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Abstract: Abscesses represent the most prominent emerging problem in the red meat industry,
leading to great economic constraints and public health hazards. Data on etiological agents present
in these purulent lesions in Algeria are very scarce. The aim of this study was to identify the bacteria
responsible for these abscesses and to determine their antibiotic susceptibility profiles. A total of
123 samples of abscesses from 100 slaughtered sheep and 23 slaughtered cattle were cultured in
several media. A total of 114 bacterial isolates were cultured from 103 abscesses. Bacteria were
identified using MALDI–TOF, and antibiotic susceptibility was determined by the disk diffusion
method on Mueller–Hinton agar. A total of 73.6% (n = 84) corresponded to Enterobacterales, of which
four were multidrug-resistant (MDR). These isolates, together with Staphylococcus aureus, coagulase
negative Staphylococci, and seven randomly chosen susceptible Escherichia coli isolates, were further
characterized using WGS. Resistome analysis of the four MDR Enterobacterales isolates revealed the
presence of OXA-48 carbapenemase in two Klebsiella pneumoniae ST985 and one E. coli ST10 isolates
and a CTX-M-15 ESBL in one E. coli isolate ST1706. Two coagulase-negative Staphylococci isolates were
found to carry the mecA gene. WGS showed the presence of different resistance genes and virulence
genes. Our study revealed 5% of MDR Enterobacterales (including ESBLs and carbapenemases)
identified from abscesses, thus urging the need for abscess monitoring in slaughterhouses.

Keywords: abscesses; bacteria; antimicrobial resistance; cattle; sheep; slaughterhouse

1. Introduction

An abscess can be defined as an accumulation of pus surrounded by fibrous tissue.
They can occur anywhere in the body where pyogenic bacteria can establish and multiply.
Among the common causes of abscesses in cattle and sheep are the following:

Injuries to the feet, such as puncture wounds, bruising, and abscesses, which can
result from excessive wear of moist feet on rough and abrasive flooring and poor needle
practice, leading to abscesses at injection sites. Caseous lymphadenitis (CL) in sheep and
goats is caused by Corynebacterium pseudotuberculosis and results in abscesses of peripheral
and internal lymph nodes. In cattle, skin abscesses may occur at vaccination sites when
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vaccination is performed under suboptimal conditions, while liver abscesses are often
associated with acidosis in fattening animals [1].

Abscesses are responsible for tremendous economic losses at the farm with a decline
in the market value of animals, through a decrease in animal reproductive and productive
efficiency, and variable mortality rates. Thus, during the inspection process of production
in slaughterhouses, if the carcass presents a problem that could compromise food safety, a
total or partial condemnation may occur. This condemnation represents financial losses for
the production lines [2–4]. In addition, subcutaneous abscesses may be ruptured during
the skinning process, and the bacteria responsible for the infection (zoonotic bacteria) may
contaminate the surface of the carcass [5–7], which represents a public health hazard to
slaughterhouse workers and meat inspectors as well as consumers [8].

Many species of zoonotic bacteria may be involved in the etiology of abscesses [6],
including Staphylococcus spp., Streptococcus spp., Corynebacterium spp., Pasteurella spp., Pseu-
domonas aeruginosa, Escherichia coli, and other Gram-negative rods [9,10]. In many instances,
samples showed more than one species of bacteria isolated from a single abscess [11].

Local antibiotics (including infusion into the abscess) tend to be more effective than
systemic antibiotics. Many antibiotics cannot easily penetrate the capsule of an abscess
and/or may not be effective in the abscess environment due to changes in pH and other
factors in the pus [12]. In addition, antibiotic choices are limited in food animals, and strict
adherence to withdrawal times is required to protect food safety. Most wound infections
contain multiple bacterial species and should be cultured to determine optimal antibiotic
therapy if needed. Therefore, identification of the specific agents involved in the abscess
is necessary to adequately implement effective prophylactic or treatment strategies that
could lead to the reduction of microbiological pressure at the farm level and eliminate risk
factors [13,14].

In Algeria, a few studies were carried out on the epidemiological aspect of the ab-
scesses, but none of these studies addressed the bacteriological aspects and the implication
of micro-organisms in relation to their zoonotic potential as well as their antibiotic-resistance
profiles and their molecular mechanisms of multidrug resistance [13,15]. The present work
was designed to analyze the characteristics of bacteria growing from abscesses in slaugh-
tered cattle and sheep at abattoirs in the Constantine region, northeast of Algeria.

2. Materials and Methods
2.1. Origin of Isolates

The study was conducted during the period from February 2019 to March 2020 in the
largest slaughterhouse in the Constantine region, northeast of Algeria. During the study
period, 677 cattle and 978 sheep (N = 1 655) were slaughtered and routinely inspected. The
population of both cattle and sheep was predominantly male (561 vs. 116 in cattle and
975 vs. 3 in sheep, for males and females, respectively). A total of 123 abscess lesions were
recorded (n = 23, 1.39%) and (n = 100, 6.04%) in cattle and sheep, respectively.

An information sheet was systematically established for each slaughtered animal,
including sex, age, and weight status. The localization of examined abscesses in sheep
were crural region, liver, lung, lymph node, udder, neckline, peritoneum, precrural re-
gion, prescapular region, sternum, cutaneous, and testicles, while in cattle: lung, liver,
peritoneum, lymph node, and pericardium.

Intact abscesses from slaughtered cattle and sheep were excised individually, placed
in sterile plastic bags, labeled, placed in ice-filled coolers, and transported to the mi-
crobiology laboratory of the University hospital Ibn Badis of Constantine, Algeria, for
further characterization.

2.2. Microbiological Methods

The abscesses were opened by grasping the surface of the abscesses with a hot spatula
and incising the capsule with a sterile scalpel. Observations were made of the abscess size
and the consistency, color, and odor of the exudate. A loopful of the material contained



Microorganisms 2024, 12, 524 3 of 18

in the abscess was streaked directly onto different culture medias including Trypticase
Soy Agar, Columbia agar supplemented with 5% of sheep blood, Mac Conkey agar, and
mannitol salt agar (BioMérieux, Marcy L’Etoile, France). The incubation was made in
aerobic conditions at 37 ◦C for 24 h. Growing bacterial colonies were subcultured separately
on the appropriate media to obtain pure cultures (after another incubation at 37 ◦C for
24 h).

Bacterial identification was carried out through biochemical galleries (API, bioMérieux),
at the Microbiology laboratory of the University hospital Ibn Badis, and subsequently
confirmed using MALDI–TOF: matrix-assisted laser desorption ionization–time of flight
(Biotyper, Bruker, Hannover, Germany) at the University hospital Bicêtre, Le Kremlin-
Bicêtre, France.

2.3. Antimicrobial Susceptibility Testing and MIC Determination

All isolates were submitted to susceptibility testing against antimicrobial agents us-
ing the Kirby–Bauer disc diffusion assay on Muller–Hinton agar, and the results were
interpreted according to the European Committee on Antimicrobial Susceptibility Testing
guidelines CA-SFM (Comité de l’antibiogramme de la Société Française de Microbiologie)
as updated in 2022 (http://www.eucast.org (accessed on 24 January 2024)).

The antibiotic disks (bioMérieux) for bacteria belonging to Enterobacterales order
were as follows: amoxicillin-clavulanic acid (AMC, 20/10 µg), ampicillin (AMP, 10 µg),
amoxicillin (AMX, 25 µg), piperacillin (PIP, 100 µg), ticarcillin (TIC, 75 µg), Temocillin (TEM,
30 µg), cefazolin (CZ, 30 µg), cefoxitin (FOX, 30 µg), cefotaxime (CTX, 30 µg), ceftazidime
(CAZ, 30 µg), aztreonam (ATM, 30 µg), imipenem (IPM, 10 µg), ertapenem (ETP, 30 µg),
ciprofloxacin (CIP, 5 µg), nalidixic acid (NA, 30 µg), gentamicin (GM, 10 µg), kanamycin
(K, 30 µg), amikacin (AN, 30 µg), tetracycline (TET, 30 µg), chloramphenicol (C, 30 µg),
fosfomycin (FOS200, 200 µg), and trimethoprim/sulfamethoxazole (SXT, 1.25 + 23.7 µg).

Aeromonas spp. isolates were tested towards ceftazidime (CAZ, 30 µg), cefepime (FEP,
30 µg), aztreonam (ATM, 30 µg), ciprofloxacin (CIP, 5 µg), levofloxacin (LEV, 5 µg), and
trimethoprim/sulfamethoxazole (SXT, 1.25 + 23.7 µg).

Gram-positive cocci were tested against penicillin (P, 10 Units), oxacillin (OX, 1 µg),
cefoxitin (FOX, 30 µg), gentamicin (GM, 10 µg), kanamycin (K, 30), Tobramycin (TOB,
10 µg), erythromycin (ERY, 15 µg), clindamycin (CM, 2 µg), chloramphenicol (C, 30 µg),
tetracycline (TE, 30 µg), Tigecycline (TGC 15 µg), ciprofloxacin (CIP, 5 µg), ofloxacin (OFX,
5 µg), Levofloxacin (LEV, 5 µg), Quinupristin/dalfopristin (QD, 15 µg), Linezolid (LNZ,
30 µg), trimethoprim/sulfamethoxazole (SXT, 1.25 + 23.7 µg), Rifampin (RA, 5 µg), fusidic
Acid (FA, 10 µg), and Nitrofurantoin (F, 300 µg).

Finally, rod-shaped Gram-positive isolates were tested against meropenem (MER,
10 µg), imipenem (IPM, 10 µg), ciprofloxacin (CIP, 5 µg), erythromycin (ERY, 15 µg),
clindamycin (CM, 2 µg), vancomycin (VAN, 30 µg), and Linezolid (LNZ, 30 µg).

Gram-negative isolates resistant to expanded spectrum cephalosporins and/or to
carbapenems were further characterized by broth microdilution method using customized
Sensititre plates (Thermo Fisher Scientific, Les Ulis, France). The minimum inhibitory
concentrations (MICs) of beta-Lactams, ciprofloxacin, levofloxacin, and tobramycin were
determined and interpreted using the EUCAST guidelines. The detection of a carbapenem-
hydrolysis was carried out using the homemade Carba NP, and the presence of one of the
5 main carbapenemases was confirmed by the NG-Test CARBA 5 Lateral Flow ImmunoAs-
say (NG Biotech, Guipry, France) as previously described [16].

2.4. Whole-Genome Sequencing and Bioinformatic Analysis

Total DNA of twenty bacterial isolates were extracted using the PureLink™ Genomic
DNA Mini-Kit (ThermoFisher Scientific, Les Ulis, France) following the manufacturer’s
instructions and stored at −20 ◦C. DNA libraries were prepared using the NEBNext Ultra
II FS DNA Library Prep Kit for Illumina (New England Biolabs, Evry, France) according
to the manufacturer’s instructions, and run on a NextSeq 500 sequencer (Illumina, Évry-

http://www.eucast.org
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Courcouronnes, France) to generate paired-end 150-bp reads, as previously described [16].
Raw WGS data were assembled de novo using the CLC genomics 10.2 program (Qiagen,
Les Ulis, France), and the genomes were analyzed online using software available at the
center for genomic epidemiology-CGE (https://cge.food.dtu.dk/ (accessed on 24 January
2024)). The latter included MLST 2.0 software to determine the sequence types (ST),
ResFinder 4.1 to determine the acquired resistome, PlasmidFinder 2.1, to identify known
plasmid replicon types and VirulenceFinder 2.0. for the presence of potential virulence
genes [16]. Additionally, the virulence factor database (VFDB) (http://www.mgc.ac.cn/
VFs/main.htm (accessed on 20 December 2023)) was also used to search for virulence
factors. Reference plasmid sequences were retrieved from the NCBI database (https:
//www.ncbi.nlm.nih.gov (accessed on 24 January 2024)). Contigs carrying carbapenemase
genes were mapped to reference plasmids, using CLC genomics 10.2 program (Qiagen).
Mutations in the quinolone-resistance-determining region (QRDR) of gyrA and parC were
also analyzed.

2.5. Statistical Analysis

Collected data were statistically treated using Microsoft Excel 2019 and STATA (ver-
sion 11.1). Pearson’s chi-square test and Fisher’s exact test, as appropriate, were applied
to analyze the categorical variables. A two-tailed p-value < 0.05 was considered statisti-
cally significant.

2.6. Nucleotide Sequence Accession Number

The whole-genome sequences generated in the study have been submitted to the
Genbank nucleotide sequence database under Bioproject PRJNA948715.

3. Results
3.1. Abscess Characteristics

During the study period, 677 cattle and 978 sheep (N = 1655) were slaughtered and
routinely inspected. The population of both cattle and sheep was predominantly male
(561 vs. 116 in cattle and 975 vs. 3 in sheep, for males and females, respectively). A total
of 123 abscess lesions were recorded (n = 23, 1.39%) and (n = 100, 6.04%) in cattle and
sheep, respectively. A total of 123 abscess lesions were recorded from the 1655 slaughtered
animals, giving an overall prevalence of 7.43%. This prevalence was significantly lower in
cattle (n = 23, 1.39%) than in sheep (n = 100, 6.04%) (p < 0.001).

In sheep, 97 (97%) and 3 (3%) of the abscesses were recorded from males and females,
respectively, while, in cattle, abscesses recorded from males and females were 19 (82.61%)
and 4 (17.39%), respectively. The abscesses were mostly recorded from young animals
((N = 115, 93.5%); sheep (n = 97, 78.87%), and cattle (n = 18, 14.63%)) (Table 1).

Table 1. Frequency of abscesses in relation to age and sex in sheep and cattle.

Sheep Cattle

Age ≤12 Months >12 Months ≤ 2 Years 2−5 Years >5 Years

Male 97 / 18 / 1

Female / 3 / 3 1

Abscesses in sheep were more frequently located in lymph nodes (n = 27, 31.8%),
prescapular region (n = 17, 19.8%), and lung (n = 28, 21.2%) (Figure 1A). In cattle, abscesses
were frequently located in the lungs (n = 8, 44.4%) and liver (n = 6, 33.3%) (Figure 1B).

https://cge.food.dtu.dk/
http://www.mgc.ac.cn/VFs/main.htm
http://www.mgc.ac.cn/VFs/main.htm
https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
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Figure 1. Abscess seats location in sheep (A) and cattle (B).

Finally, the characteristics of abscesses vary according to the bacterial species involved,
as illustrated in Table 2.

Table 2. Clinical presentations of abscesses according to the bacterial species.

Pus Characteristics

Bacteria

Staphylococcus
aureus

Staphylococcus
Coagulase negative

Aeromonas spp. Bacillus spp. Enterobacterales

Consistency

Grumbling
viscous
Homogeneous
viscous

Homogeneous
viscous
Homogeneous fluid

Homogeneous
viscous
Thick
homogeneous

Homogeneous
viscous
Thick
homogeneous

Grumbling fluid
Grumbling viscous
Homogeneous fluid
Homogeneous viscous
Thick grumbling
Thick homogeneous
Viscous grumbling
hemorrhagic

Color White
Light yellow

Light yellow
Yellow
white
Green

Green
White
Yellow

Green
Yellow

Green
White
Yellow

Odor Fade Fade Fade Fade Nauseating
Fade

3.2. Bacterial Isolates

Of the 123 abscesses analyzed, 103 gave a positive culture (18 in cattle and 85 in sheep),
of which 114 bacterial isolates were identified (91 from sheep and 23 from cattle) and
further characterized. Bacterial identification revealed Enterobacterales (Escherichia coli,
Klebsiella pneumoniae, Klebsiella oxytoca, Morganella morganii, Citrobacter brackii, Citrobacter
freundii, Enterobacter spp., Serratia marcescens, Proteus vulgaris, Lelliottia spp.) (n = 84, 73.6%),
Staphylococcus spp. (n = 15, 13.1%), Aeromonas spp. (n = 13, 11.4%), and Bacillus spp. (n = 2,
1.9%) (Table 3). Escherichia coli represented 61.3% of the isolated bacteria, and 83% of
the Enterobacterales.
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Table 3. Bacterial species isolated from abscesses in cattle and sheep.

Bacterial Species
Animal Species

Total Percentage (%)
Sheep Cattle

Escherichia coli 56 14 70 61.3%
Staphylococcus aureus 5 2 7 6.1%

Aeromonas veronii 3 3 6 5.2%
Aeromonas hydrophila 1 3 4 3.5%
Klebsiella pneumoniae 3 3 2.6%
Morganella morganii 2 1 3 2.6%

Staphylococcus epidermidis 3 3 2.6%
Klebsiella oxytoca 2 2 1.7%
Citrobacter brackii 1 1 0.9%

Citrobacter freundii 1 1 0.9%
Enterobacter spp. 1 1 0.9%

Serratia marcescens 1 1 0.9%
Proteus vulgaris 1 1 0.9%
Lelliottia spp. 1 1 0.9%

Staphylococcus lentus 1 1 0.9%
Staphylococcus cohnii 1 1 0.9%

Staphylococcus simulans 1 1 0.9%
Staphylococcus pasteuri 1 1 0.9%
Staphylococcus vitulinus 1 1 0.9%

Aeromonas bestiarum 1 1 0.9%
Aeromonas salmonicida 1 1 0.9%
Aeromonas eucrenophila 1 1 0.9%

Bacillus cereus 1 1 0.9%
Bacillus mojavensis 1 1 0.9%

Total 91 23 114 100%

In the 11 abscesses in which 2 species had been recovered (6 in sheep and 5 in cattle),
the different combinations were as follows: E. coli/Aeromonas spp. (n = 5), E. coli/S. aureus
(n = 5), and E. coli/Morganella morganii (n = 1).

3.3. Antibiotic Susceptibility Testing

Different rates of resistance were observed for the Enterobacterales isolates, with
resistance to amoxicillin, ticarcillin, ampicillin, amoxicillin-clavulanic acid, and tetracycline
being the highest rates recorded (Figure 2).

Three isolates with reduced susceptibility to carbapenems were identified. Two K.
pneumoniae isolates (O103B2 and O103B1) had MICs of 2 µg/mL, 1 µg/mL, and 0.5 µg/mL
for ertapenem, imipenem, and meropenem, respectively, and one E. coli isolate (O103A10)
displayed MICs of 0.5 µg/mL for both ertapenem and imipenem, and 0.12 µg/mL for
meropenem (Table 3). These isolates presented additionally high MICs for temocillin
512 µg/mL and 256 µg/mL, for E. coli O103A10 and K. pneumoniae O103B2 and O103B1,
respectively (Table 4). These isolates gave positive results using the Carba NP, suggesting
the likely presence of a carbapenem-hydrolyzing enzyme. The NG-Test CARBA 5 confirmed
the presence of an OXA-48-like carbapenemase.

E. coli O103A9 displayed resistance to expanded-spectrum cephalosporins (ESCs) and
exhibited a synergy image in the DD-test, indicating the presence of extended-spectrum
beta-lactamases (ESBLs).

The Aeromonas spp. were susceptible to all the antibiotics tested except for two that
were resistant to cotrimoxazole.

Two coagulase-negative isolates (S. epidermidis and S. pasteuri) were considered methicillin-
resistant as they were resistant to oxacillin and cefoxitin. High resistance rates to tetracycline
were observed (Figure 2). The two isolates of Bacillus spp. were pan-susceptible to all the
antibiotics tested.
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Figure 2. Susceptibility results of bacteria isolated from the abscesses: (A) Enterobacterales;
(B) Staphylococci. Results were interpreted according to Eucast breakpoints 2022. (S: sensitive, I:
intermediate, R: resistance). Amikacin (AN), amoxicillin (AMX), amoxicillin-clavulanic acid (AMC),
ampicillin (AMP), aztreonam (ATM), cefazolin (CZ), cefotaxime (CTX), cefoxitin (FOX), ceftazidime
(CAZ), chloramphenicol (C), ciprofloxacin (CIP), clindamycin (CM), ertapenem (ETP), erythromycin
(ERY), fosfomycin (FOS200), fusidic Acid (FA), gentamicin (GM), imipenem (IPM), kanamycin
(K), Levofloxacin (LEV), Linezolid (LNZ), nalidixic acid (NA), Nitrofurantoin (F), ofloxacin (OFX),
Oxacillin (OX), penicillin (P), piperacillin (PIP), Quinupristin/dalfopristin (QD), Rifampin (RA),
Temocillin (TEM), tetracycline (TE), ticarcillin (TIC), Tigecycline (TGC), Tobramycin (TOB), and
trimethoprim/sulfamethoxazole (SXT). Disk loads are indicated in Section 2.

Table 4. MICs of Enterobacterales harboring blaOXA-48 gene.

Antimicrobial (s) K. pneumoniae O103B2 * K. pneumoniae O103B1 * E. coli O103A10 *

Amoxicillin >32 (R) >32 (R) >32 (R)
Amoxicillin + CLA >128 (R) >128 (R) >128 (R)
Ticarcillin >32 (R) >32 (R) <4 (S)
Piperacillin >32 (R) >32 (R) <4 (S)
Piperacillin-tazobactam >32 (R) >32 (R) <4 (S)
Temocillin 256(R) 256 (R) 512 (R)
Tigecycline 1 (R) 1 (R) 1 (R)
Ceftazidime 16 (R) 16 (R) 0.25 (S)
Ceftazidime/Avibactam 0.25 (S) 0.25 (S) 0.25 (S)
Cefotaxime 8 (R) 8 (R) 0.5 (S)
Ceftolozane/Tazobactam 16 (R) 16 (R) 0.5 (S)
Cefepime 8 (I) 8 (I) 0.5 (S)
Cefiderocol 1 (S) 1 (S) 0.12 (S)
Aztreonam 16 (R) 16 (R) 0.12 (S)
Imipenem 1 (S) 1 (S) 0.5 (S)
Imipenem/Relebactam 0.5 (S) 0.5 (S) 0.25 (S)
Meropenem 0.5 (S) 0.5 (S) 0.12 (S)
Meropenem/Vaborbactam 0.5 (S) 0.5 (S) 0.12 (S)
Ertapenem 2 (R) 2 (R) 0.5 (S)
Ciprofloxacin 2 (R) 2 (R) 0.12 (S)
Tobramycin 8 (R) 8 (R) 1 (S)
Levofloxacin 0.5 (S) 1 (I) 0.25 (S)
Colistin 0.5 (S) 0.5 (S) 0.5 (S)

* Values are in micrograms per milliliter. S and R stand for susceptible and resistant.

3.4. Resistome, MLST, Plasmidome, and O-Serogroups

Twenty strains were further investigated by WGS. Gram-positive isolates were chosen
based on their resistance profile such as mecA-positive Staphylococci or their likelihood
to carry virulence factors such as S. aureus isolates. Enterobacterales were chosen based
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on their resistance profile, such as expanded spectrum cephalosporin- or carbapenem-
resistance on randomly chosen multisusceptible Escherichia coli isolates to obtain an overview
of their STs or virulence factors likely involved in abscess formation.

The two K. pneumoniae isolates O103B1 and O103B2 harbored, in addition to blaOXA-48,
several β-lactam resistance genes, including the ESBL blaCTX-M-15, blaOXA-1, blaSHV-187,
and blaTEM-1B genes. Additionally, these isolates carried several other resistance genes to
different antibiotic classes (Table 5).

The E. coli isolate O103A10 carries the carbapenemase blaOXA-48 gene, as well as tet(B)
and mph(B) genes that are responsible for tetracycline and macrolide resistance, respectively
(Table 5).

Furthermore, the remaining E. coli strain O103A9 harbored the ESBL blaCTX-M-15 and
blaTEM-1B genes, along with aminoglycoside resistance genes aph(6)-Id and aph(3′′)-Ib, qnrS1
for quinolones, and sul2 for sulphonamides (Table 5). In silico MLST typing assigned the
two E. coli O103A9 isolate to ST1706 and ST10 for O103A10, while the two K. pneumoniae
isolates belonged to the same ST985. Several replicon-types were identified in the four
MDR Enterobacterales (Table 5). The CTX-M-15-producing E. coli O103A9 harbored an
IncY plasmid, while E. coli O103A10 carried several plasmids (Table 5), including Col156,
IncFIA, IncFIB, and IncFII, but no IncL plasmid known to carry blaOXA-48 gene. A careful
analysis of the contig carrying the blaOXA-48 gene suggested a chromosomal location, as
the E. coli chromosomal genes are present on both sides of blaOXA-48 gene (Figure 3). In
addition, electroporation experiments with plasmids extracted from E. coli O103A10 failed
to transfer any plasmid carrying blaOXA-48 gene to E. coli Top10.
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Figure 3. Genetic environment of blaOXA-48 gene located on the chromosome in E. coli O103A10.
BlaOXA-48 gene is indicated in red.

The two carbapenemase-producing K. pneumoniae isolates O103B1 and O103B2 also
carried several plasmids, including an IncL plasmid, likely carrying blaOXA-48 gene (Table 5).
Mapping the reads against the prototypical OXA-48 plasmid revealed 100% sequence
coverage, suggesting the presence of the entire plasmid in these isolates [17,18].

The resistome of seven randomly chosen E. coli isolates revealed few resistance genes.
Five isolates produced tetA and tetB genes, together with aminoglycoside resistance genes
(aadA1, aadA2b, aph(3′)-Ia, aph(3′′)-Ib, aph(6)-Id) in two of the seven E. coli isolates. Further-
more, two E. coli isolates expressed a sulfonamide resistance gene (sul2 and/or sul3). These
E. coli isolates belonged to seven different STs: ST88, ST101, ST224, ST155, ST223, ST206.
Only three plasmid replicon types were detected in the investigated E. coli isolates; these are
IncFII, IncFIA, and IncFIB. Additionally, O-serogroups that could potentially pose public
health concerns were also identified, including O8, O23, O37, O42, O116, O123, O144, and
O153 (Table 5).

The S. epidermidis strain harbored several antibiotic resistance genes, including mecA
(which encodes PLP2A conferring resistance to methicillin), blaZ (which encodes a narrow
spectrum penicillinase), ant(6) and aph(3′) (which encode resistance to aminoglycosides),
and fosB, fusB, and tet(K) (which encode resistance to fosfomycin, fusidic acid, and tetra-
cycline, respectively). The S. pasteuri strain harbored only mecA and blaZ genes. Four
isolates of S. aureus (O104F5, O104F7, O104F9, and O104F10) carried the blaZ gene, while
the tet(K) and erm(T) genes were detected only in isolates O104F4 and O104F10, respectively
(Table 6).
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Table 5. Resistance genes, O-serogroups, MLST, plasmid replicons, and virulence factors detected in E. coli and K. pneumoniae isolates as revealed with ResFinder-4.1,
SerotypeFinder-2.0, MLST 2.0, PlasmidFinder 2.0, and VirulenceFinder-2.0 softwares available at CGE the center for genomic epidemiology. (https://cge.food.dtu.dk/
(accessed on 24 January 2024)) and virulence factor database (VFDB) (http://www.mgc.ac.cn/VFs/main.htm (accessed on 20 December 2023)).
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Ec O104G8 S PR 06/03 ST206 O144:H5 parC
Ec O104H4 C L 28/05 Unknown O37:H12

(1) Ec: E. coli; Kp: K. pneumoniae; (2) S: sheep; C: cattle; (3) PR: prescapular region; LN: lymph node; Li: liver; L: lung; (4) day/month/2019. Filled boxes indicated presence of a
given allele.

https://cge.food.dtu.dk/
http://www.mgc.ac.cn/VFs/main.htm
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Table 6. Resistance genes, MLST, and virulence factors detected in Staphylococci isolates, as revealed with ResFinder-4.1, MLST 2.0, PlasmidFinder 2.0, and
VirulenceFinder-2.0 softwares available at CGE the center for genomic epidemiology. (https://cge.food.dtu.dk/ (accessed on 24 January 2024)).
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(1) Sa: S. aureus; Sepi: S. epidermidis; Spas: S. pasteuri (2) S: sheep; C: cattle; (3) PR: prescapular region; LN: lymph node; Li: liver; NK: neckline; L: lung; (4) day/month/2019. Filled boxes
indicated presence of a given allele.
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S. epidermidis strain belonged to ST61, and the six S. aureus isolates belonged to five
different STs: ST700 for two isolates, ST522 for two isolates and ST398 from sheep, and
ST97 and another novel allele from cattle.

3.5. Virulome

As these bacterial isolates were responsible for purulent infections, the search for
virulence genes was of the utmost importance (Tables 6 and 7). The ESBL-producing E.
coli strain O103A9 was found to harbor only three known virulence genes: ompT, terC, and
yehD, which encode an outer membrane protease, a tellurite resistance protein C, and a
fimbrial protein, respectively. The E. coli strain-producing OXA-48 carried three genes as
well, including terC, csgA, and traT, which encode a tellurite resistance protein C, a curli
fimbriae subunit A, and a serum-resistance-associated protein, respectively.

Among the two K. pneumoniae isolates, O103B2 harbored 82 virulence genes, while
O103B1 had 79 genes. Both strains shared common virulence genes such as type 1 fimbriae
(fimABCDEFGHIK) and type 3 fimbriae operon (mrkABCDFHIJ), enterobactin gene clusters
(entABCDEFS and fepABCDG), Type IV pili (pilW), the T6SS-II (impAFGHJ) operon, the
stbABCD operon, and the siderophore iroAN cluster. Additionally, both strains were found
to contain the integrative and conjugative element (ICEKp) containing the yersiniabactin
gene cluster (ybtAEPQSTUX), irp1, irp2, and fyuA genes. In addition to these genes, other
genes were found (Table 7).

The virulome of the seven susceptible E. coli isolates was also investigated, and the
most common factors found were terC, fimH, nlpI, lpfA, fyuA, hlyF, iutA, and cvaC (Table 7).

The WGS analysis of S. aureus isolates revealed that all but one (O104F6) carried the
hemolysin-encoding genes hlgA, hlgB, and hlgC. Leucocidin genes lukD and lukE were
identified in five strains. The serine protease-encoding genes splA and splB were detected
in all six strains, while splE was detected in only four strains. Enterotoxin genes sec and
sel were detected in strains O104F7 and O104F9, and the immune evasion gene sak was
detected in three isolates (O104F4, O104F6, and O104F8), while the scn gene was detected
in two isolates (O104F8 and O104F10) (Table 6).
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Table 7. Virulome of E. coli and K. pneumoniae isolates.
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(1) Ec: E. coli; Kp: K. pneumoniae; (2) S: sheep; C: cattle; (3) PR: prescapular region; LN: lymph node; Li: liver; PRC: pericardium; L: lung. Filled boxes indicated presence of a given allele.
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4. Discussion

This study revealed a concerning rate of multidrug resistance in bacteria isolated
from abscesses in one slaughterhouse in Algeria. In low- to middle-income countries, the
intensification of farming is on the rise, primarily driven by a scarcity of available land
and the continuous growth of human populations. This intensified farming demands
greater use of antibiotics to combat infectious diseases, subsequently fostering the transfer
of antibiotic resistance genes (ARGs) between microbes, resulting in multidrug-resistant
bacteria in livestock but also in domestic animals and quick spread of resistant micro-
organisms, which have serious consequences on animal health, productivity, and food
production that pose both economic and human health problems [19,20]. Livestock animals
are at risk of infectious diseases, especially with pyogenic organisms that cause abscesses at
various sites of the body, and consequently have an impact on productivity, fertility, and in
general to livestock health [2,21,22]. Infected carcasses at slaughterhouses can be partially
or completely discarded [23].

In this study, we reported 123 abscesses, including 100 from sheep and 23 from cat-
tle. Abscesses occur commonly in sheep as ovines are more susceptible to developing
them than other ruminants. It cannot be determined solely based on clinical examination
and generally relies on postmortem inspection of carcasses in slaughterhouses [24,25].
The analysis of bacterial isolates from pus showed the predominance of Enterobacterales
isolates, particularly E. coli, followed by Staphylococcus spp. Enterobacterales, and E.
coli especially have been found to be major players in the formation of abscesses in
animals [5,26,27], although several studies have isolated S. aureus from abscesses as the
quintessential suppurative pathogen in large proportions [13,14,28,29]. These bacterial
species isolated are zoonotic pathogens, which places public health at risk.

The presence of ESBLs, and in particular CTX-M-15, in animals has previously been
linked to the human sector before it was also detected in animals and the environment [30].
Additionally, ceftiofur, a third-generation cephalosporin, is the main cephalosporin used
in veterinary medicine due to its effectiveness in treating bacterial infections in food-
producing animals; for this reason, these antibiotics could provide selection pressure that
favors co-selection of plasmids carrying mobile genes (transposon, integron, cassette gene)
that result in carbapenem-resistant (CR) strains [31,32]. Here, we identified a CTX-M-15
producing E. coli ST1706, an ST that has previously been described in Japan from different
pig farms [33].

The presence of OXA-48-carbapenemase producers is very worrying, as carbapenems
remain the last-resort therapy for treating human infections caused by MDR Gram-negative
and Gram-positive bacteria [31]. However, the clinical use of these antibiotics is presently
at risk due to the global proliferation of β-lactamases (BLs) with the ability to degrade
them, and the increase in the worldwide emergence of carbapenem-resistant organisms
(CROs), which constitute a critical growing public health threat [34]. In livestock or
veterinary fields, carbapenems are not licensed and have no legal indication, so their use
is prohibited [32,35,36]. Nevertheless, many studies conducted in Algeria have reported
CROs in livestock, companion animals, and birds [37–39].

In our study, we isolated, for the first time, OXA-48 carbapenemase-producing Enter-
obacterales from abscesses of farm animals. OXA-48 is the most common carbapenemase
in Enterobacterales and one of the most frequently isolated around the Mediterranean
rim [40]. It is most frequently detected in K. pneumoniae and E. coli but can also occur
in other Enterobacterales species [40]. Both K. pneumoniae isolates belong to ST985, an
ST type that has been isolated from various sources and geographic locations. MDR K.
pneumoniae ST985 isolates carrying up to 16 different resistance genes, including blaCTX-M-55
gene, were isolated from rectal swab samples of dairy cows from Quetta in Pakistan [41]. In
Austria, blaCTX-M-15-producing K. pneumoniae ST985 were isolated from river water samples
that were identical to clinical isolates from Austrian hospitals [42]. Finally, blaCTX-M-15-
producing K. pneumoniae ST985 have been involved in an outbreak in Israel in a neonatal
intensive care unit [43]. The simultaneous presence of blaOXA-48 and blaCTX-M-15 genes in
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K. pneumoniae strains ST985 is of particular concern, as this ST seem to be responsible for
human and animal infections, and as the combination of these two β-lactamases lead to the
resistance to almost all β-lactams. Extended-spectrum β-lactamase (ESBL) and carbapene-
mase genes are often associated with an MDR phenotype [44], as illustrated in our study
by the presence of different resistance to different classes of antibiotics.

The BlaOXA-48 gene is usually located on transferable Inc L plasmids [45]; however,
there have also been reports of chromosomally located blaOXA-48 genes in some STs, such as
ST38 CPE [46–48]. Here, we report a chromosomal localization of the blaOXA-48 gene in E.
coli ST 10. Chromosomal insertion of resistance genes is believed to favor the stability of
resistance genes in the absence of selective pressure [49,50].

Methicillin-resistant staphylococci are among the emerging pathogens that now con-
stitute a threat to human and animal health. Due to its rapid development of antibiotic
resistance in clinical settings, methicillin-resistant S. aureus (MRSA) is regarded as one
of major life-threatening pathogens. The recent isolation of MRSA strains in several an-
imals is thought to be one of the main factors in the spread of infection and disease in
both humans and animals [51,52]. In our study, we identified a methicillin-susceptible S.
aureus ST398, an ST spreading worldwide in animals and humans and often referred to as
livestock-associated MRSA (LS-MRSA) [53,54].

This resistance, as our study shows, concerned coagulase-negative Staphylococci
(CoNS: S. epidermidis and S. pasteuri) isolated from abscesses and harbored the mecA gene,
indicating methicillin resistance. Methicillin-resistant coagulase-negative staphylococci
have been less studied, but their importance as pathogens is increasing. For a long time,
S. aureus was thought to be the predominant pathogenic Staphylococci species. How-
ever, recent investigations have shown the increasing role of CoNS in causing antibiotic-
resistant infections [55,56]. In a previous study conducted in Algeria, which focused on
unpasteurized cow’s milk, three isolated CoNS were resistant to methicillin, and all were
mecA-positive [57]. A few studies carried out on CoNS in livestock have revealed that
food-producing animals constitute a large reservoir of multiresistant CoNS [58].

Virulence factors of Enterobacterales or Staphylocci are based on their ability to adhere
to host cells, produce toxins, and resist host immune defenses [59]. The identification
of specific virulence genes is crucial for understanding the pathogenic potential and for
the development of preventive strategies, effective vaccines, and novel therapeutics [60].
For Enterobacterales, important virulence factors, including adhesins, fimbriae, intimin,
capsules, iron metabolism, siderophores, heme/hemoglobin transport proteins, and cell
invasion, were identified. Furthermore, a study conducted in Western Algeria in 2017
to determine the prevalence of carbapenemase-producing Enterobacteriaceae (CPE) in
chicken meat revealed that carbapenemase-producing K. pneumoniae isolates harbored
several virulence factors, such as fimH type 1 fimbriae virulence gene, ureA, involved in
the hydrolysis of urea to ammonia, mrkD, encoding a type 3 fimbriae that promotes biofilm
development, uge, that codes for a UDP galacturonate 4-epimerase, and wabG, encoding
the biosynthesis of the core lipopolysaccharide [61]. The relationship between antimicrobial
resistance and virulence factors in bacteria is complex. There are common characteristics
shared between virulence and resistance, such as the involvement of efflux pumps, porins,
and cell wall alterations. Additionally, some studies have found a significant association
between certain virulence genes and antimicrobial resistance, suggesting that acquiring
resistance to some antibiotics may impact the expression of virulence factors [62–64]. In
contrast to other studies, KPC-producing Enterobacterales, such as K. pneumoniae, typi-
cally exhibit lower levels of virulence compared to non-carbapenemase-producing strains.
Overall, the presence of carbapenemase genes does not necessarily imply a reduction in
virulence, although there might be trade-offs between virulence and resistance capabilities
in certain strains [65].
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5. Conclusions

The presence of blaESBL, blaOXA-48, and mecA genes in animal abscesses highlights the
importance of monitoring the use of antimicrobial in animals. Preventing the spread of
multidrug-resistant bacteria in livestock animals should, therefore, be a priority for public
health, which can be achieved through the reduction in and proper use of antimicrobial
agents in animal husbandry and in humans, and also acting at the farm level, improving
hygiene and biosecurity measures, based primarily on the elimination of risk factors and
vaccination of small ruminants.
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