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Abstract: The bidirectional relationship between the gut microbiota and the nervous system is known
as the microbiota–gut–brain axis (MGBA). The MGBA controls the complex interactions between the
brain, the enteric nervous system, the gut-associated immune system, and the enteric neuroendocrine
systems, regulating key physiological functions such as the immune response, sleep, emotions and
mood, food intake, and intestinal functions. Psychobiotics are considered tools with the potential
to modulate the MGBA through preventive, adjunctive, or curative approaches, but their specific
mechanisms of action on many aspects of health are yet to be characterized. This narrative review
and perspectives article highlights the key paradigms needing attention as the scope of potential
probiotics applications in human health increases, with a growing body of evidence supporting their
systemic beneficial effects. However, there are many limitations to overcome before establishing
the extent to which we can incorporate probiotics in the management of neuropsychiatric disorders.
Although this article uses the term probiotics in a general manner, it remains important to study
probiotics at the strain level in most cases.

Keywords: psychobiotics; microbiota–gut–brain axis; stress; early-life stress; neuropsychiatric
disorders; neuroinflammation; microglia; metabolic syndrome; obesity

1. Introduction

The gut microbiota is composed of a highly complex community of microorganisms
residing in the gastrointestinal (GI) tract of humans and other animals. Most of the micro-
biota is found in the large intestine, with a smaller fraction residing in the stomach and
small intestine. The lifelong symbiotic relationship between microorganisms and the host
begins as early as the time of birth, perhaps even in utero [1]. While the host provides
the habitat and nutrition, these microorganisms return the favor with various significant
benefits. The GI benefits provided by the resident microbiota include supporting digestion
and metabolism, vitamin synthesis, maintaining the epithelial integrity of tight junctions
(thereby preventing the absorption of harmful molecules or pathogens), colonizing the
mucosal layer and competing with pathogens for food and space, and supporting the de-
velopment of immunity. The systemic benefits of probiotics include enhancing the immune
system and, for psychobiotics, influencing gut–brain communication to regulate mood,
cognitive and neurological functions, and even brain structures [2–4].
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Psychobiotics are defined as probiotics that confer mental health benefits to the host
when consumed in a particular quantity through the interaction with commensal gut bacte-
ria. Over the last decade, interest in psychobiotics has significantly increased, leading to
major advances in understanding their therapeutic potential in indications related to the
MGBA. This bidirectional communication that exists between the brain and gut microbiota
is thought to be primarily mediated by the enteric nervous system, the hypothalamic–
pituitary–adrenal (HPA) axis, and the central and peripheric nervous systems, with in-
fluences from immune, endocrine, and molecular pathways (Figure 1) [5–7]. Numerous
studies have associated the administration of psychobiotics with positive effects on areas
of stress, anxiety, neuroinflammation, neurodegenerative diseases such as Alzheimer’s
and Parkinson’s diseases (AD and PD), in addition to GI diseases [8–12]. The mechanism
by which psychobiotics confer these benefits has been suggested to be mediated through
their regulation of neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA),
brain-derived neurotropic factor (BDNF), as well as short-chain fatty acids (SCFAs) and
enteroendocrine hormones [13–17]. Psychobiotics have also been shown to impact in-
flammatory pathways by normalizing the levels of pro-inflammatory cytokines as well
as inducing increased amounts of anti-inflammatory cytokines such as IL-10 [14,18]. In
addition to their anti-inflammatory role, psychobiotics have been shown to reduce the
activation of the HPA axis in response to stressors [19–21].
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and process information related to the internal physiological state of the body [22,23]. This 
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Figure 1. Schematic representation of the main components of the MGBA. The microbiota acts in the
gut lumen and on the epithelial mucosa via the secretion of a variety of metabolites, including, but
not restricted to, SCFAs and neurotransmitters. The microbial metabolites can cross the epithelial
barrier to reach the lamina propria and the circulation. Other metabolites act directly on the epithelial
barrier to strengthen tight junctions and stimulate the production of neuroendocrine and immune
mediators that will influence vagal afferents or reach the circulation. In the lamina propria, immune
cells secrete anti-inflammatory cytokines in response to the specific microbial signals received by the
dendritic cells. Stress activates the HPA axis, which controls the circulating concentrations of cortisol,
and affects intestinal motility through communication with the enteric nervous system.

It is well recognized that through the concept of interoception, the brain can sense and
process information related to the internal physiological state of the body [22,23]. This was
previously thought to be primarily mediated by fine, unmyelinated vagal and sympathetic
afferent neurons. However, we now know that besides those direct neurons, the gut
microbes and their metabolites provide a key source of such interoceptive information;
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psychobiotics can affect the brain through vagal afferents since some of their effects can
be alleviated by vagotomy in animal models [24]. Interestingly, in addition to perception,
the gut microbiota can even influence the anatomical structure and development of the
brain, which subsequently impacts physiological functions, as shown in animal models
of early-life stress (ELS). Abnormalities in delicately tuned interoceptive signaling could
result in disordered MGBA communications and disease conditions such as irritable bowel
syndrome (IBS), functional dyspepsia, chronic abdominal pain, psychiatric disorders, and
neurodegenerative (NDDs) and developmental disorders [6,25].

A solution, as proposed also for GI diseases, would be to restore the “normal” or
baseline gut microbiota composition and functions, and/or to restore proper communica-
tion between the brain and the gut by correcting the imbalanced microbiome population
(aka dysbiosis) to that observed in healthy individuals. Accordingly, psychobiotics have
emerged as potential tools to mitigate the symptoms of various mental and neuropsychiatric
and neurodegenerative conditions.

2. Gut Microbiota and Neurodegenerative Diseases: Crosstalk and Potential Mechanisms

To date, there is still no consensus regarding the definition of a healthy gut microbiota
composition given the wide inter-individual variability, even in people considered healthy.
However, experts agree that some bacterial genera or species are generally recognized as
beneficial, such as Faecalibacterium prausnitzii, while other are usually associated with patho-
logical or proinflammatory conditions (pathobionts). Additionally, a strong homogeneity is
now well-recognized in the overall activities of the gut microbiota of healthy individuals.
Thus, taxonomic diversity is much greater than functional diversity. This redundancy of
functions between different species ensures the maintenance of essential activities.

During the past decades, the pivotal role of the gut microbiota homeostasis and func-
tions has been demonstrated in a plethora of health axes, from the traditional GI system
itself to metabolic health, overall immunity and more recently to mental health [26] to only
cite a few. In fact, the bidirectional link between the gut microbiota and the functioning of
the central nervous system (CNS) was highlighted at the beginning of the 2000s in stud-
ies conducted in gnotobiotic mice models [26,27]. Since this pioneering work, numerous
preclinical, clinical and epidemiological studies have highlighted several mechanisms in-
volving neural signaling pathways (enteric and CNS), the endocrine system and immunity
(detailed later in this review), allowing a certain homeostasis in the MGBA regulation.

In pathophysiological conditions, including the development of NDDs and NPDs,
the analysis of the gut microbiota composition had revealed a decrease of its diversity,
an altered profile in favor of deleterious genera and species, usually associated with the
release of proinflammatory or neuroactive microbial metabolites and an increase of gut
permeability [28]. In response to environmental or endogenous factors, but also pathobiont
colonization, the gut microbiota produces a large variety of bioactive molecules such as
SCFAs, long-chain fatty acids, neurotransmitters, microbial toxins, and microvesicles [29].
In a recent clinical trial conducted in India comparing the gut microbiota composition of
PD patients to that of their wife, the authors reported a decrease in Faecalibacterium, Blautia
and Fusicatenibacter genera, among others [30]. The significant decrease of Faecalibacterium
relative abundance has been also highlighted in individuals with subjective cognitive
decline and the authors concluded that an altered gut microbiota composition may serve
as a potential peripheral biomarker of AD’s onset [31,32]. It is consistent with previous
trials conducted in individuals suffering from NDDs revealing a lower abundance of SCFA-
producing bacteria, including Prevotella, Faecalibacterium, Blautia and Roseburia compared
to the gut microbiota of healthy controls [33–37]. In the SOD1G93A mouse model of ALS,
an increased gut permeability to toxins and a decrease of the relative abundance of the
butyrate-producer Butyrivibrio fibrisolvens species were reported [38]. Interestingly, the
treatment of SOD1G93A mice with butyrate induced a delayed weight loss and increased
survival of ALS animals [39]. The effects of SCFAs may be mediated by several mechanisms
of action, including their binding to G-protein-coupled receptors (i.e. GPR43, GPR41,
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GPR109A) and the inhibition of histone deacetylation leading to epigenetic regulations
of several gene expressions [40]. Growing evidence revealed that the beneficial effects of
SCFAs on blood-brain-barrier (BBB) integrity are also induced through the inhibition of pro-
inflammatory pathways involving NF-κB and one potential mechanism is the activation
of Nrf2, a redox-sensitive transcription factor (for specific pathway details, please refer
to [41]). Regarding acetate, even if it is still controversial, some experts agree that this small
molecule is able to cross the BBB, as demonstrated by Frost et al. in vivo [42], and thus
acetate may alter the level of the neurotransmitters produced locally, such as glutamate,
glutamine and GABA.

Gut microbiota dysbiosis is not only described as a reduction or the absence of bene-
ficial species, but also by the excessive increase of specific commensal species which will
induce proinflammatory reactions or even by the invasion of pathobionts. Gut leakiness
increase had been reported in NDDs’ patients, as compared with healthy individuals. In
PD’s patients, increase in Enterobacteriaceae, in particular Escherichia coli, has been reported
as compared to healthy control, and it was associated with the increase of the expression
of genes involved in lipopolysaccharide (LPS) biosynthesis and bacterial secretion [43]
(for a review of LPS downstream pathways involved in NDD development, please refer
to [44]). Interestingly, it was also associated with an increase of α-Syn in the GI tract [45]
and some data suggested that α-Syn may spread via the vagus nerve to the brainstem [46].
Yildirim et al. recently observed that overrepresentation of Escherichia was associated
with the increase of opportunistic species of Klebsiella and Enterococcus, as compared with
healthy control individuals [47]. Another mechanism related to Gram-negative bacteria
was recently reported in the literature. Indeed, new results pointed out a role for small outer
membrane vesicles which seem to shuttle bacterial toxins and virulence factor to distant
organs, contributing to PD pathogenesis [48]. Similarly, the link between specific pathogens
and the onset of NDDs seems to be multifactorial and involves the activation of chronic
inflammatory pathways [44], as it was recently highlighted between AD and the presence of
Helicobacter pylori in the gut, which is no longer only associated with gut disorders but also
with mental health [49]. Specific profile of gut microbiota alterations in humans suffering
from the different NDDs were gathered in a recent review by Khatoon et al. [50].

In addition to LPS, a well-described proinflammatory marker of physiopathologies
including NDDs, other gut microbiota metabolites might send signals to the brain through
the activation of afferent sensory neurons of the vagus nerve [51]. It is notably the case
for by-products of the tryptophan/kynurenin pathway which is directly impacted by
gut microbiota metabolism since several bacterial genera can produce and/or metabolize
tryptophan. Widner et al. reported that the severity of cognitive function impairment could
be directly correlated with kynurenin/tryptophan increase [52] (for detailed information
regarding this important pathway, please refer to [51,53]). Trimethylamine-n-oxide (TMAO),
derived from the TMA produced by gut bacteria, has been also associated with NDDs. Del
Rio et al. revealed the ability of this proinflammatory marker to cross the BBB as it was
found in the cerebrospinal fluid of AD patients [54].

More recently, Ide et al. carried out a 6-month prospective study in elderly with mild
cognitive impairment and demonstrated that periodontitis diagnosis was associated with
a marked increase in cognitive decline independently to baseline cognitive state [55]. In
fact, LPS from Porphyromonas gingivalis, a species commonly found in the oral tract was
detected in the brains of AD patients [56]. These results were corroborated by a preclinical
trial showing that oral administration of P. gingivalis in C57BL/6 mice induced pathological
symptoms of AD, as neuroinflammation, neurodegeneration or β-amyloid plaque forma-
tion [57]. In addition to that of the gut microbiota, these data raise an important role for
the oral microbiota, having the particularity of inducing biofilms, in the onset of NDDs, as
recently reviewed [58]. Researchers recently identified new biomarkers in the blood that
can be detected up to 10 years before the onset of AD’s symptoms, one of these being GFAP
(glial fibrillary acidic protein) [59–61] which can be regulated by probiotics intake in animal
models [62]. While more research is required to characterize the meaning of this finding,
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we can speculate that changes in both oral and gut microbiota may be involved earlier than
the current timeframe of microbiota composition studies that provide only a snapshot of
the existing state without informing on the potential causal role of dysbiosis.

These potential mechanisms and crosstalk between pathways and systems involved in
NDDs are also relevant for other NPDs such as depression and schizophrenia, although the
role of the MGBA in most NPDs is still understudied. Microbiota dysbiosis and eubiosis in
these conditions also remain to be characterized at the functional level.

3. Psychobiotics and Neuropsychiatric Disorders (NPDs)

A recent systematic review by Ribera et al. (2024) [see [63], and references therein]
identified 43 clinical trials assessing the effects of various psychobiotics (probiotics or
synbiotics) in clinically diagnosed NPDs. Major depressive disorder (MDD) was the most
studied disorder with 17 trials. Other disorders were deemed understudied, which pre-
vented formal conclusions about the benefits of psychobiotics in schizophrenia (10 studies),
bipolar disorder (5 studies), anorexia nervosa (4 studies), attention deficit hyperactivity
disorder (ADHD) (3 studies), anxiety disorders (2 studies), Tourette syndrome (1 study)
and insomnia (1 study). The authors concluded that psychobiotics are beneficial in MDD
patients, but that more well-designed studies are required in other indications. Overall,
these studies used probiotic formulations containing various amounts of Lactobacilli and
Bifidobacteria strains at various dosages. The psychobiotics strains and formulations that
showed a significant effect on depression are listed in Table 1, which includes 9 studies
on 8 different psychobiotic strain or formulations. Studies on synbiotics were excluded
from this table as prebiotics are not covered herein. Significant improvements are depicted
by green background (and underlined), while questionnaires that showed no change are
depicted by a red background (not underlined). This table also provides an overview of
the formulations and strains that were tested using a variety of questionnaires (assessing
depression, anxiety, sleep quality and GI symptoms), highlighting one of the main difficulty
inherent to systematic reviews: the differences between studies in terms of assessment tools
and psychobiotic regimens do not allow for recommendation of a specific probiotic strain
or dose for all NPDs. Typical limitations identified in the systematic review are listed in
Box 1.

Box 1. Typical limitations of psychobiotic studies in NPD indications [26].

• High variability in strain, dose, and duration of supplementation.
• Use as an adjuvant to pharmacologic treatments or alone, or with nutraceuticals without a

corresponding nutraceutical control arm.
• Heterogeneity in the prior or co-administered pharmacologic treatments.
• Heterogeneity in outcome measures and outcome assessment tools.
• Lack of patient-centered outcomes, such as social functioning.

Mechanistic studies in animal models of depression have highlighted the importance
of the HPA axis and the vagus nerve in the effect of psychobiotics via the MGBA (Figure 1).
In humans, mechanistic data in MDD patients are still scarce. Among studies that included
mechanistic outcomes, the common ground was to assess inflammatory markers as well
as biochemical markers of glucose metabolism because these pathways, for which many
probiotics show regulatory effects, have also been linked with the pathophysiology of
several NPDs. For example, in addition to the improvements in depressive symptoms,
the blend of L. acidophilus, L. casei and B. bifidum [64] also induced a significant decrease
in insulin, HOMA-IR and hs-CRP levels. Bacillus coagulans MTCC 5856 intake was as-
sociated with a significant reduction in myeloperoxidase levels [65], while a significant
reduction in the isoleucine-normalized kynurenine/tryptophan ratio was observed in the
Cerebiome®group versus placebo, as well as increased serum BDNF levels and increased
appetite without affecting body weight over the 8-week study [66–68].
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Importantly, Ribera et al. (2024) excluded studies on populations with non-medically
diagnosed conditions. However, psychobiotics have been shown to exert positive effects
also in sub-clinical contexts [27,28]. In systematic reviews considering both sub-clinical and
clinical populations, conclusions are limited by the heterogeneity between populations in
addition to the limitations presented in Box 1.

Table 1. Questionnaire results for psychobiotic strains and blends that showed significant improve-
ments on depressive symptoms in MDD patients (Adapted from [63]).

Strain/Formulation Depressive
Symptoms

Anxiety
Symptoms

Sleep
Quality

GI
Symptoms Refs

L. paracasei Shirota (8 × 1010 CFU) HDRS BDI STAI PSQI GSRS [69]
B. coagulans MTCC 5856
(2 × 109 CFUs)

CES-D, CGI,
HDRS, MADRS Not tested Not tested IBS-QOL [65]

L. plantarum PS128
(6 × 1010 CFUs) HDRS, DSSS Not tested Not tested Not tested [70]

C. butyricum MIYAIRI 588 © (60 mg) BDI, HDRS BAI Not tested Not tested [71]
L. helveticus R0052, B. longum R0175 (Cerebiome®;
10% and 90% of the composition respectively,
3 × 109 CFUs total)

BDI, MADRS,
QIDS-SR16,

SHAPS

GAD-7,
STAI PSQI Not tested [66–68,72]

S. thermophilus, B. breve, B. longum, B. infantis,
L. acidophilus, L. plantarum, L. paracasei, L. delbrueckii
(9 × 1011 CFUs total)

HDRS BDI STAI Not tested GSRS [73]

B. breve, B. longum, P. acidilactici
(4 × 109 CFUs/g; 4 g) HDRS, MADRS Not tested Not tested GSRS [74]

L. acidophilus, L. casei, B. bifidum
(2 × 109 CFUs each) BDI Not tested Not tested Not tested [64]

BAI, Beck’s Anxiety Inventory; BDI, Beck’s Depression Inventory; CES-D, Centre for Epidemiologic Studies
Depression scale; CGI, Clinical global impression scale; DSSS, Depression and Somatic Symptoms Scale; GAD-7,
General Anxiety Disorder-7; GSRS, Gastrointestinal symptom rating scale; HDRS, Hamilton Depression Rating
Scale (also known as the Ham-D); IBS-QOL, Irritable Bowel Syndrome Quality of Life Instrument; MADRS,
Montgomery-Asberg Depression Rating Scale; PSQI, Pittsburgh Sleep Quality Index; QIDS-SR16, 16-item Quick
Inventory of Depressive Symptomatology-Self-report; SHAPS, Snaith-Hamilton Pleasure Scale; STAI, State-Trait
Anxiety Inventory.

One main difference between subclinical and clinical depression is the prescription of
antidepressants. These drugs were shown to affect the gut microbiota composition, either
beneficially or in a deleterious manner [29]. On one hand, some antidepressants were
shown to favor eubiosis and restore microbiota composition, which could be one of their
mechanisms of actions. On the other hand, antidepressants, by changing the composition
of the gut microbiota, may reduce the treatment efficacy by influencing the absorption,
metabolism and activity neuropsychiatric drugs. This could explain the development of
treatment resistance in some individuals. Furthermore, the antibacterial activity of antide-
pressants raises concerns in terms of the development of antibiotic resistance. It would be
interesting to figure out which psychobiotics could synergize with specific antidepressants
and potentially allow to lower the dose of pharmacological agents while achieving the
same therapeutic effect. For instance, several antidepressants are associated with weight
gain, which appears to also be mediated by their impact on the microbiota composition by
reducing the abundance of taxa involved in weight control [29]. Antidepressants can also
modulate the secretome of the gut microbiota, as shown in a study of 290 MDD outpatients
treated with citalopram or escitalopram that identified an association between SSRIs and
alterations in the metabolic profiles of tryptophan, purine, and tyrosine pathways [30].
Antidepressants can also alter the epithelial mucosal barrier, with some SSRIs associated
with an increased or decreased gut permeability and epithelial functions. Considering the
importance of the microbiota in the overall response to treatment in patients with depres-
sion (a concept that also applies to other neuropsychiatric disorders and other psychotropic
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drugs), it will be important to further characterize antidepressants-psychobiotics pairings
for their efficacy and global effect on the gut microbiota composition.

Overall, despite several encouraging results, the application of psychobiotics in mental
and neurological diseases in clinical trials is primarily perceived to be of a supportive nature
rather than a treatment. As research progresses towards a better understanding of the
holistic nature of mental health maintenance, with reciprocal impacts between stress, sleep,
lifestyle factors, eating habits, early-life environment and upbringing conditions, as well as
other comorbidities, the integration of psychobiotics to the NPD treatment armamentarium
will be facilitated and possibly tailored to the specific modes of actions of each strain or
specific mix. For example, Cerebiome®and L. paracasei Shirota both improved sleep quality
scores on the PSQI. Considering that sleep disruption is well-recognized to contribute
to neuropsychiatric disorders’ severity, these psychobiotics should be studied in other
conditions or age groups where impaired sleep has been shown to have an impact.

4. Psychobiotics and Microbiota in Sleep Quality, Stress and Mental Health

A systematic review by Scott et al. (2021) including 65 studies reported that im-
proving sleep quality leads to better mental health [75] and Staines et al (2022), based on
43 studies, found that improving sleep quality was associated with a reduction of anxi-
ety symptoms [76]. A 2022 systematic review of 34 studies exploring the associations of
stress with poor sleep quality and/or insomnia in undergraduate students found a strong
association between insomnia and stress, and a moderate pooled association between
sleep quality, insomnia and stress [77]. There is not much debate around the negative
effects of stress and the importance of good sleep for overall and mental health. However,
more research is required to determine the efficacy of specific stress reduction and sleep
interventions and assess the effect of incorporating sleep improvement strategies in mental
health services [75].

A large evidence base supports the role of psychobiotics against stress-induced GI
and behavioral symptoms. It is believed that one of the key factors mediating the adverse
effects of stress on mental health is the gut microbiome [78]. In mice, exposure to stressful
environmental factors, such as chronic sleep disruption, during puberty induces depression-
like behavior. However, probiotic supplementation during puberty significantly mitigated
the latter effect in both males and females to a level comparable to rested mice [79,80].
These findings suggest that, as opposed to pharmacologic treatments which have been
shown to negatively affect the microbiome, psychobiotics exert their benefits both in
the gut and at a systemic level. Exposure to chronic sleep disruption also induces a
significant decrease in tryptophan concentration in the prefrontal cortex, and glucose and
lactate concentrations in the hippocampus, both of which were mitigated by probiotics
supplementation [79]. Probiotics have also been shown to mitigate the detrimental effects of
maternal separation in animals, modeling early-life stress and its lifelong consequences [81].
Mental and neurological wellbeing in adulthood is significantly impacted by stress exposure
in early life. During this period, ongoing development of the nervous system allows for
programming by internal and external events. Based on animal models, it appears that the
impact of this programming is not limited to the exposed individual but also imposes a
trans-generational effect. For instance, induction of stress during gestation or pregnancy,
which subsequently impacts the fetus, can result in epigenetic changes in adult offspring
that are then passed on to the subsequent generation [82]. Mechanistic insights from animal
studies include altered SCFA production, disruption of T helper 17 cells differentiation and
maternal immune activation, or alterations of tryptophan metabolism and serotoninergic
signaling [83]. However, which outcomes do we measure, and when, to validate this
lifelong and transgenerational process in humans? The study of the role of probiotics
on epigenetics in epithelial intestinal cells in vitro suggests that they can modulate the
global histone methylation and acetylation status [84], which is of utmost interest from a
neurodevelopmental biology perspective.
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Nevertheless, for clinical trials, prerequisite research questions have yet to be answered:
in what manner do GBA interactions in early life influence the subsequent vulnerability
to developmental and neurological disorders, and how do we factor the interindividual
differences in resilience abilities in this assessment? Indeed, one hypothesis is that early-
life stress would reduce the ability to cope with subsequent life stressors. Moreover, a
statistical report published by the U.S. National Institute of Mental Health highlights the
age- and sex-dependent nature of mental illnesses. In 2021, just after the devastating
worldwide pandemic, the prevalence of mental illness was reported to be higher among
females (27.2%) compared to males (18.1%), with young adults aged 18–25 years having the
highest prevalence (33.7%). An estimated 49.5% of adolescents had a mental disorder, out
of which 22.2% experienced severe impairment and/or distress [85]. In Canada, this age
group reported the most important decline in mental health after the pandemic, and those
already experiencing poor mental health before COVID-19 were impacted even more [86].
Conceivably, a stressful environment during the early years of life, followed by the physio-
logical changes and psychosocial stressors during puberty, such as significant hormonal
changes, heightened emotional sensitivity, academic pressure, social and peer pressure,
and concerns about self-image all contributed to the high prevalence of mental illnesses
in adolescents and young adults. A main issue pertaining to this group is limited proper
diagnosis due to significant physical, emotional, and social changes that make it difficult
for caregivers to distinguish potential mental illness symptoms and (ab)normal expected
adolescent behaviors. However, in infants and children, the microbiota composition in early
life was associated with temperament based on 6 studies, which is important considering
that childhood temperament is believed to lay grounds for later personality, behavior and
risk of psychopathology [87].

A recent systematic review by Augusti et al. (2023) identified 13 longitudinal, cross-
sectional and case-control studies assessing the relationship between ELS, either prenatal
(4 studies) or postnatal (9 studies), and the gut microbiome composition [88]. Several
limitations were identified, notably the high heterogeneity between studies in terms of
ELS stressors as well as in microbiome sample collection and analyses (Box 2). On the
contrary, several commonalities between studies were also identified, with only 2 of the
studies not finding any association. Mostly, despite some extent of conflicting results,
ELS was associated with lower Bifidobacterium species and higher levels of Proteobacteria
(typically Enterobacteriaceae) in the newborns exposed to ELS. No studies were found
using psychobiotics (interventional) and few were monitoring for probiotics use. In fact,
the included studies generally lack in monitoring important confounding factors such as
diet and antibiotic use.

Box 2. Limitations of human studies on ELS and microbiome composition [41].

• High heterogeneity in the ELS stressors studied, with some stressors assumed (i.e., effect
of long-term institutionalized care on microbiome in children) but not confirmed (i.e., no
emotional state measure reported).

• Few studies used adult biomarkers of stress to complement/confirm self-reported or interview-
reported ELS.

• Heterogeneity in the collection, processing, and analyses of stool samples.
• The impact of medications is difficult to estimate (e.g., antiretroviral therapy, antidepressants,

antibiotics, etc.).
• Diet not monitored.
• Participants age range very large (from newborns to adults with PTSD ‡)

‡ based on the retrospective history of ELS exposure.

While behavioral assessments on their own provide limited mechanistic information in
humans, identifying specific biological markers such as inflammatory and other circulating
molecules, beyond the ones we already have, to use as proxy for clinical trials is a must to
gather a more comprehensive picture [89]. A number of psychobiotics have shown their
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potential in positively impacting ELS-induced consequences. Liu et al. found that the ad-
ministration of a Lactiplantibacillus plantarum strain in mice subjected to maternal separation
significantly reduced inflammation while increasing levels of serotonin in multiple areas
of the brain [90]. Another group has also shown that supplementation with a probiotic
formulation containing Lactobacillus helveticus and Lacticaseibacillus rhamnosus (Lacidofil®)
alleviated the deleterious impacts of ELS on the fear retention and extinction trajectory and
neuronal activation in the brain [91]. Another study found that administering this same
probiotic formulation to rats subjected to chronic unpredictable stress reduced microglia
immunoreactivity, suggesting both a neuroprotective effect of the psychobiotic as well as a
reduction of neuroinflammatory pathways associated with microglia activation [92].

Under chronic stress, the microglia remains in a constant state of activation, which
has been associated with increased production of inflammatory cytokines, creating a
hostile environment that promotes neuronal damage. Microglia activation can come
from pathogen-associated molecular patterns (PAMPs) or damage-associated molecular
patterns (DAMPs) [93]. These can become more prevalent in the brain in a state of chronic
stress or in certain NDDs but can also reach the brain from other sources. In the gut,
stress can affect the integrity of epithelial tight junctions [7], in addition to impairing the
differentiation intestinal stem cells into protective cells by stimulating indole-3-acetic acid
(IAA) production by some Lactobacilli strains [94]. These effects increase gut permeability
which in turn causes more microbial products to reach the bloodstream. It is believed
that some of those bacterial products that should not normally reach systemic circulation
may accentuate stress-induced microglial activation and exacerbate neuroinflammation.
Psychobiotics could counteract these effects by acting on both the intestinal barrier and by
secreting molecules that positively regulate brain function and reduce inflammation.

5. The Immune System and NDDs

Recent research emphasizes the essential role of inflammation and immune system
dysregulation in the pathogenesis of common NDDs, including AD, frontotemporal de-
mentia (FTD), ALS, and PD. Evidence suggests that early activation of innate immune
pathways, mostly by hallmarks of NDDs such as misfolded proteins or aggregated sub-
stances, could be an early cause rather that a consequence of neurodegeneration. This is
supported by findings that reported the correlation between severe infections and accel-
erated cognitive decline in AD, linked to increased levels of peripheral tumor necrosis
factor alpha (TNF-α) and the beneficial role of non-steroidal anti-inflammatory drugs in
lowering the disease risk. Furthermore, genetic analyses have identified specific genes
associated with innate immune pathways and microglial cells, suggesting a pathogenic
role for neuroinflammation in AD. These include genes coding for complement receptor 1
(CR1), myeloid cell-expressed membrane-spanning 4-domains subfamily A member 4E
(MS4A4E), and CD33, which is involved in suppressing pro-inflammatory cytokines and
amyloid-β clearance by microglial cells. FTD, the second most common dementia type after
AD, also involves neuroinflammation, evidenced by elevated TNF-α and Transforming
growth factor beta (TGF-β) levels in cerebrospinal fluid and increased microglial activation.
FTD is linked to mutations in the GRN gene that results in reduced levels of progranulin.
Progranulin deficiency leads to an imbalanced inflammatory response, suggesting that
neuroinflammation isn’t merely a secondary effect but integral to disease pathogenesis [95].
PD is the second most common NDD overall after AD [96]. Activated microglia play a key
role in the progression of PD by contributing to neuroinflammation. Research has shown
that in PD brains, microglia are abnormally activated, resulting in high levels of HLA-DR
expression in affected brain areas. These HLA-DR molecules facilitate the presentation of
antigens to CD4+ T lymphocytes. This process, along with the secretion of inflammatory
mediators, leads to the degeneration of dopaminergic neurons [97]. In line with these
reports, studies on ALS/FTD pathologies highlighted the early and prominent role of
microglia and astrocyte activation in pathogenesis. Key observations come from patient
autopsies, showing characteristic neuronal inclusions and cell loss alongside glial activation.
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Human imaging studies and animal model research further confirm that neuroinflamma-
tion occurs early in the disease process, with microglial activation closely tied to disease
progression [98].

It is becoming increasingly evident that the gut microbiota plays a pivotal role in
immune regulation, inflammation, and the pathophysiology of NDDs. Emerging research
elucidates how the gut microbiota directly impact immune system by facilitating inter-
actions between bacterial molecules (e.g., LPS, peptidoglycans) and immune cells (e.g.,
dendritic cells, macrophages), thereby modulating immune responses [99]; and indirectly,
by producing various metabolites such as polyamines and SCFAs [100]. Such biomolecules
modulate immune responses, both locally within the gut and systemically, by influencing
the proliferation and function of Treg cells, as well as the production of anti-inflammatory
cytokines. This modulation is crucial for maintaining immune homeostasis and preventing
overactive immune responses that can lead to chronic inflammation. While balanced gut
microbiota plays a crucial role in controlling inflammation and maintaining a healthy gut
barrier, on the contrary, dysbiosis has been linked to altered immune responses, increased
intestinal permeability, and disruption of the BBB. In germ-free mice, a significant reduc-
tion of both occludin and claudin-5 (but not ZO-1) expression has been identified in the
frontal cortex, hippocampus and striatum, as compared with pathogen-free mice [101].
This facilitates the entry of pro-inflammatory cytokines into the CNS, promotes neuroin-
flammation, and subsequently contributes to the progression of neuronal damage and
degeneration [102]. In a preclinical study, the authors reported that the gut microbiota
is essential for the microglia maturation and function. Indeed, germ-free mice exhibited
microglia with defects that impaired innate immune responses but reintroducing a complex
microbiota or SCFAs partially restored microglia functionality [103]. Another study also
supported that the presence of gut microbiota is crucial for microglial activation and is nec-
essary for the motor deficit phenotype to fully develop in mice models of synucleinopathies,
such as PD. Notably, the neuroimmune response activation was partially attributed to SC-
FAs which induced microglial activation. Moreover, mice with α-synuclein overexpression
showed increased physical impairments when colonized with microbiota from PD patients
compared to those from healthy donors, suggesting human microbiome alterations could
be a risk factor for PD [104].

Given the emerging evidence highlighting the role of the gut microbiota in regulat-
ing immune system and neuroimmune responses, and the link to various neurological
disorders, including NDDs, it becomes increasingly intuitive to consider psychobiotics
as potential modulators within this context. While studies evaluating the direct effects
of psychobiotics on neuroinflammation are limited. There are some reports that tested
specific strains and partially linked their beneficial effects to immune modulation. For
example, administration of Lactobacillus plantarum PS128 has been shown to significantly
reduce neuroinflammation, by preventing gliosis, and improve cognitive function in animal
models of AD [105]. Another study focused on inflammation, insulin and lipid-related
genes in peripheral blood mononuclear cells (PBMCs) in PD patients. It reported that a
probiotic blend containing Lactobacillus acidophilus, Bifidobacterium bifidum, L. reuteri, and
Lactobacillus fermentum significantly decreased the expression of pro-inflammatory genes
IL-1, IL-8, and TNF-α, while increasing the expression of TGF-β, a regulatory cytokine, and
PPAR-γ, associated with anti-inflammatory processes [106]. Furthermore, in another AD
mice model, the administration of SLAB51 probiotic formulation resulted in an increase
in Bifidobacterium spp., known for their anti-inflammatory properties, and a decrease in
Campylobacterales, which are associated with pro-inflammatory effects. This shift in the
gut microbiota composition led to reduced plasma levels of pro-inflammatory cytokines,
indicating the probiotic’s potential to modulate inflammatory pathways. Additionally,
treated AD mice showed increased levels of G-CSF, a cytokine involved in systemic im-
mune response modulation [107]. Oral supplementation with L. helveticus R0052 and
B. longum R0175 combination of LPS-treated rats (development of AD-associated mecha-
nisms) significantly decreased the elevation of both circulating and hippocampal levels
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of proinflammatory cytokines and attenuated the decremental effect of LPS on memory
through BDNF protein expression [108]. Another interesting probiotic effect on BBB per-
meability had been reported in germ-free mice monocolonized with a single bacterial
strain, either Clostridium tyrobutyricum, a butyrate-producer, or with Bacteroides thetaiotaomi-
cron, an acetate- and propionate-producer. Indeed, after 3 days of oral gavage, analysis
performed after Evans blue perfusion demonstrated that both probiotic strains and also
sodium butyrate-treatment decreased BBB permeability which was associated with an
increased in tight-junction protein expression and may be also linked to an increase of
histone acetylation after sodium-butyrate or C. tyrobutyricum treatments [101].

Despite these promising findings, the mechanisms through which psychobiotics exert
their effects on the immune system and inflammation within the MGBA remain to be fully
elucidated and confirmed in randomized placebo-controlled clinical trials. The complexity
of microbial communities, coupled with the diversity of immune responses and neural
effects, presents a challenge in delineating causal relationships. This challenge is even
more important when one considers the comorbidities that are related to dysregulated or
low-grade, chronic inflammation such as the metabolic syndrome, obesity and diabetes.

6. Eating Behaviors, Metabolic Health, and NDDs

The multidirectional interactions existing between the brain and the GI tract sug-
gest that diet might impact mental health and vice versa, and that dietary patterns might
be altered in individuals suffering from neurological disorders. It is now widely recog-
nized that both the CNS and ENS play a significant role in regulating food intake [109].
Food itself plays a major role in regulating appetite. Some nutrients, but also probiotics
and prebiotics, might interact with the sensor neurons present in the GI tract, modulat-
ing the feeling of hunger (or satiety) and inflammatory processes. These nutrients or
dietary supplements may also modulate the composition and functions of the intestinal
microbiome, which in turn impact the production of metabolites of interest. For example,
ingesting polyphenols modifies the microbiota, but the microbiota also enhances the ef-
fects of polyphenols and modifies them by producing metabolites that may improve the
prognosis of NDDs [110,111].

Regulation of eating behaviors is complex and results from the modulation of both
intrinsic factors, such as genetics, hormones, neural signals, and extrinsic factors, including
environment. This regulation is even more complex in humans than other mammals due
to hedonic food or social contexts. Moreover, it is important to consider that individuals
are not always rational regarding food consumption. Some people act as emotional eaters,
consuming food in response to a (positive or) negative stimulus, including stress, rather
than a response to a physiological need. Ultimately, if it becomes a habit, this behavior
might lead to the development of pathological issues such as overeating episodes or binge-
eating disorders (BEDs), for instance [112]. A recent stratification of the Food4Gut cohort
(ancillary study) revealed that individuals with obesity suffering from BED had slight but
significant differences in gut microbiota composition and metabolomic profile compared to
individuals with obesity but without BED [113].

In the context of obesity, it has been reported that proinflammatory molecules pro-
duced by adipose tissue expansion could reach the hypothalamus from the vagus nerve,
thus promoting the production of neural proinflammatory mediators by the activation of
endothelial and glial cells [114]. Several studies reported that a low-grade proinflammatory
status reported in obesity and its related metabolic disorders have the potential to affect
the brain negatively, increasing local inflammation, and altering plasticity or brain struc-
ture [115]. In patients with type 2 diabetes, insulin resistance has also been reported in the
hippocampus, which is associated with alterations of learning and memory capacities [116].
In the aging population, individuals with obesity or diabetes are at high risk of AD. Another
interesting mechanism in this vast network of molecules linking energy metabolism and
mental health is the dual role of ghrelin. Ghrelin - a well-documented orexigenic hormone -
induces, among others, hunger feelings and energy intake through the stimulation of orexi-
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genic neurons of the central nervous system. Growing evidence also suggests a key role of
ghrelin in improving neuroplasticity, neuroprotection and cognitive functions, particularly
in AD and PD, potentially through the indirect inhibition of microglia activation [117,118].
Further experiments remain necessary to demonstrate these ghrelin-signaling-dependent
pathways [117].

Moreover, depression reflects a negative emotion but can be subdivided in atypical
depression, mainly characterized by an increase of appetite and highly palatable food
consumption, and melancholic depression, typically characterized by appetite loss and
decrease of body weight. In MDDs, the “loss of pleasure” or anhedonia is an intriguing
symptom associated with reward-associated disorders [119]. In depression pathophysiol-
ogy, several signaling pathways and molecular alterations hypotheses were investigated,
including the decrease of monoamines brain levels or GABAergic neurons, for instance.
Recent studies also highlighted a potential role of the endocannabinoid (eCB) system in
the regulation of a plethora of metabolic and NDDs since cannabinoid receptors (i.e. CB1
and CB2 subtypes) are widely expressed in the body [119]. The endocannabinoidome
has been described as a large family of lipid mediators produced from ubiquitous lipid
precursors and involved in metabolism, inflammation, and behavior and thus in eating
disorders as explained more recently [120]. Growing evidence also demonstrated that
the neuroprotective, anti-inflammatory and antioxidant properties of the Mediterranean
diet could be partly explained by beneficial modulations of the eCB system [121]. MIND
diet, meaning Mediterranean-DASH Intervention for Neurodegenerative Delay, has been
proposed to specifically focus on brain health and thus, to reduce dementia and cognitive
decline occurring as people get older. Clinical trials are under investigation to demon-
strate its efficiency and some studies have already reported improvement of cognitive
function [122–124].

These examples demonstrate that mental and metabolic health are interconnected,
and some regulatory mechanisms share similar origins, targets and signaling pathways.
Eating behavior alterations could be both the cause and the consequence depending on the
origin of the pathology. Many preclinical experiments carried on in rodents have reported
that drug or dietary treatments impacting either mental or metabolic health, also have
significant effects on the other. However, clinical trials considering both aspects are still
underrepresented in the literature, especially in mild mental disorders and neurodegen-
erative pathologies. These missing connections between mental and metabolic health in
humans should be evaluated in future clinical trials by involving experts from both health
segments from the start of the project. It is of utmost interest to demonstrate that the use of
treatment to prevent or decrease symptoms of cognitive decline and NDDs could also have
a beneficial effect on body composition, improvement of food quality and quantity intake
and possibly on the regulation of the proinflammatory status of the adipose tissue.

Although available evidence shows that probiotics can modulate the immune sys-
tem and exert anti-inflammatory effects, alter the gut microbiota, produce neuroactive
substances, and influence gut barrier function, these mechanisms are not well-defined
at the molecular level and likely vary across different probiotic strains and individual
hosts. Indeed, mechanisms involving specific metabolic or cellular pathways should be
explored. Finally, the matrix or environmental factors to which the strain is exposed
during production could significantly affect the end outcomes if the mechanisms were
proven to depend on the presence of specific substrates for a given metabolic reaction
to occur [125]. Consistent quality in probiotic sourcing for clinical trials and afterwards
should be considered early and included among the key factors during the development of
clinical trial protocols to limit downstream changes in therapeutic formulations. To achieve
personalized clinical trials, future research should first focus on conducting studies with
more rigorous designs, and well-documented and diversified outcome measures, with a
greater emphasis on unraveling the mechanisms of action. This would help bridge the gap
between the preventive and therapeutic applications of psychobiotics to finally unravel
their full potential in managing mental and neurological disorders. But how do we move
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away from traditional study designs towards more innovative designs that could allow to
prove causality?

7. Psychobiotics as Prevention versus Treatment

There is a clear dichotomy between the use of probiotics as therapeutic agents versus
preventive or adjunctive agents in the context of mental and neuropsychiatric disorders.
Traditionally, probiotics have been studied in a “clinical” context or disease situation, where
animal models modified to express a certain pathological phenotype are administered
probiotics. In humans, probiotics are primarily perceived as a supportive food supplement
rather than treatment, with the main goal of improving general wellbeing, quality of life
and preventing disease occurrence or progression. A recent systematic review and meta-
analysis reported that out of 54 clinical trials in humans, only 13 studies (24.1%) recruited
participants with diagnosed psychiatric disorders according to the Diagnostic and Statistical
Manual of Mental Disorders (DSM), such as MDD, and schizophrenia, whereas 41 studies
presented data of healthy participants with no diagnosed psychiatric disorder [126]. The
discrepancies between studies conducted in healthy or stressed versus medically diagnosed
individuals leave a gap in our understanding and exploitation of probiotics at their full
potential. The inconsistency in available data may also be attributed to the high variability
in trial designs, including significant variations in used strains, doses, timelines, outcome
measures taken and clinical assessment tools [81]. Other challenges that can influence
the effectiveness of psychobiotics as live biotherapeutic products (LBPs) include timing
of administration (with respect to age or disease onset), regional diet differences, and for
some strains, the matrix in which they are delivered.

Some psychobiotics have demonstrated anxiolytic and antidepressant effects in both
preclinical and clinical studies, while other studies suggested that probiotics could enhance
the efficacy of conventional drugs. A recent study showed that in adults diagnosed with
MDD and with an incomplete response to prescription antidepressants a supplementation
with a 14-strain blend probiotic resulted in a greater improvement compared to those on
placebo [127]. Given the expanding horizon of probiotic research, it is crucial to distinguish
probiotics used as food supplements from the LBPs aimed to be used in patients [125,128].
As evidence grows supporting the role of probiotics in treating, not just preventing, specific
CNS diseases, the conversation around developing bacteria as medicines rather than
preventive measures gains even more relevance. Furthermore, interindividual variability
in gut microbiota composition underscores the benefits of developing panels or cocktails of
probiotic strains tailored to individual or subgroups’ needs, a concept that aligns with the
principles of personalized medicine or stratified approaches [129]. The list of key variables
to take into consideration while designing clinical trials is long, and it is becoming clearer
that a ‘one size fits all’ approach may not be sufficient in the context of psychobiotics
as LBPs.

8. Towards Mechanisms of Action: New Technologies for Preclinical and
Clinical Investigations

A main challenge in the study of psychobiotics as biotherapeutics is the lack of a clear
understanding of their full mechanisms of action. This gap in knowledge not only impose
limitations on current research but also creates resistance toward the use of probiotics by
patients and health care providers. This is particularly relevant in the context of mental
and neurological disorders such as NDD. To this day, most NDDs are lifelong with no
curative treatment. Thus, patients being presented with psychobiotics as a potential man-
agement modality would expect to at least know the primary mechanism through which
the psychobiotics are acting. In addition, awareness of the detailed mechanisms of action
will greatly improve our understanding of probiotic-host interactions, which will subse-
quently improve strain selection for future research and help tailor our supplementation to
specific disease phenotypes. Key mechanisms could involve metabolites such as SCFAs
and neurotransmitters as already proposed, but it is highly possible that other factors are
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involved. As we eliminate certain possibilities, we will move closer to understanding how
psychobiotics function. To achieve this, a systematic approach is needed, and although
probiotics and psychobiotics may work through multiple mechanisms biologically, which
is a fascinating possibility, it is beneficial for both the industry and clinicians to identify a
primary mechanism. Similar to drugs, a useful starting point would be to develop a com-
prehensive strain collection that is suitable for high-throughput screening (HTS) through
fast, automated, or AI-assisted processes [130,131]. This can be coupled with genomics, es-
pecially whole genome sequencing and genetic modification techniques. Such approaches
could help pinpoint key genes involved in certain probiotic effects and potentially facilitate
the validation of probiotic activity, and even lead to the discovery of new mechanisms and
therapeutic interventions.

Utilizing emerging monitoring technologies could also provide valuable insights in
this pursuit. Smart devices, like watches, urinary metabolite monitors, stool sampling and
consistency monitoring devices, and sleep quality and respiratory activity monitors, offer
new ways to track health parameters in healthy, at-risk, or diseased populations during
observational and clinical studies [132–134]. These technologies, paired with tailored ques-
tionnaires and the collection of blood, saliva, and stool samples using protocols suited to
metagenomic and metabolomic analyses would yield rich datasets. However, maintaining
compliance can pose challenges if clinical protocols become overly complex. Therefore,
balancing thoroughness and simplicity is key.

9. Conclusions

In this review, we have embarked on an exploratory journey through the multifaceted
domain of psychobiotics and the MGBA, uncovering their prominent roles across various
contexts. It is evident that the study of psychobiotics has come a long way already, but
the road ahead is still winding; we need to reshape our ways to study the applications of
probiotics in human health. While some psychobiotic formulations like Cerebiome®are
well-established and supported by several trials in participants with depression [81], it is
important to remember that not all probiotics are psychobiotics. Overall, our understanding
of how communities of commensal microorganisms function and interact with their hosts is
improving all the time. This is largely due to the development of investigation technologies,
which are increasingly precise and accessible, combined with ever greater data analysis and
integration capabilities. Advances in our knowledge are leading to a better understanding
of the activity of well-known probiotic strains, but also to the development of new strains
that target specific mechanisms of action that have recently been highlighted. Among the
many possible applications, MGBA-based interventions could help to prevent and/or treat
a multitude of conditions, the prevalence of which is constantly increasing throughout
the world. However, these subjects remain extremely complex and difficult to understand
in their entirety: the activity of the strains, interactions with the host, production on an
industrial scale, etc. all require specific specialist knowledge.

As we look into the future, we must implement novel approaches to deepen our
understanding of psychobiotics, fill existing knowledge gaps, and extend their role beyond
current applications.

High-throughput sequencing and metabolomics offers a promising opportunity to
personalize psychobiotic treatments. For instance, utilizing these technologies to analyze
individual microbiome compositions could guide health care providers to prescribe specific
probiotic strains that have been shown to improve symptoms of depression or anxiety in
individuals with similar microbiome profiles. This approach mimics the precision medicine
model, in which treatments are tailored to the unique genetic, environmental, and lifestyle
factors of each individual. Not only will this offer a novel management modality but may
be leveraged toward preventive measures in high-risk individuals.

Additionally, the intersection between artificial intelligence (AI) and microbiome
research holds the potential to transform psychobiotic discovery and functional analysis. AI
algorithms, trained on vast datasets of microbiome sequences and clinical outcomes, could
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predict the therapeutic potential of novel psychobiotic strains with high accuracy. Such
technologies could also uncover complex microbial interactions within the GBA, shedding
light on the underlying mechanisms of action. These predictions and our current knowledge
must be supported by interdisciplinary clinical trials that entails a collaborative approach,
uniting disciplines such as neuroscience, microbiology, psychology, and bioinformatics,
and take into account the high inter-individual variability, as well as specific formulations
and dose. Mental health’s related diseases have been associated with pleiotropic alterations
along the MGBA, including gut microbiota composition and functions, and also overall and
local immunity. Such studies not only contribute to our understanding of psychobiotics’
potential but also facilitate their acceptance among healthcare professionals and facilitates
psychobiotics’ integration into standard treatment protocols.

An important challenge to consider for future perspectives is the ethical and regulatory
considerations, particularly concerning the privacy and security of microbiome data. Thus,
the development of comprehensive international guidelines and regulatory frameworks
will be vital to protect individual rights and foster innovation. Furthermore, the public
health implications of psychobiotics, especially their potential to mitigate the global burden
of mental health disorders and NDDs, must be emphasized. For example, the widespread
implementation of psychobiotics as adjunct therapies for MDD could significantly reduce
healthcare costs and improve quality of life for many worldwide.

The future of psychobiotics and the MGBA carries a significant promise and potential.
As we move into this novel territory, a concerted effort from the scientific community,
industry stakeholders, and regulatory bodies will undoubtedly be an essential lever for
accelerating the development and rapid availability of new ‘psychobiotics’ solutions. While
we have everything at hand, it is a matter of uniting the right teams, with the right tools
and methods and asking the right research questions.
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