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Abstract: This study compared SARS-CoV-2 RNA loads at different anatomical sites, and the impact
of self-swabbing and food intake. Adult symptomatic patients with SARS-CoV-2 or non-SARS-CoV-2
respiratory tract infection were included between 2021 and 2022. Patients performed a nasal and
buccal swab before a professionally collected nasopharyngeal/oropharyngeal swab (NOPS). Buccal
swabs were collected fasting and after breakfast in a subgroup of patients. SARS-CoV-2 RNA loads
were determined by nucleic acid testing. Swabbing convenience was evaluated using a survey. The
median age of 199 patients was 54 years (interquartile range 38–68); 42% were female and 52% tested
positive for SARS-CoV-2. The majority of patients (70%) were hospitalized. The mean SARS-CoV-2
RNA load was 6.6 log10 copies/mL (standard deviation (SD), ±1.5), 5.6 log10 copies/mL (SD ± 1.9),
and 3.4 log10 copies/mL (SD ± 1.9) in the professionally collected NOPS, and self-collected nasal and
buccal swabs, respectively (p < 0.0001). Sensitivity was 96.1% (95% CI 90.4–98.9) and 75.3% (95% CI
63.9–81.8) for the nasal and buccal swabs, respectively. After food intake, SARS-CoV-2 RNA load
decreased (p = 0.0006). Buccal swabbing was the preferred sampling procedure for the patients. In
conclusion, NOPS yielded the highest SARS-CoV-2 RNA loads. Nasal self-swabbing emerged as a
reliable alternative in contrast to buccal swabs. If buccal swabs are used, they should be performed
before food intake.

Keywords: SARS-CoV-2; COVID-19; PCR; sensitivity; specificity; self-swabbing; buccal

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus
disease 2019 (COVID-19), is responsible for a major health crisis still generating reper-
cussions in the fourth year after its emergence. Testing for SARS-CoV-2 remained one
of the cornerstones to identify infected individuals early. Diagnostic testing allowed the
breaking of chains of infection and enabled timely management of risk-stratified treatment,
infection control measures, and contact tracing [1,2]. The gold standard testing technique
defined by the World Health Organization (WHO) [3,4] is nucleic acid testing, preferably
in a quantitative format (QNAT). This molecular assay is characterized by a high sensi-
tivity and specificity [4]. However, the reliable performance of diagnostic QNATs is a
resource-consuming and costly process, requiring laboratory set-up and professionally
trained persons to process and collect the specimens. Although the burden on laboratories
and resources was partly alleviated by rapid antigen testing and appropriate self-testing,
QNAT remained the reference test for critical decision making in the clinics [5,6].
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The performance of a nasopharyngeal or the combination of a nasopharyngeal with
a pharyngeal swab (NOPS) collected by health care personnel was recommended by the
WHO [5]. Nasal or mid-turbinate self-testing has been increasingly performed during the
pandemic, and has been shown to give reliable results compared to professional collection
of NOPS [7,8]. However, nasopharyngeal, nasal, and pharyngeal swabbing frequently
cause discomfort or pain and may result in unwillingness to test, nose bleeding, and a
higher risk of virus transmission to the health care personnel due to provoked sneezing and
coughing [9,10]. Subsequently, saliva was increasingly used for large-scale testing, although
it showed a lower sensitivity (approx. 85%) than NOPS [4,11] and was more difficult and
time-consuming to process compared to swabs [12]. Due to its less invasive and more
comfortable collection technique, it was accepted as a testing technique, in particular in
children or elderly people, and in the setting of repetitive routine testing. Nevertheless,
the easiest swabbing method might be buccal swabbing. It causes the least uncomfortable
sensations, is easy to learn, and may be performed at home [13,14]. However, the SARS-
CoV-2 RNA loads of buccal swabbing procedures may be influenced by additional factors
such as enzymatic degradation, hygiene procedures, or food intake, leading to a lower test
sensitivity observed in this specimen [15,16]. In previous studies, SARS-CoV-2 RNA loads
have rarely been measured with quantitative test methods, but semi-quantitative QNAT
systems (e.g., Roche cobas® system) or rapid antigen testing have been used to assess test
performances.

This study aimed to compare SARS-CoV-2 RNA loads between different anatomical
sites (nasal, buccal, nasopharyngeal/pharyngeal) and between professionally and self-
collected swabs using QNAT. Furthermore, we aimed to assess the impact of food intake
on RNA load in self-collected buccal swabs and patients’ satisfaction according to the
swabbing method and location.

2. Materials and Methods
2.1. Study Design

This project was a prospective, observational, single-center, cohort study at the Uni-
versity Hospital Basel, a 750-bed tertiary care center in Switzerland. Patients were enrolled
between January 2021 and December 2022. The study was approved by the Ethics Commit-
tee of Northwest and Central Switzerland (EKNZ Project-ID: 2020-02260) and conducted in
accordance with the Declaration of Helsinki and the principles of Good Clinical Practice.
All patients provided written informed consent for participation in the study.

2.2. Study Population

Four different patient groups were enrolled in this study. Inclusion criteria comprised:
age ≥ 18 years, and presence of one of the following: (1) at least one of the influenza-like
illness (ILI) and/or COVID-19 symptoms and laboratory confirmed SARS-CoV-2 infection
(by a positive SARS-CoV-2 QNAT result); (2) at least one of the ILI and/or COVID-19
symptoms, but laboratory confirmed SARS-CoV-2 negative (by a negative SARS-CoV-2
QNAT result) and detection of another virus causing respiratory tract infections; (3) at
least one of the ILI and/or COVID-19 symptoms but laboratory confirmed SARS-CoV-
2 negative (by a negative SARS-CoV-2 QNAT result) and no detection of another virus
causing respiratory tract infections; or (4) outpatients presenting for SARS-CoV-2 testing
at the local test center. ILI and/or COVID-19 symptoms comprised: fever, chills, cough,
sore throat, rhinitis, earaches, dyspnea, headaches, dizziness, muscle/limb pain, chest pain,
abdominal pain, nausea/vomiting, diarrhea, conjunctivitis, exanthema, lymphadenopathy,
fatigue/weakness, dysuria, anosmia/ageusia. The onset of symptoms had to be within
the previous 10 days. Exclusion criteria for all patients included previous enrolment into
the current study, inability to perform a self-collected nasal or buccal swab, nose bleeding
within the last 24 h, nasal surgery within the last 2 weeks, and acute facial trauma. For
the routine SARS-CoV-2 testing and confirmation of infection, a professional NOPS was
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collected and analyzed via QNAT on the cobas® platform. A positive QNAT result was
defined by a cycle threshold (Ct) value of <40.

2.3. Study Procedures and Sample Collection

After obtaining informed consent, written and visual but no oral instructions for self-
collection of nasal (both nostrils) and buccal swabs were given to the patient (Figures S1–S3).
The study physician was always present when self-swabbing was performed. A subgroup
of patients who tested positive for SARS-CoV-2 (n = 24) was asked to collect two buccal
swabs: the first fasting in the morning and before teeth brushing and the second after
breakfast.

Nasal self-swabbing was performed by inserting the swab 2–3 cm into one nostril,
twisting it five times, and leaving it there for ten seconds before the procedure was repeated
with the same swab in the other nostril. Buccal self-swabbing was performed by swabbing
five times on the inside of the cheek on both sides. For each swabbing location (nasal and
buccal), a separate swab was used. After the swabbing procedure, which was not supported
by the study physician, each swab was put into a separate tube containing 1.2 mL of viral
culture medium. Subsequently, a NOPS was collected by a trained study physician. Both
swabs were pooled into one tube containing 1.2 mL of viral culture medium.

Viral culture media (0.86× Hanks balanced salt solution (Gibco, Thermo Fisher Sci-
entific, Waltham, MA, USA, 14060040), pH 7.4 adjusted by sodium bicarbonate solution)
containing the swabs were directly processed to perform the QNAT or stored (max. 4 h)
on ice or in the refrigerator (2–8 ◦C) before processing. After vortexing for 30 s, aliquots
of 250 µL were prepared. The RNA loads of SARS-CoV-2 were determined by QNAT
targeting the S-gene encoding a surface protein, the spike protein, of the virus. SARS-CoV-2
RNA loads were expressed in log10 copies/mL (c/mL) [17]. A SARS-CoV-2 RNA load of
<1000 c/mL was defined as a negative test result. Syndromic panel testing for respiratory
infections other than SARS-CoV-2 such as influenza A/B or respiratory syncytial virus was
performed with QNAT using the Biofire® respiratory panel (biomerieux, Marcy-l’Étoile,
France), GeneXpert® for co-testing of SARS-CoV-2, Influenza A, Influenza B and RSV
(Cepheid, Sunnyvale, CA, USA) or the cobas® platform for co-testing of SARS-CoV-2,
Influenza A and Influenza B (Roche, Rotkreuz, Switzerland) [17]. After the swabbing proce-
dures, convenience and acceptance of the swabbing methods were assessed using a 15-item
questionnaire. Regarding the questionnaire, answers about the swabbing convenience were
summarized into four categories: uncomplicated, acceptable, uncomfortable, painful, and
not tolerable, which was merged into the fourth category.

Patient data were prospectively collected and managed using Research Electronic
Data Capture (REDCap® 14.2.1) hosted at the University Hospital Basel. Routine clinical
variables were extracted from the patient’s records of the hospital information system and
were entered in an electronic case report form in REDCap® [18,19].

2.4. Statistical Analysis

The Mann–Whitney U-test, the Chi Square test, and Fisher’s exact test were used where
appropriate. Data on SARS-CoV-2 RNA load were analyzed by a mixed-effects model
with post hoc Tukey adjustment or by paired-sample t-test to compare means. Variable
selection for characteristics of study participants was based on biological plausibility
and/or demonstrated associations in the literature. For the correlation testing, Spearman
correlation was used. Results were considered statistically significant if the p-value was
less than 0.05. To calculate the diagnostic accuracy of the swabbing procedure, sensitivity,
specificity, positive and negative likelihood ratios, and positive and negative predictive
values were calculated with their 95% confidence interval (CI). Furthermore, sensitivity was
calculated fasting compared to after breakfast for a sub-group of patients. The reference
standard method was the NOPS collected by a trained study physician. All analyses were
performed with SPSS Version 28 (IBM SPSS Statistics for Windows. Armonk, NY, USA) and
GraphPad Prism 9.0.0 (GraphPad Software, San Diego, CA, USA).
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3. Results
3.1. Demographic and Clinical Characteristics

A total of 205 patients was enrolled in this study, and 199 patients completed the study
(Figure 1).

Microorganisms 2024, 12, x FOR PEER REVIEW 4 of 12 
 

 

specificity, positive and negative likelihood ratios, and positive and negative predictive 
values were calculated with their 95% confidence interval (CI). Furthermore, sensitivity 
was calculated fasting compared to after breakfast for a sub-group of patients. The refer-
ence standard method was the NOPS collected by a trained study physician. All analyses 
were performed with SPSS Version 28 (IBM SPSS Statistics for Windows. Armonk, NY, 
USA) and GraphPad Prism 9.0.0 (GraphPad Software, San Diego, CA, USA). 

3. Results 
3.1. Demographic and Clinical Characteristics 

A total of 205 patients was enrolled in this study, and 199 patients completed the 
study (Figure 1). 

 
Figure 1. Flow chart. Two patients were excluded at the investigator’s discretion due to intolerance 
of nasopharyngeal swabbing, and due to replication of SARS-CoV-2 only in the lower respiratory 
tract at time of inclusion. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. 

Outpatients were most frequently recruited at the test center (60/61, 98%). Four pa-
tients withdrew their consent, and two patients were excluded at the investigator’s dis-
cretion because of difficulties in performing the self-swabbing, and SARS-CoV-2 replica-
tion confined to the lower respiratory tract only. The median age was 54 years (interquar-
tile range (IQR) 38−68), 42% (83/199) were female, and 70% were hospitalized (139/199). 
Overall, 103/199 patients (52%) were tested positive for SARS-CoV-2. The median time 
from symptom onset to the swabbing was 4 days (IQR 2−7). The majority of patients had 
either one (n = 45, 23%) or no comorbidity (n = 86, 43%). In both groups of patients tested 
negative or positive for SARS-CoV-2, the main comorbidities were arterial hypertension 
(21.9% and 23.3%, respectively), cardiovascular disease (15.6% and 23.3%, respectively), 
and diabetes mellitus (14.6% and 19.4%, respectively) (Table 1). 

  

Figure 1. Flow chart. Two patients were excluded at the investigator’s discretion due to intolerance
of nasopharyngeal swabbing, and due to replication of SARS-CoV-2 only in the lower respiratory
tract at time of inclusion. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Outpatients were most frequently recruited at the test center (60/61, 98%). Four
patients withdrew their consent, and two patients were excluded at the investigator’s dis-
cretion because of difficulties in performing the self-swabbing, and SARS-CoV-2 replication
confined to the lower respiratory tract only. The median age was 54 years (interquartile
range (IQR) 38–68), 42% (83/199) were female, and 70% were hospitalized (139/199). Over-
all, 103/199 patients (52%) were tested positive for SARS-CoV-2. The median time from
symptom onset to the swabbing was 4 days (IQR 2–7). The majority of patients had either
one (n = 45, 23%) or no comorbidity (n = 86, 43%). In both groups of patients tested negative
or positive for SARS-CoV-2, the main comorbidities were arterial hypertension (21.9% and
23.3%, respectively), cardiovascular disease (15.6% and 23.3%, respectively), and diabetes
mellitus (14.6% and 19.4%, respectively) (Table 1).

Symptoms present among patients who tested positive for SARS-CoV-2 are presented
in Table S1.
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Table 1. Baseline characteristics of the study participants. Data are presented as count (percentages)
or median (interquartile range).

Variable COVID-19 Patients n = 103 Non-COVID-19 Patients n = 96 All Patients
n = 199

Sex: female 40 (38.8) 43 (44.8) 83 (42)

Age in years, median 55 (43–71) 51 (34–65) 54 (38–68)

Length of hospital stay in days 6 (3–8) 8 (5–13) 6 (4–9)

Inpatients 101 (98.1) 37 (38.5) 138 (69)

Main diagnosis for admission:

• COVID-19 92 (89) - 92 (46)

• Congestive heart failure 1 (1) 1 (1) 2 (1)

• COPD exacerbation - 8 (8) 8 (4)

• Pneumonia other than COVID-19 - 8 (8) 8 (4)

• Other 8 (8) 21 (22) 29 (15)

• No admission 2 (2) 58 (60) 60 (30)

Comorbidities:

• Arterial hypertension 24 (23.3) 21 (21.9) 45 (23)

• Cardiovascular disease 24 (23.3) 15 (15.6) 39 (20)

• Diabetes mellitus 20 (19.4) 14 (14.6) 34 (17)

• Chronic kidney disease 12 (11.7) 10 (10.4) 22 (11)

• Asthma 11 (10.7) 11 (11.5) 22 (11)

• Hematological disease/cancer 10 (7.5) 20 (20.8) 30 (15)

• Chronic lung disease 9 (9.7) 18 (18.8) 27 (14)

Pathogen identified (other than
SARS-CoV-2):

• Coronavirus HKU1 - 1 (1) 1 (1)

• Coronavirus NL63 - 4 (4) 4 (2)

• Coronavirus OC43 - 1 (1) 1 (1)

• Human Rhinovirus/Enterovirus - 7 (7) 7 (4)

• Parainfluenza virus 3 - 2 (2) 2 (1)

• Respiratory syncytial virus - 1 (1) 1 (1)

Vaccinated against SARS-CoV-2:

• Yes 38 (36.9) 19 (19.8) 57 (29)

• No 32 (31.1) 16 (16.7) 48 (24)

• Unknown 33 (32.0) 61(63.5) 94 (47)

Abbreviations: COVID-19: coronavirus disease 2019; COPD: chronic obstructive pulmonary disease; SARS-CoV-2:
severe acute respiratory syndrome coronavirus type 2.

3.2. Comparison of SARS-CoV-2 RNA Load According to the Swabbing Location

In total, 103 SARS-CoV-2 positive-tested patients were included. The RNA load in
one of the 103 buccal samples could not be determined. The mean SARS-CoV-2 RNA load
was 6.6 log10 c/mL (standard deviation (SD), ±1.5) in the professionally collected NOPS
and 5.6 log10 c/mL (SD, ±1.9) and 3.4 log10 c/mL (SD, ±1.9) in the self-collected nasal and
buccal swabs, respectively, p < 0.0001 (Figure 2).
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Figure 2. Comparison of the SARS-CoV-2 RNA load in professionally collected nasopharyngeal/
oropharyngeal (NOPS) swabs and in self-collected nasal and buccal swabs (n = 103). In patients who
performed two buccal swabs (n = 24), the result of the first (fasting) swab was included. Horizontal
lines represent the mean of the SARS-CoV-2 RNA load in log10. The RNA loads of SARS-CoV-2 were
determined by a quantitative nucleic acid amplification test targeting the S-gene encoding the spike
protein, of the virus. SARS-CoV-2 RNA load was analyzed by a mixed-effects model with post hoc
Tukey adjustment. Dashed line: limit of detection. NOPS, nasopharyngeal/oropharyngeal swab;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

In a Bland–Altman plot, the difference between SARS-CoV-2 RNA loads in NOPS
and nasal swabs is displayed (Figure S4). Compared to NOPS, 4/103 (4%) and 27/102
(26%) of the nasal and buccal swabs were false negative, respectively. The SARS-CoV-2
RNA load in the nasal and the NOPS correlated negatively with the symptom dura-
tion (r = −0.52, p < 0.001). A similar result was observed with regard to buccal swabs
(r = −0.335, p < 0.001).

3.3. Diagnostic Accuracy

Table 2 displays the diagnostic value of the different swabbing locations. Nasal and
buccal self-swabbing showed a sensitivity of 96.1% (95% CI: 90.4–98.9) and 75.3% (95% CI:
63.9–81.8), respectively. Specificity was high at both anatomical sites (nasal 100% (95% CI
96.2–100, buccal 99.0% (94.3–100))). The majority of false-negative test results was observed
in the group of self-collected buccal swabs.
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Table 2. Diagnostic value of self-collected nasal and buccal swabs for the detection of SARS-CoV-2
RNA.

Swabbing
Location n Sensitivity

(95% CI)
Specificity
(95% CI)

PLR
(95% CI)

NLR
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Nasal 103 96.1%
(90.4–98.9)

100%
(96.2–100) - 0.04

(0–0.10)
100%

(96.3–100)
96.0%

(90.2–98.4)

Buccal 102 * 75.5%
(63.9–81.8)

99.0%
(94.3–100.0)

70.6
(10.0–497.8)

0.27
(0.2–0.4)

98.7%
(91.4–99.8)

77.9%
(71.8–83.0)

* Analysis of one buccal sample was not possible. CI, confidence interval; PLR, positive likelihood ratio; NLR,
negative likelihood ratio; PPV, positive predictive value; NPV, negative predictive value.

3.4. The Impact of Food Intake on Buccal SARS-CoV-2 RNA Load

In 24/103 patients (23%) who tested positive for SARS-CoV-2, two buccal self-swabs
were performed before (fasting) and after breakfast. The mean SARS-CoV-2 RNA load was
3.8 log10 c/mL (SD, ±1.5) before and 2.6 log10 c/mL (SD, ±1.3) after breakfast (p = 0.0006)
(Figure 3).
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Figure 3. Impact of food intake on the SARS-CoV-2 RNA load in self-collected buccal swabs before
and after breakfast, and according to positivity rate compared to professionally performed nasopha-
ryngeal/pharyngeal test (n = 24). Horizontal lines represent the mean of the SARS-CoV-2 RNA load
in log10. Dashed line: limit of detection. SARS-CoV-2 RNA load was analyzed by a paired-sample
t-test to compare means. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Fasting swabbing demonstrated a sensitivity of 87.5% (95% CI: 67.6–97.3), while a
decrease in sensitivity was seen after food intake to 66.7% (95% CI: 44.7–84.4).

3.5. Patients’ Convenience Related to the Collection Method and Anatomical Site

The questionnaire was completed by all 199 patients. The majority of patients (191/199,
96%) stated that the self-instructions for nasal and buccal self-swabbing were easy to follow.
Overall, 64% (127/199) of the patients had never performed a nasal swab, and 89% (178/199)
had never performed a buccal swab before participating in the study. The professionally
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collected NOPS were painful/not tolerable or caused discomfort to 56% (111/199) and 39%
(77/199) of the patients, respectively. Self-collected nasal and buccal swabs were stated
to cause pain or discomfort in 21% (42/199) and 7% (13/199) of the patients, respectively
(Figure 4).
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The nasal and buccal self-swabbing were easy to perform for 91% (182/199) and 97%
(192/199) of the patients, respectively. Furthermore, the great majority of patients was
confident to perform nasal or buccal self-testing at home (191/199, 96%, and 192/199,
96%, respectively). Most patients (131/199, 66%) would prefer self-swabbing over being
swabbed by a professional healthcare worker.

4. Discussion

In the present study, we evaluated SARS-CoV-2 RT-PCR testing at different locations
in a cohort of 199 patients, and demonstrated that NOPS yielded the highest SARS-CoV-2
RNA loads. Nasal self-swabbing evolved as a reliable alternative to professionally collected
NOPS. Buccal swabs had a significantly lower sensitivity compared to NOPS and nasal
swabbing, but were the most convenient swabbing procedure for the patient. SARS-CoV-2
RNA loads decreased significantly after food intake.

The SARS-CoV-2 RNA load differed significantly between NOPS, nasal, and buccal
swabbing, demonstrating a sensitivity of 96.1% for nasal and 73.5% for buccal self-swabbing
for the detection of SARS-CoV-2. Despite a slightly lower SARS-CoV-2 RNA load observed
in nasal swabs compared to NOPS, the high sensitivity of 96.1% of self-collected nasal swabs
underscores the reliability of this swabbing location, which has already been shown previ-
ously [4,20–22]. Consequently, nasal swabbing entered international guideline recommen-
dations as a reliable alternative for professionally collected nasopharyngeal swabs [5,23].
Furthermore, self-collected nasal swabs for SARS-CoV-2 are easy to perform, and are highly
accepted [8,24,25]. Interestingly, the sensitivity of the nasal swabs was slightly higher
in the present study compared to previously published studies, stating a sensitivity of
approximately 85% for professionally collected or self-collected nasal swabs [4,26–28]. This
observed difference may be related to the sensitive quantitative testing method used in the
present study compared to semi-quantitative techniques or rapid antigen testing used in
previous studies [4,27,29,30]. Although it has been shown that semi-quantitative techniques
correlate qualitatively and quantitatively, the sensitivity of the QNAT used in the present
study might be slightly higher [17]. In line, Teo et al. demonstrated that not only different
testing techniques, but also the use of different RT-PCR kits impacts the sensitivity of the
test results [31]. Furthermore, the majority of patients were hospitalized and were included
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early during the course of the disease, therefore representing a sicker patient population
with a possibly higher viral load. Additionally, the introduction of public self-testing
strategies may have led to an improved quality of the self-swabbing procedure and a higher
sensitivity.

In the present study, the sensitivity of buccal swabs was 73.5% and, therefore, signif-
icantly lower than the sensitivity of nasal swabs. In previous studies, their performance
was even poorer (sensitivity of oral swabs (rapid antigen tests): 9% [32], 18% [13], and
32% [15]) (sensitivity of buccal swabs (semi-quantitative QNAT): 20.8% [33], 65.4% [9].
56.7% [34]). The distinctly higher sensitivity in the present study may be associated with
the very sensitive testing method used, but also the patient population included, as the
majority of patients were symptomatic and the median time between symptom onset and
inclusion in the study was only 4 days, resulting in high SARS-CoV-2 RNA loads at the
time of testing. Furthermore, the differences in sensitivity of oral or buccal swabbing in
previous studies might be related to the instructions patients were given before swabbing,
ranging from fasting 30 min before testing [13,15] to additional coughing before sample
collection [15] or no instructions at all [33]. Optimal patient instructions may be crucial,
especially when collecting buccal or saliva samples. If correctly instructed and performed,
saliva samples may even yield a comparable or higher sensitivity compared to NOPS [31].
In line with this, the sensitivity of buccal swabs increased significantly in the present study
when the patients were optimally instructed, i.e., to perform the buccal swabbing fasting.

The higher SARS-CoV-2 RNA load in the fasting samples may be related to viral
particles accumulating in the oropharynx and mouth during nighttime, resulting in higher
oral virus concentrations in the morning [35]. During food intake, more saliva is produced,
which leads to a dilution of viral particles in the mouth. Furthermore, a large number of
viral particles are probably swallowed [36]. Saliva is rich in RNA degrading enzymes and
potential PCR inhibitors, which may break down the viral RNA, and reduce the yield even
of the very sensitive QNAT testing. A similar impact on viral load has been presented
when saliva samples are collected after mouthwashing [37].

Overall, despite the higher sensitivity of buccal self-swabbing observed in the present
study compared to previously published studies, it cannot be recommended as a reliable
alternative to the professionally collected NOPS or the self-collected nasal swab due to the
high rate of false-negative results, which is in line with previous studies [9,32]. If buccal
swabs or oral specimens are used for SARS-CoV-2 testing, it is recommended to collect
them fasting in the morning before food intake, drinking, or brushing teeth, to increase the
overall sensitivity. Importantly, the positivity rate would further decrease when other, less
sensitive test methods such as rapid antigen tests are used [38], and when the patient is not
instructed correctly.

In the survey conducted in the present study, the majority of patients (56%) judged
professionally collected NOPS as painful/not tolerable or causing discomfort. Conversely,
self-collected nasal and buccal swabs were rated in regard to the same inconveniences with
only 21% and 7%, respectively. Accordingly, two-thirds of the patients (66%) would prefer
self-swabbing over being swabbed by a professional healthcare worker, which is in line
with previous studies [26,39,40].

The presented study has several limitations. The COVID-19 patients were all inpa-
tients, representing a more severely ill patient population. There was a selection bias, as
patients who participated in the study were more likely to be interested in COVID-19-
related testing in general and, hence, the performance of self-swabbing might be better
compared to the general population. Additionally, as a member of the study team was
always present during the self-swabbing procedure, the participants may have followed
the instructions more closely. As the questionnaire was not answered anonymously, but in
the presence of the study team, the answers may have been biased, as patients may have
felt that a socially accepted answer should be provided.

However, the results of our study may not solely be applicable for SARS-CoV-2
infection, but also for the confirmation of other viral respiratory pathogens, and, hence,
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may be relevant for testing strategies in future pandemics. In line, Jung et al. demonstrated
the superiority of NOPS for detecting non-SARS-CoV-2 respiratory viruses, but concluded
that nasal swabs and saliva samples may represent alternatives to NOPS [28], which is in
accordance with our findings.

In conclusion, SARS-CoV-2 RNA load differed significantly between professionally
collected NOPS and self-collected nasal and buccal swabs. Self-performed nasal swabs
proved to be a reliable diagnostic method in symptomatic COVID-19 patients. The practice
of nasal swab collection is supported by patients favoring self-swabbing over professional
swabbing. Conversely, buccal swabbing cannot be recommended as an alternative swab-
bing method due to the high rate of false negative results. Food intake impacts significantly
on the oral SARS-CoV-2 RNA load. Therefore, if buccal swabbing or other oral speci-
mens are used, they should be collected during fasting in the morning. As convenience,
acceptance, and performance of nasal self-swabbing is high, it should remain a corner-
stone of any SARS-CoV-2 testing strategy. These results may inform testing strategies in
future pandemics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12030591/s1, Figure S1: Instruction file 1 for
the self-collection of nasal and buccal swabs; Figure S2: Instructions for the self-collection of nasal
swabs; Figure S3: Instructions for the self-collection of buccal swabs; Figure S4: Bland–Altman plot
showing the differences of SARS-CoV-2 RNA load between professionally collected nasopharyn-
geal/oropharyngeal swabs and nasal swabs. NOPS, nasopharyngeal/oropharyngeal swab; SARS-
CoV-2, severe acute respiratory syndrome coronavirus 2. Table S1: Symptoms and clinical signs of
the patients tested positive for SARS-CoV-2 (n = 103). Data are presented as count (percentages) or
median (interquartile range).
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