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Abstract: Rodents, including the striped field mouse (Apodemus agrarius), play vital roles in ecosystem
functioning, with their gut microbiota contributing significantly to various ecological processes. Here,
we investigated the structure and function of 94 wild A. agrarius individuals from 7 geographic
populations (45◦57′ N, 126◦48′ E; 45◦87′ N, 126◦37′ E; 45◦50′ N, 125◦31′ E; 45◦59′ N, 124◦37′ E; 46◦01′

N, 124◦88′ E; 46◦01′ N, 124◦88′ E; 46◦01′ N, 124◦88′ E), revealing two distinct enterotypes (Type1 and
Type2) for the first time. Each enterotype showed unique microbial diversity, functions, and assembly
processes. Firmicutes and Bacteroidetes dominated, with a significant presence of Lactobacillus and
Muribaculaceae. Functional analysis highlighted metabolic differences, with Type1 emphasizing
nutrient processing and Type2 showing higher energy production capacity. The analysis of the
neutral model and the null model revealed a mix of stochastic (drift and homogenizing dispersal) and
deterministic processes (homogenous selection) that shape the assembly of the microbiota, with subtle
differences in the assembly processes between the two enterotypes. Correlation analysis showed
that elevation and BMI were associated with the phylogenetic turnover of microbial communities,
suggesting that variations in these factors may influence the composition and diversity of the gut
microbiota in A. agrarius. Our study sheds light on gut microbial dynamics in wild A. agrarius
populations, highlighting the importance of considering ecological and physiological factors in
understanding host–microbiota interactions.
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1. Introduction

The concept of “enterotype” has emerged as a key framework for understanding the
complex interplay between gut microbial composition, host factors, and environmental
influences and was first conceptualized in extensive studies of the human gut micro-
biome [1,2]. It represents distinct patterns of microbial communities within the intestinal
tract, each associated with host characteristics and potentially related to various pheno-
types, including diseases [3]. For example, people with an enterotype marked by Bacteroides,
which efficiently breaks down carbohydrates to help the host obtain energy from food, tend
to eat a high-fat, high-protein diet [3,4]. People with marked enterotypes, which tend to
be associated with non-Western diets, tend to have plant-based carbohydrates [3,5]. And
people with the Ruminococcus marked enterotype tend to be high in carbohydrates; In
addition, Ruminococcus helps with sugar absorption; so, people with this enterotype may
suffer more weight problems [3,6].

Despite initial beliefs in the stability of enterotypes over time, subsequent research
has highlighted their susceptibility to environmental factors. Diet plays an essential role
in shaping enterotype patterns, with long-term dietary habits being intricately linked to
specific gut microbial profiles [7,8], and short-term dietary adjustments can lead to rapid
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changes in gut microbiota composition [9]. Furthermore, the use of antibiotics can cause
temporary or permanent changes in the gut microbiota, while the consumption of probiotics
can make the enterotype more stable [10]. Age is another multifaceted factor influencing
enterotype patterns, necessitating separate considerations during analysis [11,12].

Clustering analyses based on indices such as the Calinski–Harabasz index have been
instrumental in identifying enterotypes, which were processed by folding highly multi-
dimensional niche microbiomes into a small number of categories [3]. The identification
of enterotypes has not only facilitated the analysis of host–microbe interactions, but has
also been extended to studies involving other animals, such as chimpanzees (Pantroglodytes
schweinfurthii) [13], pigs (Sus scrofa domesticus) [14,15], buffaloes (Syncerus caffer) [16], mice
(Mus musculus) [17], bumblebees (Bombus sp.) [18], fruit flies (Drosophila sp.) [19], and pikas
(Ochotona curzoniae) [20–22], suggesting that enterotypes may be prevalent in animal gut
microbes and may help to better characterize these microbiomes and to provide answers to
questions about the correlation between microbes and the host.

Ecological theories, including niche differentiation and neutral processes, offer valu-
able insights into the determinants and dynamics of enterotypes [23]. In microbial commu-
nities, niche differentiation refers to the process whereby distinct microbial populations
adapt and specialize within a shared environment, exploiting different ecological niches
characterized by varied resource availability and environmental conditions. This entails
the evolution of diverse metabolic pathways, growth characteristics, and survival strategies
among microbial populations to optimize resource utilization and environmental fitness.
Such differentiation serves to mitigate interspecies competition, thereby fostering microbial
community diversity and stability. Niche theory assumes that deterministic factors such
as species characteristics, interspecies interactions, and environmental conditions control
community structure and metabolic function [24]. That is, microbial communities are
formed by deterministic biological factors (species interactions, such as competition and
predation) and abiotic factors (environmental factors, such as pH and temperature), which
are caused by different habitat preferences and adaptations of microorganisms [25].

Neutral processes, on the other hand, refer to ecological dynamics that are governed
primarily by random or stochastic factors rather than deterministic forces [25,26]. Unlike
niche-based processes, which emphasize the importance of species traits and environmental
conditions in shaping community structure, neutral processes operate under the assump-
tion of ecological equivalence among species. The neutral process theory assumes that
microbial loss and gain show a random balance in taxa, that is, random processes (birth,
death, migration, immigration, speciation, and limited dispersal) shape the structure of the
microbial community [27,28].

Community assembly is a necessary process for enterotype formation, which is struc-
tured and organized over time and encompasses various ecological mechanisms, including
species interactions, environmental filtering, and colonization dynamics [29]. Community
assembly processes are variable and different in different ecosystems [30]. For example,
deterministic processes (such as variable selection) play a major role in driving the assembly
of the stonefish microbiome, while random processes (such as drift) also play a role [31].
The aggregation of gut microbiota in pika is mainly determined by deterministic processes
but has different contribution rates in different enterotypes [22]. In the Sable Island horse
population, changes in the host microbiome are driven more by bacterial diffusion and
ecological drift than by differential selection pressures [32]. These results suggest the im-
portance of considering ecological processes in microbiome studies to understand aspects
of the diversity, function, and biogeography of the microbial community.

The striped field mouse (Apodemus agrarius) is a globally distributed rodent species
that has attracted significant attention due to its role as a carrier of up to 17 zoonotic
pathogens [33,34]. Found in diverse geographical regions and ecosystems, the striped field
mouse exhibits strong environmental adaptability and niche differentiation capabilities.
Consequently, there is reason to believe that it may have different gut phenotypes, with
the formation mechanisms of these phenotypes being closely linked to its ecological adapt-
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ability and behavioral patterns. This study aims to investigate the spatial distribution
of gut microbiota in the striped field mouse and to explore the differences in ecological
adaptability and host physiological characteristics among different gut phenotypes. By
collecting gut samples from striped field mice in various geographical regions, we endeavor
to identify distinct enterotypes and to analyze their relationships with host physiological
traits, with the aim of providing new insights into the symbiotic relationship between gut
phenotypes and hosts. We seek to address the following questions: (I) How many types
of gut microbiota communities can be identified in the striped field mouse? (II) Are there
differences in the composition and structure of microbial communities among different
enterotypes? Do differences exist in microbial genomic functions? (III) Are there differences
in the assembly processes of microbial communities among different enterotypes? (IV)
What impacts do factors such as altitude, body weight, body length, and body mass index
have on the assembly of gut microbial communities in the striped field mouse?

2. Materials and Methods
2.1. Sample Collection

To increase sample size and representativeness, we combined 67 samples from 5 sam-
pling sites (Dataset 1) and 27 samples from 2 sampling sites (Dataset 2) for overall analysis.
The samples in Dataset 1 were collected from July to August 2020, and the locations of the
five sites were: Dongsheng Village, Nangang District, Harbin City, Heilongjiang Province,
China (S1: 45◦57′ N, 126◦48′ E, elevation 182 m, N = 10); Wanbao Town, Harbin City,
Heilongjiang Province, China (S2: 45◦87′ N, 126◦37′ E, elevation 120 m, N = 24); Minzhu Vil-
lage, Zhaoyuan County, Daqing City, Heilongjiang Province, China (S3: 45◦50′ N, 125◦31′

E, elevation 124 m, N = 15); Xinzhan Town, Zhaoyuan County, Daqing City, Heilongjiang
Province, China (S4: 45◦59′ N, 124◦37′ E, elevation 139 m, N = 10); and Datong District,
Daqing City, Heilongjiang Province, China (S5: 46◦01′ N, 124◦88′ E, elevation 132 m, N = 8).
The samples in Dataset 2 were collected from July to August 2021 from two locations:
Tumuji Town, Zhalaite Banner, Hinggan League, Inner Mongolia Autonomous Region,
China (S6: 46◦01′ N, 124◦88′ E, elevation 160 m, N = 11), and Wuchagou Town, Arxan City,
Hinggan League, Inner Mongolia Autonomous, China (S7: 46◦01′ N, 124◦88′ E, elevation
838 m, N = 16) (Table S1, Supplementary Materials; Figure 1). In both datasets, the collection
and preservation methods for all the samples remained consistent. Detailed descriptions of
the methods can be found in Wu et al. (2024) [35]. Specifically, in the northern agro-pastoral
transitional zone of China, we established eight survey grids measuring 100 km × 100 km,
each containing two sampling points. Among these points, we successfully captured indi-
viduals of A. agrarius at the seven locations previously mentioned. The distances between
the survey sites exceeded 30 km. The samples were collected in July and August of 2020
(Dataset 1) and July and August of 2021 (Dataset 2).

At each survey site, we deployed small collapsible aluminum Sherman traps
(2 × 2.5 × 6.5 inches) baited with peanut seeds, following a dusk-to-dawn trapping regime
for two consecutive days. The captured animals were euthanized using ether and stored
in sterile bags in a vehicle refrigerator at −20 ◦C. Cecal content samples were collected
under non-laboratory conditions. To prevent contamination, all the dissecting tools
were thoroughly cleaned with 75% ethanol, and between each sample collection, they
were flame-sterilized using an alcohol lamp. Approximately 10 mg of cecal content was
extracted from the distal end for microbial sampling. To preserve RNA integrity, the
samples were placed in 4 mL of RNALater and stored in a vehicle refrigerator at −20 ◦C.
Upon completion of the fieldwork, the samples were transported to the laboratory and
stored at −80 ◦C before DNA extraction.

All the experimental procedures adhered to ethical guidelines, ensuring minimal
impact on the subjects, and standardized laboratory protocols were followed to maintain
data reliability and repeatability.
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Figure 1. Sampling locations and habitat characteristics of wild A. agrarius across multiple geographic
regions of China. The figure was generated using R software (version 4.3.2) based on a template map
from the Chinese National Basic Geographic Information Center (http://ngcc.sbsm.gov.cn, accessed
on 15 June 2020). Images of the habitats were taken by a DJI drone (model: Mavic Pro 2).

2.2. DNA Extraction and Sequencing

The extraction of DNA and amplification of 16S target fragments have been reported
in previous studies. Briefly, total genome DNA from the samples was extracted us-
ing the CTAB method. The 16S rRNA genes of the V4 regions were amplified using
the specific primers 515F (5′-barcode-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′). All the PCR reactions were carried out with 15 µL
of Phusion® High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA, USA),
2 µM of forward and reverse primers, and about 10 ng of template DNA. The thermal
cycling consisted of initial denaturation at 98 ◦C for 1 min, followed by 30 cycles of de-
naturation at 98 ◦C for 10 s, annealing at 50 ◦C for 30 s, and elongation at 72 ◦C for 30 s
and finally at 72 ◦C for 5 min. Afterwards, we mixed the same volume of 1× loading
buffer (containing SYBR green) with the PCR products and performed electrophoresis on
2% agarose gel for detection. The PCR products were mixed in equidensity ratios. Then,
the mixture of PCR products was purified with the Qiagen Gel Extraction Kit (Qiagen,
Hilden, Germany). Subsequently, sequencing libraries were generated using the TruSeq®

DNA PCR-free sample preparation kit (Illumina, San Diego, CA, USA) according to the
manufacturer’s instructions, and index codes were added. Library quality was assessed
using the Qubit@ 2.0 Fluorometer (Thermo Scientific, Waltham, MA, USA) and the Agilent
Bioanalyzer 2100 system (Santa Clara, CA, USA). Finally, the libraries were sequenced on
an Illumina NovaSeq platform to generate 250 bp paired-end reads.

http://ngcc.sbsm.gov.cn
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2.3. Bioinformatics Analysis

The quality control of the demultiplexed paired-end sequence reads followed the
protocol outlined in QIIME2 [36]. Initially, paired-end reads were assigned to respective
samples on their unique barcodes; subsequently, they were truncated to remove barcodes
and primer sequences. The merged reads were generated using FLASH (version 1.2.11,
http://ccb.jhu.edu/software/FLASH/, accessed on 30 October 2021) [37], and the resulting
spliced sequences were designated as raw tags. The quality filtering of these raw tags was
carried out using Fastp software (version 0.20.0) to obtain clean, high-quality tags. These
clean tags were then compared against the Silva database (https://www.arbsilva.de/, ac-
cessed on 30 October 2021) using Vsearch (version 2.15.0) to identify and remove chimeric
sequences, yielding effective tags [38]. Following this, the effective tags underwent de-
noising using the DADA2 module within QIIME2 to generate initial amplicon sequence
variants (ASVs). The ASVs with an abundance of fewer than 5 were filtered out [39]. To
explore the phylogenetic relationships among the ASVs and the differences in dominant
species between samples, multiple sequence alignments were performed using QIIME2.
The absolute abundance of ASVs was normalized to a standard sequence number corre-
sponding to the sample with the lowest number of sequences. Subsequent analyses of
alpha and beta diversities were conducted on the normalized data output.

2.4. Random Forest Classifier Models

We used a random forest classifier (RFC) supervised learning algorithm in the R pack-
age “randomForest” [40] to screen for biomarkers that play an important role in enterotype
classification. Using a ‘MeanDecreaseAccuracy’ metric, which quantifies the reduction in
the prediction accuracy of random forest models when the values of a variable are ran-
domly permuted, and a ‘MeanDecreaseGin’ metric, which measures the influence of each
variable on the heterogeneity of the observation values at each node of a classification tree,
thereby comparing the importance of the variables, to identify the important biomarkers.
Subsequently, each model underwent cross-validation (10-fold), and receiver operating
characteristic (ROC) curves were plotted.

2.5. Metagenome Prediction

The functional metagenomes of A. agrarius were predicted and analyzed according to
the 16S rRNA gene through PICRUSt software (version 1.1.4) [41]. Then, the differences in
gut gene functions (Wilcoxon rank sum test) in wild A. agrarius between the community
clusters were calculated at level 1–3 using the existing group_significance.py command
script through the QIIME platform.

2.6. Ecological Network Analysis

Network analyses were applied to reveal significant relationships between the relative
abundance of ASVs. To reduce low-abundance or rare ASVs in our data, those ASVs with
average relative abundance <0.01% were filtered. Then, the Spearman correlation values
were computed among the ASVs. Robust correlations with the Spearman correlation coeffi-
cients >0.6 and false discovery rate corrected p < 0.05 were used to construct networks [42].
The nodes in the constructed network signify ASVs and the edges that link 2 ASVs mean
the correlation values between 2 ASVs. The topological features of the ecological network
were calculated using the “igraph” package. The subnetwork images were visualized with
Graphviz software (version 2.38.0). To describe the topological properties, six topological
features (i.e., network diameter, modularity, clustering coefficient, graph density, average
degree, and average path length) at the network level were calculated using the ‘vegan’
and ‘igraph’ packages [43].

2.7. Bacterial Community Assembly Analyses

To infer the assembly processes of the microbial community of different enterotypes in
A. agrarius, we evaluated the relative contributions of the stochastic and ecological processes

http://ccb.jhu.edu/software/FLASH/
https://www.arbsilva.de/


Microorganisms 2024, 12, 671 6 of 18

using a neutral model and a null model. Firstly, following the approach of Burns et al. [26],
we determined the distribution of ASVs within the 95% confidence interval predicted by
the neutral model. The confidence interval was computed using the “hmisc” package in R
(version 4.3.2). The goodness of fit of the neutral model was evaluated using the coefficient
of determination (R2). Secondly, the ecological processes, including drift, selection, and
dispersal, were assessed using null model analysis. We calculated the Raup–Crick index
(RCI) and βNTI to quantify the relative contributions of these processes. A βNTI value ≥ 2
indicated the dominance of deterministic processes in the community assembly, while
a value ≤ 2 suggested a predominant role of stochastic processes in shaping microbial
communities. Subsequently, we combined βNTI and RCI to estimate the relative strengths
of homogeneous selection (βNTI < −2), variable selection (βNTI > −2), homogeneous
dispersal (RCI > 0.95 and βNTI < 2), dispersal limitation (RCI > 0.95 and βNTI < 2), and
drift (|RCI| < 0.95 and |βNTI| < 2) in driving the microbial community. In addition,
Mantel tests were employed to evaluate the relationship between the βNTI values and the
environmental variables.

2.8. Statistical Analyses

All the statistical analyses and visualizations were conducted in R (version 4.3.2)
unless otherwise specified. After subsampling to an even depth, the ASVs were merged
by genus, resulting in 568 unique genera. To identify enterotypes in the microbiome data,
we used the partition around medoids (PAM) algorithm based on Bray–Curtis distances
in the R package ‘cluster’; then, the graphics such as PCoA were drawn. The optimal
number of groups was chosen based on Calinski–Harabasz (CH) values [3]. Bray–Curtis
distance calculations of genus abundance tables, principal coordinate analysis, and initial
data visualization were performed by using the “phyloseq” package. We used ANOSIM
similarity analysis to examine whether there were differences in microbial community
structure among the different enterotypes of A. agrarius. The Wilcoxon rank sum test was
used to compare the α-diversities, the relative abundance of microbial taxa, and the KEGG
pathways between the different enterotypes. We used a random forest classifier (RFC)
model to assess the precision of assigning samples to different enterotypes [40], thereby
identifying the biomarkers that were important for enterotype classification.

2.9. Data Availability

The molecular sequence data were deposited in the NCBI Sequence Read Archive
(SRA) database (accession number PRJNA76375 for dataset1; accession number PR-
JNA1091068 for dataset2).

3. Results
3.1. Identification and Diversity of Enterotypes in A. agrarius

The Bray–Curtis dissimilarity analysis at the genus level, accompanied by the Calinski–
Harabasz (CH) evaluation and the corresponding silhouette scores, demonstrated the
optimal partition of the gut microbiota communities of 94 individuals of A. agrarius into
2 clusters, as evidenced by the highest CH value observed (Figure 2A,B). Consequently,
the entire sample cohort was stratified into two distinct enterotypes: enterotype 1 (Type1,
N = 49) and enterotype 2 (Type2, N = 45). The principal coordinate analysis (PCoA) graphs
underscored significant disparities in the structures of the intestinal community between
these two clusters, as determined by ANOSIM (R = 0.596, p < 0.001) (Figure 2A). Moreover,
intergroup Wilcoxon rank sum tests revealed substantial variations in the α diversity of the
microbial communities between the identified enterotypes. Specifically, the Simpson index
(p = 0.0016) and Shannon index (p < 0.001) of Type2 were significantly higher compared
to those of Type1 (Figure 2C). This indicated that the Type2 enterotype harbored a more
diverse microbial community in terms of both species richness and evenness compared
to Type1.
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(A) Principal coordinate analysis (PCoA) plots based on Bray–Curtis dissimilarity metrics. (B) K-
means partitions comparison and Calinski–Harabasz values calculation. The highest Calinski–
Harabasz values indicate optimal clusters. (C) Mann–Whitney U test was used to test the differences
of Shannon index and Simpson index between 2 types. Significant difference is indicated by ** p < 0.01,
*** p < 0.001.

Furthermore, we conducted a comparative analysis of the bacterial microbiota be-
tween the two enterotypes of A. agrarius. At the phylum level, Firmicutes and Bacteroidetes
were found to be the most abundant phyla in both the Type1 and the Type2 enterotypes
(Figure 3A). At the genus level, Lactobacillus, Muribaculaceae, and Streptococcus were identi-
fied as the predominant genera in both enterotypes (Figure 3B). Subsequently, we investi-
gated the differences in these core gut microbiota between the different enterotypes. The
results revealed that Type1 exhibited a higher abundance of Firmicutes, Actinobacteria, and
Verrucomicrobia, while displaying a lower abundance of Bacteroidota, Campylobacterota,
and Desulfobacterota at the phylum level (Figure 3C). At the genus level, Type1 exhibited a
higher abundance of Lactobacillus, Streptococcus, Enterorhabdus, Paraclostridium, and RF39,
along with a lower abundance of Muribaculaceae, Helicobacter, Bacteroides, Alistipes, Colidex-
tribacter, Roseburia, Prevotellaceae_UCG-003, Clostridia, and Acetatifactor (Figure 3D). These
findings delineate the distinct compositional profiles of the core gut microbiota between
the Type1 and Type 2 enterotypes in A. agrarius.
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A select set of characteristic bacterial genera was discerned via random forest analysis,
serving as key discriminators that accounted for dissimilarities in the microbial compo-
sition among the distinct enterotypes (Figure 4A,B). Through 10-fold cross-validation,
Lactobacillus, Streptococcus, and Muribaculaceae emerged as potentially pivotal markers
for delineating the enterotype of A. agrarius.
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3.2. Differences of Predicted Gene Functions between Enterotypes

The results of microbial gene function prediction showed that the functions of the mi-
crobial genes of A. agrarius were mainly concentrated in metabolism (Type1: 46.8%, Type2:
46.6%), genetic information processing (Type1: 19.1%, Type2: 18.9%), and environmental
information processing (Type1: 15.4%, Type2: 14.9%) (Table S2, Supplementary Materials).
At KEEG level 2, 11 predicted gene functions (i.e., membrane transport, carbohydrate
metabolism, and nucleotide metabolism) were more abundant in Type1, while 14 predicted
gene functions (i.e., energy metabolism, energy metabolism, and energy metabolism) were
enriched in Type2 (Table S3, Supplementary Materials). At KEEG level 3, a total of 210 gene
functions were significantly different between the 2 enterotypes. These results indicated
that these two clusters had significantly different functions. Among these functional genes
with a relative abundance of more than 1%, functions such as ABC transporters, DNA repair
and recombination proteins, purine metabolism, function unknown, ribosome biogenesis,
aminoacyl tRNA biosynthesis, glycolysis/gluconeogenesis, and pyruvate metabolism were
significantly enriched in Type1, while those functions like the two-component system,
bacterial motility proteins, methane metabolism, arginine and proline metabolism, and
oxidative phosphorylation were enriched in Type2 (Figure 5). These results indicate that
the gut microbiota of A. agrarius plays an important role in metabolic function and has
different degrees of enrichment in different enterotypes.
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3.3. Network Interactions of the Two Enterotypes

Network analysis revealed distinct patterns of microbial co-occurrence between the
two enterotypes. Specifically, Type1 exhibited larger network diameters, higher graph
density, greater average degree, and longer average path lengths. This trend suggested
that the intestinal bacterial taxa within the Type1 network were more centrally located
compared to Type2. Conversely, Type2 had a higher modularity and clustering coefficient,
indicating the presence of more cohesive and functional microbial units within its network
(Figure 6; Table 1). The differences in these topological properties reflected variations in the
ecological structure and functional organization of the microbial communities between the
two enterotypes.

Table 1. Topological properties of co-occurrence networks for the 2 enterotypes.

Network
Diameter Modularity Clustering

Coefficient Graph Density Average
Degree

Average Path
Length

Type1 12 0.706 0.392 0.018 3.469 5.109
Type2 4 0.768 0.489 0.010 2.061 1.673
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1 
 

 

Figure 6. Metacommunity networks of 2 community types in A. agrarius based on Spearman’s corre-
lation analysis. A connection between nodes indicates a strong (Spearman’s r > 0.6) and significant
(FDR-corrected p value < 0.05) correlation. Co-occurrence networks for Type1 and Type2 are shown.
The size of each node is proportional to the degree of the ASVs. The red links of 2 nodes represent
positive correlation, and the blue links of 2 nodes represent negative correlation.

3.4. Community Assembly Process in the Two Enterotypes of A. agrarius

To explore the assembly processes of the microbial communities in different en-
terotypes of A. agrarius, we first deployed the neutral model to assess the fit of the samples
within different microbial communities. The results showed that the frequency of gut
microbiota ASVs within Type1 fit the neutral model at 89.97% (R2 = 0.728, m = 0.002)
and that of Type2 at 88.78% (R2 = 0.728, m = 0.002) (Figure S1, Supplementary Materials;
Figure 7A). This indicates that both deterministic and stochastic processes play a critical
role in the formation of communities in the enterotype of A. agrarius.

The null model analysis showed that Type2 exhibited a higher betaMNTD value
compared to Type1 (Figure 7B). This discrepancy indicates a greater degree of phyloge-
netic turnover among species within the microbial community of Type2 relative to Type1,
suggesting a higher level of compositional heterogeneity in the microbial assemblages.
Furthermore, the results showed that the bacterial community pooled across the two en-
terotypes was shaped primarily by homogeneous selection, homogenizing dispersal, and
drift. However, the relative contribution of homogeneous selection was higher for Type1
(39.27%) than Type2 (38.84%), suggesting a slightly stronger influence of environmental
factors driving bacterial community composition in Type1. Additionally, the relative con-
tribution of homogenizing dispersal was higher for Type1 (32.27%) than Type2 (30.05%),
indicating a higher level of microbial exchange or dispersal across individuals within Type1.
Conversely, Type2 showed a higher relative contribution of drift (27.73%) compared to
Type1 (25.18%), implying that stochastic processes play a relatively greater role in shaping
the structure of the bacterial community in Type2 (Figure S2, Supplementary Materials;
Figure 7C). Overall, these findings underscore the nuanced interplay between deterministic
and stochastic processes in governing the assembly and dynamics of bacterial communities
within different enterotypes.
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Figure 7. Assembly and ecological processes of gut microbiota for 2 community types in A. agrarius.
(A) Fit of the neutral community model (NCM). Solid blue lines indicate the best fit to the model,
while dashed blue lines represent 95% confidence intervals around its prediction. ASVs that occur
more or less frequently than predicted are shown in different colors. The Nm value indicates the
metacommunity size times immigration, and the R2 value indicates the fit to NCM (color figure
online). (B) The betaMNTD values were calculated in different community types, the letter ‘a’ and ‘b’
indicate a significant difference between the two groups. (C) Summary of the relative contributions
of the ecological processes that determine community assembly between the 2 community types.

To examine the influence of external factors (altitude) and host intrinsic factors (body
weight, body length, and body mass index) on the assembly of microbial communities
among different taxa, we employed the Mantel test method to explore the relationship
between these four distinct factors and the betaMNTD values. The analysis indicated that
the betaMNTD values of both enterotypes did not show a significant correlation with body
length (Type1: R2 < −0.001, p = 0.322; Type2: R2 < −0.001, p = 0.891) and body weight
(Type1: R2 < −0.001, p = 0.256; Type2: R2 < −0.001, p = 0.249). However, it is noteworthy that
altitude factors exhibited positive correlations with betaMNTD values in both enterotypes
(Type1: R2 = 0.02, p < 0.001; R2 = 0.12, p < 0.001), as did body mass index (BMI) (Type1:
R2 = 0.004, p = 0.017; R2 = 0.047, p < 0.001) (Figure 8A–D). These findings underscore
the importance of environmental factors, particularly altitude and BMI, in influencing
the structure and dynamics of microbial communities in the gut, potentially reflecting
adaptations to specific environmental conditions and host physiological characteristics.
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4. Discussion

Rodents play a crucial role in ecosystem functioning, with their gut microbiota signifi-
cantly contributing to nutrient absorption, toxin degradation, and pathogen resistance [44].
Understanding the composition of gut microbiota in rodents is therefore of paramount
importance for ecological management. In this study, we detected and analyzed the gut mi-
crobiota of 94 wild individuals of A. agrarius from 7 geographic populations, revealing, for
the first time, the division of the gut microbiota of A. agrarius into two enterotypes. These
two enterotypes exhibited distinct microbial diversity and predicted functions, interactions,
and assembly processes, providing valuable information for the study of the types of gut
microbial communities in wild animals.

Firstly, our results demonstrated that the gut microbiota composition of A. agrarius
was dominated primarily by Firmicutes and Bacteroidetes, with notable abundances of
Lactobacillus and Muribaculaceae genera; this is similar to the findings in other omnivo-
rous mammals such as squirrels [45,46] and lemurs [24]. This suggests conservation of
the composition of the gut microbiota throughout mammalian evolution, with selective
colonization of those necessary microbes regardless of host identity [47,48]. Furthermore,
the different compositional profiles of Type1 and Type2 enterotypes suggested differential
ecological adaptations within the gut microbiota of A. agrarius. These adaptations could
arise from various factors, including dietary preferences, habitat differences, and host
genetics [49–52]. For instance, the higher abundance of Lactobacillus and Streptococcus in
Type1 may reflect adaptations to specific dietary substrates or environmental conditions
prevalent in the habitat of these individuals [53]. Conversely, the increased Muribaculaceae
abundance and diversity observed in Type2 may be indicative of a broader dietary niche
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or more dynamic environmental interactions [54,55]. These biological differences serve as
potential mediators of host specificity and warrant further investigation.

Beyond taxonomic differences, understanding the functional implications and network
structures of enterotype variation is crucial for deciphering its significance in host health
and ecology [56]. The prediction of microbial gene function revealed distinct functional
spectra between the Type1 and Type2 enterotypes. While both types primarily focus on
metabolism, genetic information processing, and environmental information processing,
there are significant differences at both KEGG level 2 and level 3. The different metabolic
capacities and network structures of the gut microbiota may influence their ability to per-
form specific metabolic functions, regulate host physiology, and respond to environmental
changes. The Type1 enterotype exhibited enrichment in gene functions related to mem-
brane transport, carbohydrate metabolism, and nucleotide metabolism, which is indicative
of an emphasis on nutrient acquisition and processing. Conversely, the Type2 enterotype
showed enrichment in gene functions associated with energy metabolism, bacterial motility
proteins, and oxidative phosphorylation, suggesting a potentially more active metabolic
state and higher energy production capacity. Furthermore, network analysis, in addition
to serving as a valuable tool for studying host-associated microbial community patterns,
was also used to detect key taxonomic groups that play essential ecological roles in the
assembly of microbial communities or critical ecosystem functions [57]. Although many
key taxonomic groups identified in our analysis were not assigned specific ecological roles
within different enterotypes.

In numerous instances, deterministic and stochastic processes have been shown to
interact synergistically rather than remain mutually exclusive during microbial community
assembly [29,58]. Our study, employing neutral model analysis, revealed that the formation
of gut microbiota communities in A. agrarius, regardless of enterotype, was influenced
by a combination of stochastic processes, such as ecological drift and dispersal limitation,
and deterministic factors, including environmental selection. However, there are subtle
differences in the relative contributions of homogeneous selection, homogenizing disper-
sal, and drift between the two enterotypes, resulting in distinct assembly processes that
govern the structure of the microbial communities in each. While both enterotypes were
affected by homogeneous selection and dispersal, Type1 appeared to exhibit a marginally
stronger influence on community composition, while Type2 leaned more towards stochastic
processes such as ecological drift. This discrepancy can be attributed to variations in the
habitat types inhabited by the sampled populations in our study. Moreover, the higher
betaMNTD values observed in Type2, compared to Type1, indicated greater phylogenetic
turnover among the species within the Type2 microbial communities, signifying a higher
level of compositional heterogeneity. Consequently, Type2 harbored a more diverse and
dynamically shifting microbial composition relative to Type1. This observation further
elucidated why the microbial network in Type2 manifests higher clustering coefficients and
modularity compared to Type1.

The βNTI metric was utilized to assess whether species interactions within a commu-
nity aligned with their expected relationships based on their shared evolutionary history. In
essence, it quantified the extent of the deviation between the relatedness of species in their
shared evolutionary history and their actual relationships within the community. Initially,
βMNTD was computed by calculating the branch lengths of bacterial phylogenetic trees,
followed by the standardizing of the residuals between the observed values and expected
values (obtained through 999 randomizations), which were then normalized to estimate
βNTI. Subsequently, Mantel tests were employed to examine the correlation between βNTI
and the pertinent factors. Our findings revealed a significant positive correlation between
βNTI values and both altitude and body mass index (BMI) across the two intestinal types.
This indicated that alterations in environmental factors induced substantial inconsistencies
between the species interactions in the microbial communities and their expected relation-
ships based on evolutionary history. Alternatively, it suggested a decay in similarity among
gut microbial communities across individuals as a result of geographical distance. This
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finding aligned with conclusions drawn from studies on species such as house mice [59–63],
pikas [20], woodrats [64], and wild leaf miners [31]. Variations in altitude and BMI may
play a role in the systematic phylogenetic turnover differences or compositional disparities
observed in the formation of the two enterotypes of gut microbiota. This could be attributed
to the direct or indirect impact of altitude and BMI variations on host physiological condi-
tions, metabolic activities, and immune system functionality [20,62,65,66]. These factors
may affect the stability of the host’s gut environment and the availability of ecological
niche space, resulting in alterations in the structure and function of microbial communi-
ties [67,68]. Additionally, changes in altitude and BMI may also influence the interaction
between the host and the external environment, including diet, lifestyle, and microbial
sources [7,69], thereby affecting the composition and diversity of microbial communities.
Thus, variations in altitude and BMI may influence the assembly processes of microbial
communities through multiple pathways, leading to differences in microbial community
composition between the different enterotypes.

5. Conclusions

In summary, by employing an integrated approach drawing upon ecological and mi-
crobiological methodologies, we elucidated the presence of two distinct enterotypes within
the gut microbiota of wild A. agrarius populations for the first time. Further investigations
revealed distinct structural and functional attributes associated with these two enterotypes,
with the assembly of microbial communities within each enterotype being influenced by
both stochastic (body mass index, BMI) and deterministic (altitude) processes. Our find-
ings underscore the significant relationship between gut microbiota and environmental
gradients, thereby offering valuable insights into the implications for wildlife conserva-
tion and ecosystem management. Future research endeavors should involve longitudinal
studies encompassing various seasons and altitudes, incorporating a larger sample size,
and analyzing physiological parameters, such as host disease status, parasitic infections,
and reproductive conditions, to comprehensively elucidate the precise associations and
interactions between hosts and microbial communities.
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Table S3: Functional prediction analysis of two community types in A. agrarius. Significant differences
of predicted gene functions (Wilcoxon rank sum test) between clusters were evaluated at level 2,
Table S4: Functional prediction analysis of two community types in A. agrarius. Significant differences
of predicted gene functions (Wilcoxon rank sum test) between clusters were evaluated at level 3.
Figure S1: The degree of fitting of different intestinal types of ASVs in the neutral model. Percentage
represents the number of ASVs within and outside the 95% confidence interval of the neutral
model prediction. Figure S2: Contributions of deterministic (|βNTI| ≥ 2) and stochastic processes
(|βNTI| < 2) on gut microbiota community assembly in different enterotype of A. agrarius.
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