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Abstract: Understanding the role of foods in the emergence and spread of antimicrobial resistance
necessitates the initial documentation of antibiotic resistance genes within bacterial species found
in foods. Here, the NCBI Pathogen Detection database was used to query antimicrobial resistance
gene prevalence in foodborne and human clinical bacterial isolates. Of the 1,843,630 sequence entries,
639,087 (34.7%) were assigned to foodborne or human clinical sources with 147,788 (23.14%) from food
and 427,614 (76.88%) from humans. The majority of foodborne isolates were either Salmonella (47.88%),
Campylobacter (23.03%), Escherichia (11.79%), or Listeria (11.3%), and the remaining 6% belonged to
20 other genera. Most foodborne isolates were from meat/poultry (95,251 or 64.45%), followed by
multi-product mixed food sources (29,892 or 20.23%) and fish/seafood (6503 or 4.4%); however, the
most prominent isolation source varied depending on the genus/species. Resistance gene carriage
also varied depending on isolation source and genus/species. Of note, Klebsiella pneumoniae and
Enterobacter spp. carried larger proportions of the quinolone resistance gene qnrS and some clinically
relevant beta-lactam resistance genes in comparison to Salmonella and Escherichia coli. The prevalence
of mec in S. aureus did not significantly differ between meat/poultry and multi-product sources
relative to clinical sources, whereas this resistance was rare in isolates from dairy sources. The
proportion of biocide resistance in Bacillus and Escherichia was significantly higher in clinical isolates
compared to many foodborne sources but significantly lower in clinical Listeria compared to foodborne
Listeria. This work exposes the gaps in current publicly available sequence data repositories, which
are largely composed of clinical isolates and are biased towards specific highly abundant pathogenic
species. We also highlight the importance of requiring and curating metadata on sequence submission
to not only ensure correct information and data interpretation but also foster efficient analysis, sharing,
and collaboration. To effectively monitor resistance carriage in food production, additional work on
sequencing and characterizing AMR carriage in common commensal foodborne bacteria is critical.

Keywords: antimicrobial resistance (AMR); foodborne bacteria; food production; food pathogen
surveillance; ESKAPEE pathogens; biocide resistance; metal resistance

1. Introduction

Antimicrobials, including antibiotics, biocides, and metals, are arguably one of the
most important discoveries in the history of medicine. The introduction of antibiotics (such
as penicillin) resulted in a shift in the leading causes of death from infectious diseases,
including gastroenteritis, pneumonia, and tuberculosis, to non-communicable diseases,
such as heart disease, cancer, and stroke [1].
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In addition to applications in human medicine, antimicrobials are used to treat disease
in agriculture and food animal production [2–4]. Antimicrobial use in agriculture is neces-
sary for plant, animal, and human health, as large-scale agri-food production practices often
involve high population densities. Metal compounds containing copper, zinc, cadmium,
and arsenic are used in agriculture; meanwhile, clinical applications include mercury,
nickel, copper, aluminium, titanium, and zinc-based metal-containing products [5–10]. In
addition to antibiotics and metals, biocides (disinfectants or sanitizers) are often utilized
during food production. Generally, biocides are defined as substances that are formulated
to be harmful to living organisms [11]. Biocides are used to clean and disinfect equipment
and surfaces in health care, farming, and food production settings; as decontaminants on
carcass surfaces; and as preservatives in cosmetics, pharmaceuticals, and foods in order to
control pathogenic and spoilage microorganisms [11,12].

Unfortunately, bacteria have evolved various strategies, including intrinsic and ac-
quired mechanisms, to avoid antimicrobials. Consequently, antimicrobial resistance (AMR)
is commonly observed in microorganisms. The anthropogenic use of antimicrobials is
believed to be a contributing factor in the evolution and transmission of AMR by creating
selective pressures for persistence [13]. Food crops and animals harbour bacteria that
are pathogenic to humans [14], and the spread of bacteria from these sources to food
products is extensively documented [14–17]. The pathogenic and commensal bacteria
of food microbiota(s) can inhabit and spread between multiple environments, including
agricultural, food processing, aquatic, and clinical settings, where they could potentially
acquire and transmit virulence and AMR genes (ARGs) (Figure 1). Among the AMR bacte-
ria, the ESKAPEE pathogens—an acronym for Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species,
and Escherichia coli—are of particular concern due to their increasing resistance to antibi-
otics used in human medicine [18–20]. These bacteria not only cause serious healthcare-
associated infections but have also been detected in food-producing animals and related
environments, highlighting the potential for foodborne transmission to humans [21,22].

The term “antibiotic” refers to substances produced by microorganisms but does not
typically encompass synthetic antimicrobials (such as sulphonamides and quinolones) or
medicines used to prevent and treat bacterial infections. As the term “antimicrobial” can
refer to all agents that act against microbial organisms, metals and biocides are technically
also antimicrobials. As such, for this publication, the term antibiotic will refer to all
chemotherapeutic antibiotics used to treat infection, including all antimicrobials that are
not metals or biocides. Biocides will refer to disinfectants and sanitizer products with more
varied applications, such as quaternary ammonium compounds, chlorine-releasing agents,
and peroxygens, which are not selective enough to be used within body tissues, but will not
include antibiotics (many of which are technically harmful to living microorganisms) [23].

Antibiotics are used in food animal production to increase feed efficacy, as growth
promoters, and prophylactically to prevent disease circulation, and evidence suggests
that this use in animals has contributed to the development and spread of AMR in
humans [2–4,13,24]. As with antibiotics, increased metal resistance has been observed
in bacteria isolated from animals whose feed has been supplemented with metal com-
pounds [25]. In addition, many metalloids including mercury, copper, and zinc have been
released into the environment through anthropogenic activities [10,26,27]. Similarly, in-
creases in biocide resistance have been observed [11,28,29]. Genes encoding resistance
to biocides, including quaternary ammonium compounds (QACs), have been found in
Gram-negative and Gram-positive bacteria [30–34]. The spread of resistance to biocides
used in food production has been observed [35]. As biocide and metal resistance may
develop through increased efflux, or the acquisition of mobile genetic elements (MGEs)
encoding resistance genes, there is concern that the development of bacterial biocide or
metal resistance may also result in increased bacterial antibiotic resistance.
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Figure 1. Potential routes of transmission of bacteria and ARGs through the environment and food 
production systems. Arrows indicate routes of dissemination among different environments. Hu-
mans represents all human-related activities including clinical, industrial, and household. Intrica-
cies of food production processes including processing, pasteurization, slaughter, sanitization, 
packaging, preparation, etc., are not displayed but are inferred by arrows from agriculture to food 
products, from aquaculture to humans, and from animals to both food products and humans. (Fig-
ure created using BioRender.com accessed on 8 December 2023). 
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Figure 1. Potential routes of transmission of bacteria and ARGs through the environment and food
production systems. Arrows indicate routes of dissemination among different environments. Humans
represents all human-related activities including clinical, industrial, and household. Intricacies of
food production processes including processing, pasteurization, slaughter, sanitization, packaging,
preparation, etc., are not displayed but are inferred by arrows from agriculture to food products, from
aquaculture to humans, and from animals to both food products and humans. (Figure created using
BioRender.com accessed on 8 December 2023).

In fact, the co-selection of biocide, metal, and antimicrobial resistance has been ob-
served among pathogens and other bacteria [10,11,36]. The use of biocides and preserva-
tives may increase ARG transfer among bacteria as well as co-select for multi-drug-resistant
(MDR) strains [11,35,37–39]. Studies have reported an association between biocide use in
poultry and egg production and the isolation of biocide-tolerant and antimicrobial-resistant
Salmonella spp. [40–42]. Nonetheless, as with antibiotic resistance, some studies suggest
that repeated disinfectant use in food processing and agricultural environments does not
select for biocide or antimicrobial resistance [43,44]; furthermore, a recent study found that
the natural evolution of ARGs led to the maintenance of bacterial resistance, despite the
reduction in antimicrobial use [45].

The National Centre for Biotechnology Information (NCBI) Pathogen Detection database
(NPDD) resource “integrates bacterial and fungal pathogen genomic sequences from numer-
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ous ongoing surveillance and research efforts” and includes data from food, environmental,
and clinical sources of both human and animal origin [46]. Previous studies have utilized
the NPDD whole-genome sequence (WGS) collection and other public sequence reposito-
ries to investigate transmission sources and genotypes associated with food contamination
and foodborne illness in Salmonella and Listeria, the resistome and virulence analysis of
Campylobacter spp., specific resistance genes in bacteria from meat products in six US states,
and the multivariate analysis of ARGs in eight different countries [47–51]. However, to
the best of our knowledge, there are currently no studies that utilize this resource to ex-
plore the prevalence of AMR across different bacterial genera originating from various
food categories.

The objective of this study is to better understand and explore the strengths and
limitations of available bacterial genomic data from food sources. Additionally, we aim
to identify any existing gaps and expand our current knowledge on AMR data pertaining
to foodborne bacteria. Through the analysis of metadata from 639,087 bacterial genomes
from the NPDD, our study seeks to offer a comprehensive examination of the distribution
of ARGs, including metal and biocide resistance, in foodborne bacteria as compared to
clinical isolates. This analysis includes bacterial isolates from diverse countries and food
categories, offering a broad overview of the abundance of various antimicrobial classes and
a detailed examination of some clinically significant ARG families. By comparing ARGs in
food isolates with those found in clinical isolates, this research aims to uncover insights
into the prevalence and distribution of priority AMR in bacteria recovered from foods.

2. Materials and Methods
2.1. Retrieval of Bacterial Sequence Metadata from NCBI/NPDD Analysis Pipeline

Data were obtained from the NPDD on 17 November 2023 [46]. Bacterial genomic
sequence analysis results in the form of AMR metadata files were downloaded from the
NCBI Pathogen Detection FTP for select organisms that have been isolated from food
products (Supplementary Table S1). As information regarding isolate identifiers, isolation
source lot numbers, patient identifiers, etc., was not available for all sequences, it is likely
that some sequences included in this analysis are duplicates or clonal in origin. The final
number of genomes analysed from each source for each genus/species are listed in Table 1.
Metadata table versions, the total number of sequences, and download date information
are available in Supplementary Table S1.
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Table 1. Total number of genome assemblies from food and human clinical sources analysed for each organism.

Organism a
Number of Sequences from Food Source (%) b

Total from
Foods (%) d

Human
Clinical

(%) eEgg Fish/
Seafood

Multi-
Product c Meat/Poultry Cider Dairy Flour Fruit/

Vegetable
Spice/
Herbs Nuts/Seeds Tea

Acinetobacter 2
(8.70%)

1
(4.35%)

13
(56.52%)

3
(13.04%) - - - 4

(17.39%) - - - 23
(0.02%)

21,905
(4.46%)

Aeromonas - 32
(59.26%)

9
(16.67%)

6
(11.11%) - 1

(1.85%) - 6
(11.11%) - - - 54

(0.04%)
306

(0.06%)

Bacillus 2
(0.28%)

25
(3.44%)

410
(56.40%)

31
(4.26%) - 165

(22.70%) - 71
(9.77%)

17
(2.34%)

6
(0.83%) - 727

(0.49%)
326

(0.07%)

Campylobacter 17
(0.05%)

23
(0.07%)

3045
(8.95%)

30,807
(90.50%) - 149

(0.44%) - - - - - 34,041
(23.03%)

16,577
(3.37%)

Citrobacter - 5
(10.20%)

17
(34.69%)

8
(16.33%) - 2

(4.08%) - 16
(32.65%)

1
(2.04%) - - 49

(0.03%)
2013

(0.41%)
Clostridioides
difficile - - 6

(6.38%)
41

(43.62%) - 1
(1.06%) - 46

(48.94%) - - - 94
(0.06%)

20,105
(4.09%)

Clostridium - 34
(12.98%)

109
(41.60%)

80
(30.53%) - 2

(0.76%) - 32
(12.21%)

4
(1.53%)

1
(0.38%) - 262

(0.18%)
1268

(0.26%)

Edwardsiella - 3
(100.00%) - - - - - - - - - 3

(<0.00%)
4

(<0.00%)

Enterobacter - 6
(9.09%)

11
(16.67%)

4
(6.06%) - 2

(3.03%) - 32
(48.48%)

4
(6.06%)

7
(10.6%) - 66

(0.04%)
9660

(1.97%)

Enterococcus 21
(2.34%)

117
(13.01%)

95
(10.57%)

538
(59.84%) - 118

(13.13%) - 8
(0.89%)

1
(0.11%)

1
(0.11%) - 899

(0.61%)
23,002

(4.68%)

Escherichia 103
(0.59%)

337
(1.93%)

1541
(8.84%)

12,399
(71.15%)

9
(0.05%)

1408
(8.08%)

93
(0.53%)

1373
(7.88%)

147
(0.84%)

16
(0.09%) - 17,426

(11.79%)
90,808

(18.48%)

Klebsiella 1
(0.16%)

42
(6.69%)

102
(16.24%)

215
(34.24%) - 173

(27.55%) - 93
(14.81%)

2
(0.32%) - - 628

(0.42%)
60,726

(12.36%)
Kluyvera
intermedia - 1

(100.00%) - - - - - - - - - 1
(<0.00%)

12
(<0.00%)

Listeria 13
(0.08%)

933
(5.59%)

9783
(58.58%)

2303
(13.79%) - 1488

(8.91%) - 2090
(12.52%)

53
(0.32%)

36
(0.22%) - 16,699

(11.30%)
10,218

(2.08%)

Morganella - - 2
(11.76%) - - 11

(64.71%) - 4
(23.53%) - - - 17

(0.01%)
359

(0.07%)
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Table 1. Cont.

Organism a
Number of Sequences from Food Source (%) b

Total from
Foods (%) d

Human
Clinical

(%) eEgg Fish/
Seafood

Multi-
Product c Meat/Poultry Cider Dairy Flour Fruit/

Vegetable
Spice/
Herbs Nuts/Seeds Tea

Providencia - - - - - 1
(12.50%) - 7

(87.50%) - - - 8
(0.01%)

490
(0.10%)

Pseudomonas 4
(2.25%)

13
(7.30%)

7
(3.93%)

111
(62.36%) - 6

(3.37%) - 35
(19.66%) - 2

(1.12%) - 178
(0.12%)

20,547
(4.18%)

Salmonella 622
(0.88%)

2247
(3.18%)

13,375
(18.90%)

48,436
(68.45%) - 622

(0.88%)
4

(0.01%)
2933

(4.14%)
831

(1.17%)
1688

(2.39%)
2

(<0.0%)
70,760

(47.88%)
114,170

(23.24%)

Serratia - 5
(6.58%) - 5

(6.58%) - 7
(9.21%) - 58

(76.32%) - 1
(1.32%) - 76

(0.05%)
2167

(0.44%)
Shewanella
algae - 4

(80.00%)
1

(20.00%) - - - - - - - - 5
(<0.00%)

76
(0.02%)

Shigella - 2
(14.29%)

6
(42.86%)

5
(35.71%) - - - 1

(7.14%) - - - 14
(0.01%)

17,281
(3.52%)

Staphylococcus - 31
(1.18%)

891
(33.89%)

246
(9.36%) - 1408

(53.56%)
15

(0.57%)
38

(1.45%) - - - 2629
(1.78%)

72,276
(14.71%)

Stenotrophomonas
maltophilia - - - - - - - 1

(100.00%) - - - 1
(<0.00%)

872
(0.18%)

Vibrio - 2642
(84.46%)

469
(14.99%)

13
(0.42%) - - - 2

(0.06%)
2

(0.06%) - - 3128
(2.12%)

6131
(1.25%)

Combined
total from
source f

785
(0.53%)

6503
(4.40%)

29,892
(20.23%)

95,251
(64.45%)

9
(0.01%)

5564
(3.76%)

112
(0.08%)

6850
(4.64%)

1062
(0.72%)

1758
(1.19%)

2
(<0.0%) 147,788 491,299

a Where only genus is listed, multiple species for corresponding genus were included in analysis. b Number of sequences investigated from corresponding food source (column headers)
for organism listed (row name). The percentage of sequences from corresponding food source, out of the “total from foods” for that organism, is in parentheses. c Refers to mixed food
products that could not be easily placed in a single category (e.g., meat and cheese sandwich, macaroni salad, brownie, etc.). d The total number of sequences from food sources for
corresponding organism. The proportion out of the total number of food isolates (147,788) that an organism constitutes is in parentheses (%). e Clinical sources only included isolate
sequence submissions with the epi_type listed as “clinical” and host as Homo sapiens. The proportion, out of the total number of clinical isolates (491,299), that an organism constitutes is
in parentheses (%). f The combined total number of all organisms investigated from that particular food source. The percentage of sequences from that food source, out of all food
sources, is in parentheses. For the total from food and human clinical sources (last two columns), only the total number of sequences investigated from each source is listed.
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2.2. Isolation Source Categorization

Isolation sources for the NCBI Pathogen Detection metadata table “epi_type” environ-
mental/other category were manually curated for each organism based on the provided
sequence submission information under “isolation_source”. Information regarding the
assignment and definitions of source categories is summarized in Table 2, and available
at https://github.com/OLC-Bioinformatics/source_and_resistance_categorizer.git, (last
updated November 2023). under the “Source Definitions” section [52]. The National
Institute of Health (NIH) and NCBI currently provide interagency food safety analytics
collaboration (IFSAC) CDC categorization in the metadata files in the pathogen detection
database [53,54]. Where IFSAC categories were not provided, all unique values from the
“isolation_source” column of downloaded metadata tables were extracted and assigned to
source categories (e.g., chicken breast was assigned to meat/poultry, cheese was labelled as
dairy, lettuce was labelled as fruit/vegetables, etc.). These source categories were used to
append simplified, curated, source information to the NCBI Pathogen Detection metadata
tables using custom Python scripts (available at [52]). Where categorization existed for both
IFSAC and the manually curated isolation source data, the IFSAC category was selected by
the script for the final ‘Source’ column. Only a subset of source assignments related to food
products were investigated and included in this study (Table 2). Clinical data were defined
as data entries with the “epi_type” designated as clinical and “host” designated as Homo
sapiens. A more comprehensive list of source category information and a dictionary file
containing all curated sources from metadata are available in the previously mentioned
github repository.

Table 2. Food isolation source definitions.

Isolation Source Assignment * Definition Examples

Dairy
Dairy products including milk, ice cream,
and cheeses. Milk from bovine with mastitis
was excluded.

Milk from healthy cattle, raw milk,
Roquefort papillon cheese, etc.

Egg
Egg products such as chicken eggs and
chicken egg shells but not including reptile or
fish eggs

Chicken egg outside shell, frozen liquid
egg, egg white, yolks, etc.

Fish/Seafood
Fish and seafood products, excluding mixed
salads and mixed products, which were
categorized as multi-product.

Brown mussels, imported shrimp,
salmon, crab, etc.

Fruit/Vegetables
Any fruit or vegetables, including frozen and
ready to eat, and mixed fruit sources. French
fries listed as multi-product.

Tomato, red leaf lettuce, carrot, mango.

Multi-product

Mixed food products or products that cannot
be easily categorized. Chili, if type was not
specified, as it could refer to prepared chili or
the pepper; spreads and cream cheese
mixtures; all salads (including tuna, egg,
potato, and coleslaw) that may contain mixed
ingredients; hummus; guacamole; salsa;
ready-to-eat mixed products; sandwiches;
fruitcake; sushi; pasta; sauces; etc.

Tuna salad, meatball sub, brownie,
coleslaw, pie crust, smoothie blend, etc.

Meat/Poultry

Meat and poultry products including raw
and ready to eat products, sausages, hot
dogs, snails, etc. but excluding reptile meats
and mixed products (like meat sauce, pates,
and spreads)

Packaged whole turkey, thin sliced
chicken breast, venison, raw beef, beef
trim, etc.

* Only food isolation sources investigated and discussed in this publication are described. Definitions for
additional sources, including the dictionary file containing all sources, are available at https://github.com/OLC-
Bioinformatics/source_and_resistance_categorizer.git, last updated November 2023 under “Source Definitions”.
Additional sources may require further curation.

https://github.com/OLC-Bioinformatics/source_and_resistance_categorizer.git
https://github.com/OLC-Bioinformatics/source_and_resistance_categorizer.git
https://github.com/OLC-Bioinformatics/source_and_resistance_categorizer.git
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2.3. Antimicrobial Resistance Categorization

Antimicrobial resistance class/type was simultaneously assigned using the custom
Python script mentioned above. Briefly, the AMRFinderPlus database Reference Gene
Catalog (version 3.11) was downloaded from the NCBI FTP (https://ftp.ncbi.nlm.nih.
gov/pathogen/Antimicrobial_resistance/AMRFinderPlus/database/latest/ accessed on
17 November 2023) and used to separate resistance genes into antibiotic, biocide, and
metal resistance categories [55]. Genes belonging to the antibiotic category were further
divided based on resistance to specific antibiotic classes (e.g., aminoglycoside, ß-lactam,
tetracycline, etc.). These gene class assignment lists were separated and included in the
resistance_genes.csv dictionary file used with the custom Python script mentioned above
to append resistance class information to NPDD metadata tables based on genes listed in
the ‘AMR_genotypes’ and ‘stress_genotypes’ columns.

2.4. Enumeration of Resistance by Isolation Source

Following isolation source and resistance class assignment for each of the genera
and species listed above, the number of isolate sequences for each genus/species from
each source encoding each resistance class were tallied. For select resistance classes, the
numbers of each genus/species encoding specific resistance gene alleles of interest were
also determined. The majority of the gene families or gene alleles counted were for known
transferrable ARGs that confer clinically important resistance, with the exception of the
quinolone class, where some genera in the NCBI Pathogen Detection database included
data for chromosomal point mutations conferring resistance (e.g., gyrA, parC, and parE
mutations conferring quinolone resistance). For vancomycin resistance, sequences were
tallied as positive (vanA, vanB, vanG, vanR-A/vanS-Pt) if they encoded all genes in the
operon required for that cluster [56].

2.5. Statistical Analysis

For each genus/species, the comparison of resistance proportions between different
isolation sources was conducted using the Fisher’s exact test with the Benjamini and
Hochberg (BH) adjustment in R version 4.3.0 [57] and the rstatix package for pairwise
comparisons [58]. The Fisher’s exact test with BH correction was also used to compare
proportions of isolates encoding each antimicrobial class with the proportion encoding
both the antimicrobial class and biocide resistance.

For each genus, the association of resistance class with isolation source was conducted
using a Chi square test. Data were subset by genus and isolation source for all sources
with at least one isolate/sequence. The Chi square test was then performed on contingency
tables of resistance class versus source using the chisq.test function from the core R Stats
package version 4.3.0. To evaluate the association of resistance classes with isolation source,
Pearson standardized residuals from Chi square tests were plotted using the corrplot
package with the “is.corr” flag set to FALSE in R version 4.3.0 [57,59].

3. Results

A total of 639,087 isolate genome sequences from human clinical (n = 491,299, 76.88%)
and food (n = 147,788, 23.12%) sources were selected from the NCBI Pathogens dataset
(total = 1,843,630 genomes) based on the completeness of the isolation source information
provided (Table 1 and Table S1). Of these, the majority of the genomes from all sources
were Salmonella (28.94%), Escherichia (16.94%), Staphylococcus (11.72%), Klebsiella (9.60%),
Campylobacter (7.92%), and Listeria (4.21%) species. The other 19 genera each accounted
for less than 3.5% of the sequences analysed, for a combined total of 20.67% (Table 1).
Most of the genomes from food sources were Salmonella (47.88%), Campylobacter (23.03%),
Escherichia (11.79%), and Listeria (11.3%), with the remaining 20 genera only accounting
for a combined 6% of food isolates. Most of the foodborne isolate sequences were from
meat/poultry (64.45%) and multi-ingredient food (20.23%) sources, although this varied
by genus and species (Table 1). The next highest isolation sources were fish/seafood

https://ftp.ncbi.nlm.nih.gov/pathogen/Antimicrobial_resistance/AMRFinderPlus/database/latest/
https://ftp.ncbi.nlm.nih.gov/pathogen/Antimicrobial_resistance/AMRFinderPlus/database/latest/
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(4.40%), dairy (3.76%), and fruit/vegetables (4.64%) which were not well represented in
comparison to meat and multi-product food sources (Table 1). The distribution of sources
was organism-dependent; for example, the majority of Aeromonas spp. and Vibrio spp.
isolate sequences were from fish/seafood (Table 1). There were relatively few genomes
from ESKAPEE species from food sources. For example, there were only 66 genomes from
Enterobacter spp. and 23 from Acinetobacter spp. (Table 1), whereas there were 9660 and
21,905 genomes from clinical samples, respectively.

3.1. Antimicrobial Resistance by Drug Class

Proportions of predicted resistance by antimicrobial class varied by source depending
on both genus (Figure 2) and species (Supplementary File S1). For example, elevated
proportions of tetracycline resistance were observed in Clostridium perfringens but not
C. botulinum. A large proportion of clinical Enterococcus faecium encoded glycopeptide
resistance (86%), compared to only approximately 37% of Enterococcus faecalis. Similarly,
trimethoprim resistance was predicted for >96% of clinical Shigella sonnei compared to
<80% in other Shigella and Escherichia species. Half (approx. 50%) of clinical Vibrio cholerae
samples encoded aminoglycoside and/or sulphonamide resistance compared to 0.1% of
clinical V. parahaemolyticus (Supplementary File S1).

Significantly different proportions of predicted resistance between sources were
observed for almost all genera, except Shewanella, in at least one antimicrobial class
(Supplementary File S2). In Salmonella and Campylobacter species, aminoglycoside resistance
was significantly higher in isolates from meat/poultry sources in comparison to clinical
and some other food sources (Supplementary File S2). Macrolide resistance in Bacillus spp.
Was significantly higher in clinical isolates compared to dairy, fruit/vegetable, and multi-
product food sources. In Clostridium spp., both macrolide and tetracycline resistance were
significantly higher in clinical compared to most food sources (Supplementary File S2).
Vibrio spp. from fish/seafood and multi-product sources had significantly higher pro-
portions of tetracycline resistance compared to clinical, but trimethoprim resistance was
significantly lower in fish/seafood compared to most other food sources.

In Bacillus, Escherichia, and Klebsiella species, clinical isolates exhibited a signifi-
cantly higher prevalence of genes responsible for biocide resistance compared to those
found in the majority of food sources. Conversely, predicted biocide resistance in Liste-
ria and Vibrio was significantly lower in clinical isolates compared to most food sources
(Supplementary File S2). Similarly, the prevalence of genes encoding metal resistance in
Listeria was significantly lower in fruit/vegetable and clinical sources compared to egg,
dairy, fish/seafood, meat/poultry, and multi-product sources, and metal resistance in Vibrio
was significantly lower in clinical isolates compared to fish/seafood and multi-product
sources (Supplementary File S2).

For each genus and select species, the association of the resistance type/class with
isolation source was investigated using Chi square analyses. Pearson standardized residuals
were plotted to measure the strength and direction of the association of a resistance class
with a particular source (Supplementary File S3). Notably, correlations between resistance
and specific isolation sources were observed for some common foodborne bacterial genera
(Table 3, Supplementary File S3).
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Figure 2. Predicted resistance to antimicrobial classes in 639,087 food and human clinical bacterial
genomes published in the NCBI Pathogen Detection database. Presence of ARGs and source of
bacterial isolates was determined based on metadata files associated with the whole-genome
sequences published in the NCBI Pathogen Detection database. For each organism listed (y-axis),
the percentage (x-axis) of isolates from each source (see colour legend) predicted to be resistant to
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classes of antimicrobials (panel headings) is displayed. Bubble diameters correspond to the total
number of isolates with predicted resistance from each source (no. of isolates). Note that the quinolone
class includes both acquired AMR genes (e.g., qnrS) and chromosomal point mutations (gyrA, parE,
parC) reported for only some of the genera.

Table 3. Associations of antimicrobial resistance with specific food isolation sources.

Genus Resistance Class(es) with Positive Association to Source Source(s)
Bacillus Glycopeptide Fruit/Vegetables
Campylobacter Aminoglycoside Meat/poultry, Egg

Metal, Tetracycline Clinical, Dairy, Meat/Poultry, Multi-product
Citrobacter Biocide, Sulphonamide, Trimethoprim Clinical
Clostridium Macrolide Clinical

Metal, Phenicol Multi-product, Fruit/Vegetables, Fish/Seafood, Dairy

Tetracycline Clinical, Meat/Poultry, Multi-product,
Fruit/Vegetables

C. difficile Glycopeptide Clinical, Meat/Poultry, Multi-product
Enterococcus Glycopeptide, Quinolone, Trimethoprim Clinical
Escherichia Trimethoprim Clinical (weak association)
Shigella Trimethoprim Clinical (very strong association)

Klebsiella Beta-lactam, Metal, Phenicol, Quinolone Clinical, Meat/Poultry, Multi-product,
Fruit/Vegetables, Fish/Seafood, Dairy, Egg

Sulphonamide, Trimethoprim Clinical, Egg
Listeria Biocide Multi-product, Egg
Salmonella Aminoglycoside, Tetracycline Meat/Poultry
Vibrio Tetracycline All sources, but especially strong with Fish/Seafood

Aminoglycoside, Sulphonamide, Trimethoprim Multi-product
Abbreviations: C. difficile: Clostridioides difficile.

3.2. Antibiotic Resistance

The relative proportion of organisms predicted to be resistant to antibiotic classes
varied according to the genera and source of the bacterial isolates (Figure 2). Resistance
to antibiotics was frequently significantly higher in human clinical isolates relative to
isolates from food sources (Supplementary File S2). For example, sulphonamide resis-
tance was significantly higher in clinical isolates of Klebsiella spp. compared to isolates
from other sources. Aminoglycoside resistance was significantly associated with clinical
Escherichia spp. compared to isolates from all other sources. Conversely, resistance to
some classes of antimicrobials was significantly higher in meat/poultry isolates (Figure 2,
Supplementary File S2). For example, Salmonella spp. recovered from meat/poultry were
more frequently resistant to aminoglycosides, fosfomycin, sulphonamides, and tetracycline
relative to clinical isolates. Note that in some cases, results were biased due to the limited
availability of isolates from certain sources. For example, 100% of Enterobacter spp. from
dairy encoded resistance genes for sulphonamides, yet only two isolate sequences were
available in the dataset (Figure 2, Table 1). Additionally, certain species have intrinsic
resistance to some antibiotic classes. For example, many of the Enterobacteriaceae encode
some form of the chromosomal ampC gene, resulting in a higher proportion of resistance
for the β-lactam class (Figure 2).

The distribution of select antibiotic resistance genes was also investigated (Figures 3–5).
The analysis of the β-lactam ARG families individually indicated a reduced overall preva-
lence for this class of antibiotics for many of the gene families (Figure 3). Elevated levels
of β-lactam resistance in Acinetobacter, Aeromonas, Enterobacter, Citrobacter, Pseudomonas,
Staphylococcus, and Vibrio are often due to chromosomally encoded gene families such
as blaACT and blaCARB and not necessarily clinically important gene families (Figure 3).
Clinically relevant gene families such as blaCTX-M, blaKPC, blaIMP, and blaNDM were
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observed at elevated proportions in clinical Citrobacter, Enterobacter, Klebsiella, Pseudomonas,
Escherichia, and Shigella (Supplementary Table S2). Elevated proportions of blaCTX-M were
observed in Klebsiella and Shigella from food; however, there were only six Shigella isolates
included (Supplementary Table S2). The carriage of β-lactam gene families also varied by
species; for example, approximately 50% of K. pneumoniae from clinical, fish/seafood, and
fruit/vegetable sources encoded blaCTX-M compared to lower levels in other Klebsiella spp.
from foods; furthermore, approximately 15% of V. parahaemolyticus from multi-product
food sources encoded blaCTX-M and/or blaCMY gene families compared to other Vibrio
species (Supplementary File S4).
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Figure 3. ß-lactam resistance genes observed in bacteria commonly found in food products as a
function of isolation source. Presence of ARGs and source of bacterial isolates was determined based
on metadata files associated with the whole-genome sequences published in the NCBI Pathogen
Detection database (n = 639,087). For each genus or species listed (y-axis), the percentage (x-axis) of
isolates from each source (see colour legend) carrying a ß-lactam resistance gene (panel headings) is
displayed. Bubble diameters correspond to the total number of isolates with the resistance gene from
each source (no. of isolates). For each gene, all alleles in the AMRFinderPlus database are included.
Most gene families displayed include alleles conferring priority (or critical) resistance, except for
blaACT and blaCARB, which are often chromosomally encoded by Enterobacter and Vibrio species.
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Figure 4. Quinolone resistance observed in bacteria commonly found in food products as a function of
isolation source. Presence of ARGs and source of bacterial isolates was determined based on metadata
files associated with the whole-genome sequences published in the NCBI Pathogen Detection database
(n = 639,087). For each genus or species listed (y-axis), the percentage (x-axis) of isolates from each
source (see colour legend) with a quinolone-resistance gene (panel headings) is displayed. Bubble
diameters correspond to the total number of isolates with the resistance gene from each source (no.
of isolates). Note that the analyses of point mutations in gyrA, parC, and parE conferring quinolone
resistance are not available for all species (i.e., mutations may be present in some genera but not
reported in this study).



Microorganisms 2024, 12, 709 14 of 25

Microorganisms 2024, 12, x FOR PEER REVIEW 15 of 26 
 

 

displayed. Bubble diameters correspond to the total number of isolates with the resistance gene 
from each source (no. of isolates). Note that the analyses of point mutations in gyrA, parC, and parE 
conferring quinolone resistance are not available for all species (i.e., mutations may be present in 
some genera but not reported in this study). 

 
Figure 5. Polymyxin (e.g., colistin) resistance genes observed in bacteria commonly found in food 
products as a function of isolation source. Presence of ARGs and source of bacterial isolates was 
determined based on metadata files associated with the whole-genome sequences published in the 
NCBI Pathogen Detection database (n = 639,087). For each genus or species listed (y-axis), the per-
centage (x-axis) of isolates from each source (see colour legend) with each antibiotic resistance gene 
(panel headings) is displayed. Bubble diameters correspond to the total number of isolates with the 
resistance gene from each source (no. of isolates). The mcr* panel includes all mcr-alleles (1 through 
10), including those in the mcr-9 panel. 

3.3. Biocide Resistance 
Similar to antibiotic resistance genes, the presence of biocide resistance genes also 

varied based on the genus and the source of the isolate. Significantly elevated proportions 
of isolates carrying the bcrABC resistance genes were observed in Listeria from food 
sources compared to clinical sources (Figure 6, Supplementary File S2). Similarly, qac re-
sistance genes were more prevalent in Vibrio spp. isolated from food sources compared to 
clinical (Figure 6). In contrast, biocide resistance was significantly higher in clinical Esche-
richia compared to all food sources except egg (Figure 6, Supplementary File S2). As with 
antibiotic resistance, certain bacteria encode biocide resistance determinants chromoso-
mally. For example, most Staphylococcus [species] encode lmrS, and a chromosomal emrE 
is found in most Klebsiella. 

We investigated the potential co-carriage of biocide and antimicrobial resistance; 
however, the limited availability of isolates from some sources hindered the determina-
tion of the significance of the associations (Supplementary File S6). Of note, similar pro-
portions of antibiotic resistance and AMR + Biocide resistance were observed for the fol-
lowing: sulphonamide and trimethoprim in Klebsiella from meat/poultry and multi-prod-
uct sources; beta-lactam, quinolone, sulphonamide, tetracycline, and trimethoprim in 
Escherichia from egg and fish/seafood sources. These results suggest potential co-carriage 
in these genera from these sources (Supplementary File S6). 

Figure 5. Polymyxin (e.g., colistin) resistance genes observed in bacteria commonly found in food
products as a function of isolation source. Presence of ARGs and source of bacterial isolates was
determined based on metadata files associated with the whole-genome sequences published in
the NCBI Pathogen Detection database (n = 639,087). For each genus or species listed (y-axis), the
percentage (x-axis) of isolates from each source (see colour legend) with each antibiotic resistance
gene (panel headings) is displayed. Bubble diameters correspond to the total number of isolates
with the resistance gene from each source (no. of isolates). The mcr* panel includes all mcr-alleles
(1 through 10), including those in the mcr-9 panel.

Pathogenic species such as E. coli and S. enterica, targeted by regulatory food-testing
programs, were more likely to have ARGs for β-lactams (Figure 3), quinolone (Figure 4),
and polymyxin (Figure 5) in comparison to other genera. In Enterococcus and Escherichia
species, significantly higher proportions of quinolone resistance in clinical isolates were
due to the carriage of gyrA, parC, or parE mutations (Figure 4, Supplementary File S2).

The mcr genes conferring resistance to polymyxins (colistin) were not frequently
observed in the genomes investigated (Figure 5). They were most frequently identified in
Aeromonas, Enterobacter, and Kluyvera (Figure 5). However, if the mcr-9 genes were excluded
from the analysis, this predicted resistance was much lower for many species.

Vancomycin resistance in Clostridioides difficile was due to the carriage of the vanG
cluster and was higher in clinical isolates than most food sources (Supplementary File S5).
Similarly, in Enterococcus, vancomycin resistance was much more prevalent in clinical
isolates which encoded either the vanA or vanB cluster of genes. However, rates of car-
riage were species specific, with clinical E. faecium exhibiting higher rates of carriage than
E. faecalis. In contrast, vancomycin resistance genes in Bacillus cereus were the vanR-A/vanS-
Pt cluster, which were more prevalent in fruit/vegetable, meat/poultry, fish/seafood, and
multi-product sources compared to clinical sources (Supplementary File S5).

3.3. Biocide Resistance

Similar to antibiotic resistance genes, the presence of biocide resistance genes also
varied based on the genus and the source of the isolate. Significantly elevated proportions
of isolates carrying the bcrABC resistance genes were observed in Listeria from food sources
compared to clinical sources (Figure 6, Supplementary File S2). Similarly, qac resistance
genes were more prevalent in Vibrio spp. isolated from food sources compared to clinical
(Figure 6). In contrast, biocide resistance was significantly higher in clinical Escherichia
compared to all food sources except egg (Figure 6, Supplementary File S2). As with
antibiotic resistance, certain bacteria encode biocide resistance determinants chromosomally.
For example, most Staphylococcus [species] encode lmrS, and a chromosomal emrE is found
in most Klebsiella.
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Figure 6. Biocide resistance genes observed in bacteria commonly found in food products as a
function of isolation source. Presence of biocide resistance genes and source of bacterial isolates
was determined based on metadata files associated with the whole-genome sequences published in
the NCBI Pathogen Detection database (n = 639,087). For each genus or species listed (y-axis), the
percentage (x-axis) of isolates from each source (see colour legend) with each biocide resistance gene
(panel headings) is displayed. Bubble diameters correspond to the total number of isolates with the
resistance gene from each source (no. of isolates). The qac* panel includes data for all qac-alleles,
including those in other panels.

We investigated the potential co-carriage of biocide and antimicrobial resistance;
however, the limited availability of isolates from some sources hindered the determination
of the significance of the associations (Supplementary File S6). Of note, similar proportions
of antibiotic resistance and AMR + Biocide resistance were observed for the following:
sulphonamide and trimethoprim in Klebsiella from meat/poultry and multi-product sources;
beta-lactam, quinolone, sulphonamide, tetracycline, and trimethoprim in Escherichia from
egg and fish/seafood sources. These results suggest potential co-carriage in these genera
from these sources (Supplementary File S6).

3.4. Metal Resistance

The presence of metal resistance genes varied among genera and the source of iso-
lation (Figure 7). Listeria spp. generally carried few genes predicted to confer resistance
to metals, with cad and ars, encoding resistance to cadmium and arsenite, being the most
common (Figure 7). Almost all Salmonella sequences encoded the gol gold resistance gene,
and Salmonella spp. also had higher proportions of arsenite resistance determinants in
food isolates compared to clinical isolates. Additionally, silver resistance was higher in
Salmonella isolates from meat/poultry and multi-product food sources compared to clinical
sources. Approximately 34–50% of Campylobacter isolates from clinical, meat/poultry, and
multi-product sources encoded arsenite ars and/or acr resistance genes, with a higher pro-
portion of meat/poultry isolates encoding arsenite resistance compared to clinical isolates



Microorganisms 2024, 12, 709 16 of 25

(Figure 7). In Klebsiella, high proportions of resistance to metals were due to the carriage
of ars (arsenite), pco (copper), mer (mercury), sil (silver), and ter (tellurium) (Figure 7).
Significantly higher proportions of metal resistance in Escherichia from meat/poultry and
multi-product foods were due to the carriage of pco (copper), sil (silver), and ter (tellurium)
resistance determinants in these sources (Figure 7, Supplementary File S2). Cadmium
(cad) resistance in Staphylococcus spp. was slightly higher in multi-product isolates than
clinical; however, cad was detected in 56%, 59%, and 64% of meat/poultry, clinical, and
multi-product Staphyloccocus sequences, respectively.
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source (see colour legend) with each respective metal resistance gene (panel headings) is displayed
(x-axis). Panel headings indicate the predicted metal that indicated gene (in parentheses) confers
resistance to. Sizing of points corresponds to the total number of isolates of that genus for isolation
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4. Discussion

This study leveraged published bacterial genomes to explore the link between antibi-
otic resistance genes (ARGs) and bacteria from food and human clinical sources, employing
the NPDD as a key tool for this analysis. While this is a valuable resource, the results are
subject to certain limitations. Notably, bacterial isolates from food sources are significantly
outnumbered by those from human-clinical samples and available data may be biased
due to the non-systematic nature of food sampling, including the presence of genomes
from clonal isolates. Moreover, the detection of ARGs is contingent on the quality of the
genome assemblies, with closed genomes typically enabling more reliable detection of
ARGs compared to lower-quality draft genomes [60,61]. As such, caution should be taken
for any statistical inferences being deduced from our results, in particular where a low
number (<10) of isolates were investigated [62]. Despite these constraints, this study offers
an overview of the relationship between ARGs and different food sources and highlights
current gaps in the surveillance of agri-food products to monitor the emergence of AMR.

4.1. The Importance of Metadata

As genomic sequencing technologies advance and the volume of sequence data in-
creases, adopting standardized methods for metadata collection and reporting is crucial
to maximize the impact of large publicly available repositories [63]. Acknowledging this
critical need, the ISO 23418:2022 standard for the whole-genome sequencing of bacteria
provides extensive guidelines for metadata collection [64]. The NPDD has begun incorpo-
rating IFSAC categories [53,54] into its metadata, but updates and manual curation are still
needed. As found in other studies, manual curation was needed to resolve issues wherein
at least one component of the metadata, such as host or isolation source, was either missing,
inconsistent, or misspelled [65–68]. The curation of metadata after the fact is a daunting
task and subject to error, especially in the case of older entries where information may no
longer be easily retrievable. Collaborative efforts are ongoing to standardize the collection
of metadata [69] and include standardized structured vocabulary derived from specific on-
tologies including Environmental Ontology (ENVO) and Foundations of Medical Anatomy
(FMA) [63,70,71]. More recently, a harmonized food ontology (FoodOn) was developed
to address food product terminology gaps [72]. Tools such as METAGENOTE have been
developed that facilitate the annotation of sample data prior to uploading sequence files to
the SRA [63]. As NCBI Pathogen Detection continues to improve data collection methods
and update its current repository with standardized defined ontology, this resource will
become even more valuable for conducting large meta-analyses.

4.2. Filling the Gaps in Agri-Food Testing and Resistance Surveillance

This study analysed NCBI pathogen data for 639,087 bacterial genomes isolated from
clinical (76.88%) and food (23.12%) sources to assess the connection between predicted
AMR and food sources (Table 1). Despite inherent data limitations, we observed several
associations between ARGs of concern and isolation sources. In general, ARGs were
more prevalent in clinical isolates, with a few exceptions. In particular, Salmonella iso-
lates from meat/poultry were more likely to harbour ARGs associated with multiple
resistance classes including β-lactams, quinolones, sulphonamides, and tetracycline. We
found that B. cereus from meat/poultry and fruit/vegetable sources were more likely to en-
code tetracycline resistance and/or the vanR-A/vanS-Pt glycopeptide resistance cassette(s)
(Supplementary File S1). However, previous studies found although vanR-alleles were
detected in 100% of B. cereus isolates studied, all were susceptible to vancomycin [73].
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Clostridium botulinum from multi-product and fruit/vegetable sources also had higher rates
of carriage for fosfomycin, metal, and phenicol resistance.

Agri-food production practices can impact selection for AMR organisms. For example,
recent studies have implicated the use of ceftiofur in poultry production with an increase
in third generation cepholosporin (3GC)-resistant Salmonella Heidelberg in both poultry
and associated with human illness [74–76]. The use of antimicrobials in agri-food pro-
duction has been shown to lead to the co-selection of critically important AMR [77], and
subinhibitory concentrations of antimicrobials can increase the dissemination of MGEs
harbouring ARGs [78,79]. In food crops, the use of fertilizers from animal or human sources
has been associated with an increase in AMR organisms [80]. A recent meta-analysis indi-
cated that between 3.75 and 4.63% of food crops harboured Enterobacteriaceae resistant to
tetracycline or 3GCs, with prevalences varying by country [80]. The correlation between
the antimicrobial resistance of specific classes and certain isolation sources is corroborated
by other studies for some genera. For example, Zaheer et al. also reported high levels of
tetracycline and macrolide resistance in Enterococcus from human clinical and cattle sources
and trimethoprim resistance in up to 83% of clinical Enterococcus faecium isolates [81].

Another notable finding was the high rates of biocide resistance in L. monocytogenes
isolates from egg, multi-product, dairy, and meat/poultry sources contrasting with low
levels of this resistance in clinical isolates (Figures 2 and 3, Supplementary File S1). A
previous analysis of 1279 L. monocytogenes strains from food products found that five of
the most frequently isolated clonal complexes (CCs) of L. monocytogenes were significantly
more likely to encode gene(s) conferring biocide resistance [82]. In almost all resistant
isolates, QAC resistance was plasmid-borne, suggesting that the transfer of plasmid-borne
sanitizer resistance may be associated with pathogen persistence in food production.

Listeria spp. from food sources also encoded arsenite and cadmium resistance determi-
nants at higher rates than clinical isolates (Figure 7). Resistance to cadmium and arsenic is
one of the earliest documented metal resistance phenotypes of L. monocytogenes. Arsenic
has been primarily associated with serotype 4b (over-represented clinical type), and arsenic
resistance is most frequently encountered among clones associated with outbreaks [83].

Not all AMR organisms or ARGs are of equal importance to the current AMR
crisis [84,85]. The WHO and CDC list carbapenem- and ESBL-producing Enterobacteri-
aceae as a critical priority and drug-resistant Salmonella, Campylobacter, E. faecium, S. aureus,
and Helicobacter pylori as high-priority pathogens [86,87]. While foods are currently moni-
tored for the presence of pathogens such as Shiga toxin-producing E. coli (STEC), Vibrio.,
Salmonella, and Campylobacter species, there is limited surveillance on the critical- and
high-priority ESKAPEE pathogens in foods, despite evidence indicating that these species
are commonly found in foods [88,89]. Of these species, S. aureus and E. coli had the highest
representation in the NPDD (Table 1, Supplementary Table S1).

The prevalence of mec encoded β-lactam resistance in S. aureus did not significantly
differ between both meat/poultry and multi-product sources relative to clinical sources,
whereas this resistance was rare in isolates from dairy sources (Figures 2 and 3,
Supplementary File S2). The mec genes are found in methicillin-resistant S. aureus (MRSA)
strains, which are a global concern and were estimated to be responsible for 100,000 deaths
in 2019 [20]. A study by Bouchami et al. [90] on the pork production chain found MRSA
to be present in live pigs, meat, the slaughterhouse environment, and workers, with 55%
encoding the mec cassette and 61% encoding the biocide resistance gene lmrS. Interestingly,
our study carriage of mec was significantly lower in dairy compared to all other foods and
clinical sources (Figure 3, Supplementary File S2). This finding is similar to a meta-analysis
conducted by Khanal et al. [91], who reported the prevalence of MRSA to be 3.81% over-
all and 3.91% in dairy cattle farms and cattle milk specifically. While MRSA isolates are
commonly recovered from foods, the role of food in their transmission remains unclear [92].

Despite the under-representation of certain species in foods (e.g., only 23 Acinetobac-
ter from food and over 20,000 from clinical samples, Table 1), we found carbapenem
and ESBL resistance gene family ESKAPEE pathogens in foods including dairy, egg,
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fish/seafood, fruit/vegetable, meat/poultry, multi-product, spice/herbs, and nuts/seeds
sources (Supplementary Table S2). The CTX-M family is the most prevalent type of ESBL
observed in ESBL-producing Enterobacteriaceae found in vegetables [93]. We found a simi-
lar prevalence of blaCTX-M-encoding K. pneumoniae from both clinical and fruit/vegetable
sources (Supplementary File S4). Other studies also reported high levels of blaCTX-M-
encoding K. pneumoniae isolated from fruit/vegetable sources [93]. P. aeruginosa from
fruit/vegetable sources encoded blaVIM at a higher rate than clinical isolates. To elucidate
the significance of the role of food in the transmission of ESKAPEE pathogens, larger scale,
targeted studies are needed to address current data gaps.

Note that the presence of β-lactam genes does not necessarily correlate with the
production of ESBLs. For example, resistance to penicillin and 1st- and 2nd-generation
cephalosporins is often mediated by chromosomal β-lactamase genes, such as ampC
and ampC-type genes. These genes are often species specific (Acinetobacter, blaOXA; Cit-
robacter, blaCMY; Enterobacter, blaACT, blaADC) and alleles often do not, but in some situa-
tions may, confer resistance to 3rd- and 4th-generation cephalosporins or carbapenems
(Figures 2 and 3). Additionally, resistance to some antimicrobials may be conferred by
single nucleotide variants (SNVs) in the bacterial genome, of which only a few are well
characterized. Given their location on the chromosome, both of these gene types present a
lower risk of transmission [20,92,94].

While the NPDD currently offers limited data on ARG-encoding foodborne bacteria,
this absence does not necessarily imply that these organisms are absent in foods. The
availability of data regarding bacterial abundance in food sources is often constrained to
focused studies targeting specific commodities, genera, or species and is heavily influenced
by factors such as the targeted bacteria, location, and seasonal variations. For instance,
a 2013 survey conducted in Canada on fresh fruits and vegetables reported generally
a very low prevalence of bacterial pathogens such as Salmonella, E. coli O157, Shigella,
Campylobacter, and L. monocytogenes [95]. In contrast, a recent study exploring ready-to-
eat foods, including meat products as well as fruit, in developing countries reported a
prevalence range from 6.1–34.4% for many ESKAPEE pathogens, Salmonella, Bacillus, and
Shigella, depending on the organism [96].

However, there remains relatively few studies investigating or reporting the preva-
lence of typically non-targeted foodborne genera and species such as Citrobacter and non-
pneumoniae Klebsiella species This study highlights that AMR of concern is present in
ESKAPEE pathogens isolated from food sources and that we often observe clinical pri-
ority ARGs in these species. Nonetheless, the available data are highly biased towards
clinical sources. Although some studies have reported the presence of multidrug-resistant
pathogens from foods such as fruit and vegetables, the body of research in this area is still
relatively small. Few studies quantify the risk associated with consumption, and many
focus exclusively on specific bacterial pathogens [97]. Additionally, certain emerging high-
priority resistance genes are rarely found, even in clinical isolates (Supplementary Table S2).
Given the existing gaps in data from food sources, it is difficult to measure transmission
from these to clinical settings. More targeted surveillance is needed to ascertain whether
foods are a risk source and potential transmission route for AMR [98].

Understanding the interplay between resistance and MGEs is critical for understand-
ing the spread and dissemination of ARGs across bacterial populations and environments.
While linking ARGs with MGEs is crucial for assessing the transmissibility of AMR, the
utilization of metadata in our study precluded the precise association of resistance genes
with specific MGEs. Bioinformatic tools, such as mob-suite, permit the reconstruction
of plasmids using isolate genome sequence data [99]. Furthermore, an important AMR
resource, the Comprehensive Antibiotic Resistance Database (CARD), now integrates in-
formation on the presence of ARGs and their corresponding plasmid location(s) derived
from the analysis of NCBI whole-genome sequence data [100,101]. However, unlike our
study the data in CARD are not categorized by isolation source. The surveillance of AMR
in agri-food samples may benefit by shifting focus from the isolation/testing of specific
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organisms to investigating MGEs being transferred throughout food production (e.g., plas-
midome sequencing) [102]. These elements provide a mechanism to distribute genes that
are beneficial for survival and often carry genes encoding virulence factors; antibiotic-,
biocide-, and metal-resistance; and functions involved in host–bacterial interactions [103].
Therefore, MGEs may contain resistance genes of the highest risk and clinical relevance in
agri-food production samples.

5. Conclusions

Food products, facilities, and food-producing animals contain a variety of bacteria,
and antimicrobial use in agriculture is an alleged driver for increasing AMR [98]. Current
monitoring programs target select bacterial pathogens within products (e.g., Salmonella spp.,
STEC, Vibrio spp., and L. monocytogenes, among others). As species that are of concern for
AMR, such as the ESKAPEE pathogens, are not routinely investigated, the AMR burden of
foods remains unclear. This study illustrates how high-quality, publicly available bacterial
genome sequences can provide insights on the distribution of ARGs in agri-food production.
In comparison to foodborne pathogenic species, there was relatively limited coverage of
ESKAPEE species recovered from food sources in the NPDD, despite their importance in
human infection. However, these data still provide an overview of the types of ARGs in
bacteria isolated from food and clinical sources.

As samples found throughout the food production continuum are often composition-
ally complex, methods that will enable the evaluation of the resistance burden in the food
chain are required. These methods should target bacteria that may serve as reservoirs for
ARGs in food production. Additional sequence data generation for AMR in ESKAPEE
pathogens such as Enterobacter and Klebsiella, including bacteria from lesser studied food
sources, is essential for evaluating the resistance burden in food production.
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