d and S2A), it was found that Firmicutes constituted the majority of keystone
species in CA (90%), GPQIN (100%), and RP (100%), Bacteroidetes dominated in HE (60%),
while in OC (90%), GPCD (100%), GPYA (70%), GPQIO (100%), and GPXXL (100%),
the prevailing keystone species were assigned to Proteobacteria. In phage networks
(Figures 4e and S2), the keystone species in the GPXXL primarily belong to Autographiviri-
dae (60%), whereas in other groups, the most of keystone species were predominantly
classified into Myoviridae (CA: 69.70%; HE: 30.00%; OC: 11.32%; GPCD: 49.28%; GPYA:
50.00%; GPQIN: 72.06%; GPQIO: 53.16%; and RP: 37.29%) and Siphoviridae (CA: 21.21%;
HE: 30.00%; OC: 59.55%; GPCD: 33.33%; GPYA: 20.00%; GPQIN: 10.29%; GPQIO: 16.46%;
and RP: 44.07%).

Notably, in the bacterial–phage interdomain networks (Figures 3 and 4f), the keystone
species of captive giant panda populations were primarily phages (GPCD: 100% and GPYA:
91.67%), with a predominant representation of Myoviridae (GPCD: 49.28% and GPYA:
66.67%) and Siphoviridae (GPCD: 33.33% and GPYA: 25.00%). Especially in the bacterial–
phage network of GPCD, the co-occurrence network, and modular analysis, they revealed
a key module, Module II (Figures 3 and S3C), which clustered all the keystone species in
GPCD and was primarily composed of Siphoviridae, Myoviridae, and Pseudomonadaceae.
Moreover, Pseudomonadaceae exhibited apparent positive interactions with these phages
in Module II. In contrast, bacterial species constituted all keystone species within the
other groups’ bacterial–phage networks (Figure 4f). Specifically, Firmicutes accounted for
the major component of keystone species in CA (70.00%), OC (60.00%), GPQIN (100%),
and RP (88.46%), Proteobacteria served as the main component of keystone species in
GPQIO (100%) and GPXXL (100%), and Bacteroidetes represented the primary component
of keystone species in HE (70.00%).
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Figure 3. Co-occurrence network analysis of bacterial–phage interdomain communities in all groups.
The nodes representing taxonomic groups of bacteria and phages are color-coded based on their
respective family in bacterial–phage networks. The size of the node represents the number of
connections (degree value). Different colored edges represent positive (green) and negative (red)
correlations between nodes. GPCD, captivity giant panda in Chengdu. GPYA, captivity giant panda
in Ya’an. GPQIN, wild giant panda in Qinling. GPQIO, wild giant panda in Qionglai. GPXXL,
wild giant panda in Xiaoxiangling. RP, wild red panda in Xiaoxiangling. CA, carnivorous mammal.
OC, omnivorous mammal. HE, herbivorous mammal.
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Figure 4. Information on the node compositions at the family level within the networks of bacterial,
phage, and bacterial–phage communities in all groups. The compositions of all nodes within the net-
works of bacterial (a), phage (b), and bacterial–phage (c) communities. The compositions of keystone
species (nodes) within the networks of bacterial (d), phage (e), and bacterial–phage (f) communities.
On the outer ring, different colors represent distinct groups (upper half of the chord diagram) and
the composition of categories at the family level (lower half of the chord diagram). A specific ribbon
color represents each group, and the width of each ribbon indicates the abundance of each family
within each group. The labels explaining the groups are positioned at the bottom of the figure, while
the labels describing the composition of categories are placed on the right side of each chord diagram.
CA, carnivorous mammal. HE, herbivorous mammal. OC, omnivorous mammal. GPCD, captivity
giant panda in Chengdu. GPYA, captivity giant panda in Ya’an. GPQIN, wild giant panda in Qinling.
GPQIO, wild giant panda in Qionglai. GPXXL, wild giant panda in Xiaoxiangling. RP, wild red
panda in Xiaoxiangling.

3.4. Topological Features of Bacterial–Phage, Bacterial, and Phage Networks

To deepen our understanding of gut microbial community interactions and structure–
function assembly, we conducted a detailed analysis of the topological features and modu-
larity of bacterial–phage, bacterial, and phage networks within each group (Table 2 and
Figure S3). Cohesion serves as an indicator to quantify the strength of interactions among
microorganisms. In the bacterial–phage interdomain networks (Figure 5a), we observed
higher levels of cohesion in GPQIO, GPCD, and RP, while CA, HE, and GPXXL exhibited
lower levels of cohesion. Specifically, GPQIO and GPCD demonstrated the highest positive
and negative cohesion levels, respectively, with CA showing the lowest values for both pos-
itive and negative cohesion. Additionally, the average degree and modularity could further
reflect the connectivity and complexity of the network. In the bacterial–phage interdomain
networks, GPQIO displayed the highest average degree value and negative correlation
rate (74.95%) (Table 2), suggesting that negative interactions may be predominant in its
bacterial–phage interdomain network. In the bacterial networks (Figure 5b), GPQIO and
CA exhibited the highest and lowest levels of cohesion (positive and negative), respec-
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tively. In the phage networks (Figure 5c), the populations of giant pandas and red pandas
cohabiting in the same ecological environment of the Xiaoxiangling mountains exhibited
large differences in cohesion levels. RP demonstrated relatively higher levels of cohesion
(positive and negative), while GPXXL showed the lowest cohesion values (positive and
negative). Furthermore, the modular analysis of the phage network revealed that GPXXL
had the lowest degree of modularity (modularity value: 0.248). In addition, we conducted
further investigation into the response of the cohesion level in the microbial network to
different dietary preferences (Figure S4). The findings demonstrate an increasing trend
in the total cohesion level of the gut bacterial, phage, and bacterial–phage interdomain
networks, progressing from carnivorous (CA) to herbivorous (HE), then to omnivorous
(OC) and finally to bamboo-eating species.

Table 2. Topological properties of bacterial, phage, and bacterial–phage interdomain networks in all
groups. CA, carnivorous mammal. HE, herbivorous mammal. OC, omnivorous mammal. GPCD,
captivity giant panda in Chengdu. GPYA, captivity giant panda in Ya’an. GPQIN, wild giant panda
in Qinling. GPQIO, wild giant panda in Qionglai. GPXXL, wild giant panda in Xiaoxiangling. RP,
wild red panda in Xiaoxiangling.

Network Group Node Edge Positive
Correlation

Negative
Correlation

Positive
Correlation Rate

Negative
Correlation Rate

Average
Degree

Modularity
Value

Bacteria

CA 859 8135 7880 255 96.87% 3.13% 18.94 0.627
HE 717 1846 1634 212 88.52% 11.48% 27.8 0.766
OC 861 7850 7459 391 95.02% 4.98% 103.92 0.71

GPCD 983 16,533 13,698 2835 82.85% 17.15% 83.25 0.708
GPYA 656 2402 2292 110 95.42% 4.58% 47.02 0.843

GPQIN 373 522 518 4 99.23% 0.77% 111.91 0.925
GPQIO 646 6135 5461 674 89.01% 10.99% 471.74 0.733
GPXXL 797 9882 9882 0 100.00% 0.00% 73.41 0.676

RP 963 7041 5394 1647 76.61% 23.39% 83.39 0.857

Phages

CA 273 1699 1699 0 100.00% 0.00% 12.45 0.845
HE 98 200 200 0 100.00% 0.00% 4.74 0.88
OC 615 10,966 10,966 0 100.00% 0.00% 43.31 0.76

GPCD 291 5534 5532 2 99.96% 0.04% 38.91 0.715
GPYA 435 6167 6167 0 100.00% 0.00% 60.09 0.695

GPQIN 282 3487 3487 0 100.00% 0.00% 28.12 0.524
GPQIO 373 6550 6550 0 100.00% 0.00% 40.23 0.653
GPXXL 386 9544 9544 0 100.00% 0.00% 50.46 0.248

RP 245 4141 4138 3 99.93% 0.07% 35.16 0.667

Bacteria–
Phages

CA 846 2598 1210 1388 46.57% 53.43% 134.61 0.52
HE 284 353 316 37 89.52% 10.48% 28.4 0.772
OC 1146 4181 3434 747 82.13% 17.87% 83.8 0.606

GPCD 864 8406 8161 245 97.09% 2.91% 59.63 0.516
GPYA 1008 9423 8331 1093 88.40% 11.60% 70.33 0.463

GPQIN 967 3054 2085 969 68.27% 31.73% 67.41 0.667
GPQIO 840 2104 527 1577 25.05% 74.95% 204.07 0.553
GPXXL 177 173 173 0 100.00% 0.00% 40.19 0.867

RP 418 1515 1335 180 88.12% 11.88% 23.78 0.585
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Figure 5. The cohesion levels of gut bacterial–phage, bacterial, and phage communities in all groups. 
The positive cohesion, negative cohesion, and total cohesion within (a) bacterial–phage communi-
ties, (b) bacterial communities, and (c) phage communities in the gut of each group. Outliers are 
indicated by the symbol “+”. GPCD, captivity giant panda in Chengdu. GPYA, captivity giant panda 
in Ya’an. GPQIN, wild giant panda in Qinling. GPQIO, wild giant panda in Qionglai. GPXXL, wild 
giant panda in Xiaoxiangling. RP, wild red panda in Xiaoxiangling. CA, carnivorous mammal. OC, 
omnivorous mammal. HE, herbivorous mammal. 
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Figure 5. The cohesion levels of gut bacterial–phage, bacterial, and phage communities in all groups.
The positive cohesion, negative cohesion, and total cohesion within (a) bacterial–phage communities,
(b) bacterial communities, and (c) phage communities in the gut of each group. Outliers are indicated
by the symbol “+”. GPCD, captivity giant panda in Chengdu. GPYA, captivity giant panda in Ya’an.
GPQIN, wild giant panda in Qinling. GPQIO, wild giant panda in Qionglai. GPXXL, wild giant panda
in Xiaoxiangling. RP, wild red panda in Xiaoxiangling. CA, carnivorous mammal. OC, omnivorous
mammal. HE, herbivorous mammal.

4. Discussion
4.1. Alpha Diversity and Composition Correlation of Gut Bacterial and Phage Communities
in Mammals

As a type of virus that infects bacteria, phages are the most abundant members of all
microorganisms, and they have been widely postulated to significantly outnumber their
bacterial hosts, with an estimated ratio of approximately 10:1 within the gut [21,34,91,92].
Although indications support the potential of specific phages to infect multiple bacterial
species simultaneously [46,93,94], the preponderance of evidence suggests that the ma-
jority of described phages exhibit specificity in invading only a few strains within the
same bacterial species [95]. Despite the substantial numerical dominance of phages in
the gut, the findings of this study reveal that the alpha diversity of bacterial communities
in the mammalian gut surpasses that of phage communities in all statistically significant
groups. In addition, a positive correlation in composition between gut bacterial and phage
communities has been identified in non-human primates [29]. Similarly, our study demon-
strated a positive correlation in composition between gut bacterial and phage communities
across all studied bamboo-eating species (GPCD, GPYA, GPQIN, GPQIO, GPXXL, and
RP), carnivores (CA), herbivores (HE), and omnivores (OC). A higher heterogeneity in the
gut bacterial community composition was consistently accompanied by an elevated level
of heterogeneity in the phage community composition [29]. These findings may further
support the potential generalization of this relationship from primates to a wider range of
other mammalian species.

Furthermore, previous studies in human twins have provided evidence suggesting
a positive correlation between the alpha diversity of bacterial and phage communities in
the gut, with a richer microbiome being associated with a richer phage community [62].
Genomic studies have revealed that the co-evolution of bacteria and phages plays a crucial
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driving role in molecular evolution and promotes the formation and maintenance of
microbial diversity within the gut [47]. Bacterial–phage co-evolution is generally present
in a wide range of ecosystems, including the gut, oceans, and soils, where highly diverse
bacterial communities contribute to increased phage diversity [46,47]. The diversity of
gut bacteria can expand the host range of phages by providing a variety of intermediate
hosts. The P10 phage was able to select other intermediate bacterial hosts, inducing
homologous intragenomic recombination and evolutionary events, thereby promoting the
adaptability and long-term persistence in the mouse gut [46]. In turn, phages could drive
bacterial diversity by maintaining the interactions and co-evolution with their bacterial
hosts [96]. Diverse phages can attack various host bacteria, enhancing the potential for
gene mutation and horizontal gene transfer, thereby expanding bacterial heterogeneity
and evolution [36,97]. Horizontal gene transfer mediated by temperate bacteriophages can
increase bacterial pathogenicity and adaptability by conferring or enhancing virulence to
bacterial hosts, such as Vibrio cholerae, Corynebacterium diphtheriae, Clostridium botulinum,
Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica [41]. Our work revealed
a higher diversity of mammalian gut bacterial communities and a positive bacterial–phage
correlation in community composition, which may reflect a co-evolutionary potential of
gut bacteria and phages generally present in a broader range of mammalian species in the
natural world. This finding holds significant implications for a thorough understanding of
the dynamic processes within the gut microbial ecosystem and provides insights for future
research endeavors [98]. An in-depth exploration of the co-evolution between bacteria
and phages is crucial for comprehending the mechanisms underlying microbial diversity
maintenance and gut health [13,29] in mammals, particularly in endangered species. An
improved comprehension of this co-evolutionary potential in mammals can guide the
development of innovative intervention measures and conservation strategies aiming to
safeguard the health of a broader range of mammalian species.

4.2. Diet and Phylogeny Influence the Structure of Mammalian Gut Bacterial and
Phage Communities

Our work further revealed the significant effects of diet and phylogeny on both the
gut bacterial and phage communities in mammals. We discovered that the impact of
dietary factors on the gut bacterial and phage communities is more significant than that of
phylogenetic factors at the order level but less significant than that of phylogenetic factors at
the family level. However, merely considering the importance of a single influencing factor
in isolation may limit a comprehensive understanding of the true dynamics, as the gut
microbiome is actually regulated by multiple complex factors in a holistic manner [99,100].
It has been indicated that both the diet and host phylogeny exert an influence on the
mammalian gut bacterial community, with gut bacterial diversity tending to increase from
carnivores to omnivores and then to herbivores [28]. Similarly, our study further revealed
the differential impact of dietary factors on the gut phage community across different
taxonomic species. Specifically, the relative abundance of Podoviridae decreased from
carnivores (CA: 89.53%) to herbivores (HE: 39.37%) to omnivores (OC: 1.11%), whereas
Siphoviridae increased from carnivores (CA: 2.07%) to herbivores (HE: 15.70%) and then to
omnivores (OC: 66.26%).

In addition, Beta diversity analyses have shown relatively small variation in both gut
bacterial communities and phage communities between captive giant pandas (GPCD and
GPYA) and OC (including Sun bear, brown bear, and Asian black bear). It has been reported
that the same bamboo-eating behavior drove the similarity in gut microbiota composition
between giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus styani) [101]. How-
ever, despite the specialized bamboo diet of giant pandas [102], their gut structure and
microbial composition remain analogous to those of other bear species belonging to the
family Ursidae [28,59,103]. Moreover, the diet of captive giant pandas is not solely com-
posed of bamboo but also includes other food sources containing starch components, fruits,
and other prepared foods [104], which may result in a dietary pattern that leans towards
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being weak-omnivorous rather than strictly bamboo-eating. Previous studies have reported
that the significant bacterial composition in giant pandas, brown bears (Ursus arctos), and
Asian black bears (Ursus thibetanus) consists of Proteobacteria and Firmicutes [59,105,106].
Therefore, we hypothesize that the closer phylogenetic relationship between giant pandas
and bears, as well as the omnivorous dietary habits of captive giant pandas, may contribute
to the higher similarity of gut bacterial and phage communities between captive giant
panda populations (GPCD and GPYA) and omnivorous animals (OC) in this study.

4.3. Interactions between Gut Bacterial and Phage Communities

In contrast to the preliminary insights and contributions offered by diversity and
composition analyses in characterizing microbial communities [52,83,107], network anal-
yses present an opportunity to delve deeper into the intricate dynamics of microbial
ecosystems [108], which provide a distinct perspective to facilitating comprehensive in-
vestigations into microbial communities by unveiling the interactions, resource utilization
patterns, ecological assembly rules, and other essential aspects among microbial commu-
nities [52,109,110]. Complex interactions among microorganisms profoundly impact the
functioning and stability of entire microbial ecosystems [83,108,111]. The cohesion metrics
in co-occurrence network analysis can be used to reflect the strength of interactions of
microbial communities [88,89]. The positive and negative cohesion value increase indicates
enhanced positive (synergistic and symbiotic) and negative microbial interactions (compet-
itive, antagonistic, and parasitic), respectively. Meanwhile, total cohesion, which is the sum
of the absolute values of positive and negative cohesion values, can offer a comprehensive
overview of the degree of interplay among microorganisms [88]. This study employed
network analysis to reveal the interactions between gut bacterial and phage communities in
different mammals. An increase in total cohesion levels was observed from carnivores (CA)
to herbivores (HE), then to omnivores (OC), and finally to bamboo-eating species (GPCD,
GPYA, GPQIN, GPQIO, GPXXL, and RP). This suggests a stronger interaction between the
bacterial and bacteriophage communities in the gut of bamboo-eating species compared
to other mammals. Phages typically interact specifically with individual bacterial strains,
coexisting in a complex and modular interaction network [112]. As bacterial predators,
phages can regulate bacterial abundance and stability, and their interactions may directly
impact host health and disease [112]. The influence of intricate external environments
on phage–bacterial interactions remains unpredictable. It has been shown that certain
factors such as diet, lifestyle, and health status may not significantly affect marker phages
(CrAss-phages) in the human gut [113,114]. Moreover, additional experimental evidence
suggests that compounds such as bile salts and sodium dodecyl sulfate can diminish the
inhibitory effects of phages on bacterial growth [115], while antibiotics may enhance inter-
actions between host gut bacteria and phages, resulting in a more closely interconnected
gene exchange network [112]. We observed that different dietary preferences affect the
interactions between bacteria and phages in the gut of mammalian hosts, which further
strengthens the study of the roles of bacteria and phages in different mammalian ecosys-
tems, and contributes to the development of conservation strategies tailored to different
endangered animal populations. In addition, the cohesion level manifested in microbial
communities could indirectly reflect the resistance to external environmental disturbances
and the stability of microbial communities [109,110]. Microbial communities with greater
absolute values of negative cohesion were likely to be more stable [90,116], as they exhibit
strong competitive interactions, resulting in relatively smaller variations in microbial com-
position caused by external factors. Consequently, we hypothesize that the bacterial–phage
network in bamboo-eating species with the highest level of negative cohesion exhibits
greater stability and resistance to external environmental disturbances (Table S4).

Different microbial nodes perform distinct topological functions within the network [54,117],
enabling the improved identification of functional assembly patterns within microbial
communities through the partitioning of closely associated nodes into modules [52,80,83,
109,118]. Furthermore, microbial network analyses in various ecological environments,
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including the gut, water, plants, and soil, have consistently demonstrated that keystone
species could play a critical role in maintaining the stability of microbial communities
and facilitating efficient material and energy cycling by serving as the central hub for the
structure and functionality of the entire network [52,80,119–121]. Notably, we observed
that the keystone species in the gut bacterial–phage network of captive giant pandas
mainly consisted of phages (GPCD: 100% and GPYA: 91.67%), whereas the keystone
species in other groups were exclusively bacteria. Moreover, all keystone species in a
bacterial–phage network of GPCD were found to be clustered in Module II, which exhibited
obvious positive interactions between the predominant bacteriophages (Siphoviridae and
Myoviridae) and bacteria (Pseudomonadaceae). These findings may indicate that phages
play a more vital functional role in maintaining the coexistence patterns and interactions
between gut bacteria and phages in captive giant pandas. In addition, the significant
impact of captivity on the gut bacterial community structure and functionality of wild
endangered animals has been widely reported. Furthermore, the living environment is
also a crucial factor influencing the host gut phage community [59,122]. Limited previous
research evidence in species such as vulture (Gyps hinalayensis) [123], Tasmanian devil
(Sarcophilus harrisii) [124], and giant panda (Ailuropoda melanoleuca) [59] have indicated that
controlled captive environments (e.g., dietary changes, microbial transmission, and human
interference) can alter the composition and diversity of the host gut phage community.
We speculate that the unique captive environment of giant pandas [4,16,52,61,104,125,126],
characterized by factors such as a high-starch and -milkfat diet, increased antibiotic usage,
and frequent human contact, may contribute in part to the pivotal role of phages in shaping
the coexistence pattern of the gut bacterial and phage communities in captive giant pandas.

4.4. Potential Correlations of Gut Phages with Corresponding Bacterial Hosts

The complex interactions between gut bacteria and phages constitute a fundamental
inquiry in the study of the gut microbiome [95,114,127,128]. As top predators of bacteria,
phages play a role in regulating the gut bacterial populations; some clues may indicate
a possible correlation between heightened levels of specific phages and the decline of
particular bacterial taxa in the gut [95,129,130]. In addition, the “Piggyback-the-Winner”
theory proposes that when host bacteria exhibit high abundance and growth rates, phages
may choose a symbiotic strategy of integrating their genomes into the host rather than
killing the host [39]. It has been reported that the dynamics of gut phage in giant pan-
das follow this theory [61]. Specifically, when Enterobacteria were abundant, a higher
abundance of corresponding phages, such as Escherichia and Enterobacteria phages, was
observed. This is also consistent with some of the results observed in this study. In GPXXL,
Pseudomonas (46.16%) and its corresponding phage, 201phi2-1 (59.35%) (Table S4) were
identified as the predominant constituents within the gut bacterial and phage communities,
respectively. Several studies have reported the propagation and isolation [131], nucleus-like
assembly [132], and protein maturation processes [133] of Pseudomonas phage 201phi2-1.
Pseudomonas phage 201phi2-1 is a jumbo phage that encodes the protein gp105, which plays
a significant role in the formation of the nucleus-like compartment during the infection
of Pseudomonas chlororaphis by phage 201phi2-1 [132]. Similarly, in CA, Bacteroidaceae
(32.48%) were identified as the most abundant constituent in the gut bacterial community,
while crAssphage (crAssphage cr110_1: 43.58% and crAssphage cr11_1: 36.66%) exhib-
ited an overwhelming dominance in the gut phage community (Table S4). CrAssphage,
primarily parasitizing diverse bacterial species within the Bacteroidetes in the intestinal
tract [134–136], represents the predominant phage type within the human gut [137–139]. It
has been extensively used as a robust indicator for characterizing the human gut virome and
assessing fecal water contamination [140–142]. In sharp contrast, crAssphage is seldomly
detected in animal feces [140], with reports currently confined to non-human primates [113],
pigs [143], and cats [134] exclusively. It is noteworthy that our findings highlight an ex-
ceptionally abundant crAssphage composition in the gut of carnivorous mammals (CA),
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thereby significantly expanding the knowledge base surrounding crAssphage within a
broader spectrum of mammalian species.

4.5. The Uniqueness of the Gut Bacterial and Phage Community in Qinling Giant Pandas

Previous studies have shown variations in gut microbiome’s structural composi-
tion among giant pandas’ different geographic populations [52,144,145]. Compared to
non-Qinling populations of giant pandas, Qinling giant pandas typically exhibit more
pronounced differences in their gut microbial structure. A recent study has revealed that
three enterotypes, Escherichia (captive period), Clostridium (reintroduction training period),
and Pseudomonas (wild period), could characterize the adaptive evolution of gut microbes
in captive giant pandas that have been reintroduced to the wild [146]. We found that the
gut microbiota of the Qinling giant panda population preferred the gut enterotypes of the
reintroduction training period, as Clostridium (38.99%) was the most dominant bacterium in
GPQIN, while Escherichia and Pseudomonas were the most abundant constituents in captive
(GPCD: 29.09 and GPYA: 37.00%) and wild (GPQIO: 18.56% and GPXXL: 44.16%) giant
pandas, respectively. In addition, previous studies have reported that Qinling populations
exhibit a higher abundance of Clostridium and vancomycin resistance genes [144] and a
lower virulence level of P. aeruginosa [145]. Here, our work further revealed the unique
composition pattern of gut phages in Qinling giant panda population, where GPQIN
exhibited the highest relative abundance of Drexlerviridae (74.83%) phages compared
to other giant panda populations. These findings further expand our understanding of
gut phage variations across geographically distinct giant panda populations, providing
valuable insights for the ecological health and conservation strategies tailored for these
iconic species.

5. Conclusions

In summary, this study investigated the relationships (diversity and composition) and
potential interactions between gut bacterial and phage communities in mammals with
different dietary preferences (bamboo-eating, carnivorous, omnivorous, and herbivorous),
along with examining the impacts of diet and phylogeny on these communities. We found
a higher alpha diversity in gut bacterial than in phage communities and identified positive
correlations between bacterial and phage community compositions, which may indicate
that the higher co-evolutionary potential of bacteria and phages is generally present in a
broad range of mammalian species. Moreover, we uncovered significant effects of both
dietary and phylogenetic factors on the gut bacterial and phage communities. Specifically,
the impact of phylogenetic factors at the family level were more pronounced on these
communities than dietary factors and phylogenetic factors at the order level. In this
work, the higher similarity observed in gut bacterial communities and phage communities
between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC;
including Sun bear, brown bear, and Asian black bear), compared to other groups, may be
attributed to similar omnivorous dietary preferences and closer phylogenetic relationships
(family Ursidae). In addition, we identified specific taxonomic phages that demonstrate
noteworthy distribution patterns. Specifically, crAssphage bacteriophages, serving as
indicators of human gut viral communities and fecal water pollution, were prevalent in
carnivorous animal populations (CA). Moreover, when compared to other giant panda
populations, Drexlerviridae phages exhibited a significant predominance in the Qinling
giant panda population.

Our analysis of the bacterial–phage interdomain network revealed potential connec-
tions and interactions between bacterial and phage communities in the mammalian gut. No-
tably, bamboo-eating species exhibited more substantial interactions between gut bacteria
and phages than other mammalian taxa, including carnivores, herbivores, and omnivores.
Moreover, keystone species analyses suggest that phage communities may be crucial in
the steady state and interactions between gut bacteria and phages in captive giant pandas
(GPCA and GPYA) compared to gut bacterial communities. Notably, despite the ability
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of network analysis to provide clues about the overall assembly rules and potential inter-
actions within microbial communities based on data correlations, it cannot directly prove
the authenticity of these interactions in actual microbial ecosystems [147–151]. Nonethe-
less, it indicates a reasonable direction for future research by filtering out low-probability
scientific hypotheses [147]. In the future, experimental validation can be conducted by
incorporating more samples and more efficient experimental designs, thereby transforming
the possibilities offered by network analysis into actual evidence.
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at the order level; Table S4: Information on the compositions and relative abundances of dominant
gut phages within each group at the species level.
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