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Abstract: Monochamus alternatus is a serious trunk-boring pest. The isolation and utilization of
entomopathogenic fungi to manage M. alternatus is important. Here, a new strain GQH6 of Metarhiz-
ium robertsii, isolated from the Loess Plateau, was identified morphologically and molecularly. The
virulence of the strain GQH6 against the third-instar larvae of M. alternatus was studied. Then, the
pathological process, including symptom observation and histopathological observation, was also
researched. The corrected mortality was 100% at 109 and 108 conidia/mL, and 88.89 ± 5.88% at
107 conidia/mL. The LC50 was 1.93 × 106 conidia/mL and the LC90 was 1.35 × 107 conidia/mL.
And the LT50 of the strain GQH6 was 3.96 days at 109 conidia/mL, and 4.99 days at 108 conidia/mL.
These virulence indices showed high virulence against M. alternatus larvae. In addition, the symptoms
of the infected M. alternatus larvae were obvious. After one day, dark spots appeared and increased in
number. By four days, white mycelia appeared. Finally, the larvae body became green. Similarly, the
histopathological changes after infection were obvious, mainly manifested in muscle tissue rupture,
adipose tissue fracture and midgut disintegration. These results demonstrated that the M. robertsii
strain GQH6 isolated from the Loess Plateau was highly virulent against M. alternatus larvae of the
third instar.

Keywords: Metarhizium robertsii; Monochamus alternatus; virulence; symptom observation;
histopathological observation

1. Introduction

Entomopathogenic fungi are a class of microorganisms that specifically infect insects,
and they regulate many pests in natural ecosystems effectively in an ecology-friendly
manner [1]. The utilization of entomopathogenic fungi to manage agricultural and forestry
pests has become a new trend in biological pest control [2]. And the important thing is that
entomopathogenic fungi can be isolated from nature [3,4]. So entomopathogenic fungi are
easier to obtain. Entomopathogenic fungi have the advantages of a broad spectrum, species
diversity, and relative safety to humans and other non-target organisms [5]. So fungal
pesticides have the ability to become biological alternatives to chemical pesticides [6]. At
present, Beauveria, Metarhizium, Cordyceps have been researched deeply [7]. Among them,
Metarhizium, as one of extensively studied and applied entomopathogenic fungi, has been
used to control multiple pests in multifarious environments [8,9]. Metarhizium robertsii is a
typical entomopathogenic fungus. And some strains of M. robertsii have been developed as
environmentally friendly fungal insecticides for the application in pest biocontrol [10,11].
The virulence and pathological process of M. robertsii against pests have been paid extensive
attention [12,13].
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Monochamus alternatus Hope (Coleoptera: Cerambycidae) is mainly distributed in
China, Korea, Japan, and several southeast Asian countries [14,15]. The M. alternatus is an
important forest pest, and it causes serious harm to trees by feeding on woods directly or
toting the phytopathogens indirectly. It even dominates significant forest collapses [16].
Among them, a particularly important point is that it can spread pine wilt disease [17].
Pine wilt disease, caused by the pine wood nematode, is a destructive forest disease, and it
seriously endangers forestry safety all over the world [18]. For example, in 2017, the total
damaged area of pine wilt disease reached 85,524 hm2 in China, and it caused economic
losses of about USD 2.94 billion [19]. At present, the main methods of managing M.
alternatus are chemical pesticides such as neonicotinoids, thiamethoxams, thiacloprids and
fenitrothions [20,21]. However, these chemical pesticides are harmful to the environment.
And chemical pesticides can lead to insect resistance. For instance, a worldwide insect pest,
Spodoptera frugiperda, was found to have developed resistance to traditional pesticides like
pyrethroids [22]. But in recent years, it was also found to be resistant to new pesticides
like spinosad [23]. So natural microbial pesticides have been investigated as alternatives
to chemical pesticides [24]. In fact, entomopathogenic fungi could pose a threat to non-
target insect species, such as bees and soil microarthropods [25,26]. But the adverse
influences were slight [27]. Some species of beneficial insects have even been used to
spread entomopathogenic fungi in some studies [28,29].

Currently, there have been many studyies about using various Metarhizium strains to
control M. alternatus such as Metarhizium anisopliae JEF-197 [30] and Metarhizium anisopliae
F52 [31]. But the biological control strategies require continuous strains isolated from
nature [32]; more entomopathogenic fungi need to be isolated and used in the pest man-
agement. In addition, entomopathogenic fungi intrude the host body mostly through the
penetration of the cuticle, proliferation within the host body, and dissolution of host tissue;
finally, the host dies [33,34]. However, the physiological changes of M. alternatus after in-
fection, including symptom observation and histopathological observation, have received
little attention. In this study, the M. robertsii strain GQH6 isolated from the Loess Plateau
was identified morphologically and molecularly, and it was found high virulence against
the third-instar larvae of M. alternatus. Then, the symptom observation and histopatho-
logical observation after infection were carried out to better understand the pathological
process of the M. robertsii against the third-instar larvae of M. alternatus. In conclusion,
this study aimed to provide a new strain and theoretical basis for the biological control of
M. alternatus.

2. Materials and Methods
2.1. Isolation and Identification of the Metarhizium robertsii Strain GQH6
2.1.1. Specimen Collection and Isolation

The M. robertsii strain GQH6 was isolated by the insect bait method [35] from soil
samples collected in the Loess Plateau. The insect bait Tenebrio molitor (Coleoptera: Tene-
brionidae), raised at LIRR (Lab of Insect Relative Resource, College of Plant Protection,
Northwest A & F University, Shaanxi Province, Yangling, China), was used. And the soil
samples were collected from the Geqiuhe Village, Yuyang District, Yulin City, Shaanxi
Province in June 2021 (109◦36.339′ E, 38◦42.055′ N). The location belongs to the Mu Us
desert in the Loess Plateau. After isolation, the M. robertsii strain GQH6 were stored at 4 ◦C
in LIRR.

2.1.2. Morphological Identification of the Metarhizium robertsii Strain GQH6

The colony morphology of the M. robertsii strain GQH6 were observed after being
cultured on the SDAY medium (10 g/L peptone, 40 g/L D-glucose anhydrous, 10 g/L yeast
extract, 20 g/L agar, 1 L steriled water) in an artificial incubator at 25 ± 2 ◦C, 60 ± 5% RH,
12:12 L:D photoperiod for 14 days. The obverse and reverse of the M. robertsii strain GQH6
on SDAY medium were observed. And the morphological characteristics, including the
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characteristics of mycelia and conidia of the M. robertsii strain GQH6, were also observed
on a microscope (Ningbo Sunny Instruments Co., Ltd., Zhejiang, Ningbo, China).

2.1.3. Molecular Identification of the Metarhizium robertsii Strain GQH6

The genomic DNA of the M. robertsii strain GQH6 was extracted using the method de-
scribed by Aljanabi [36] with some modifications. The purified genomic DNA, as a template,
was used to amplify the target genes (ITS and EF1α) by polymerase chain reaction (PCR).
The internal transcribed spacer (ITS) regions of rDNA were amplified with the primer pair
ITS1F (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4R (5′-TCCTCCGCTTATTGATATGC-
3′) [37]. And the elongation factor 1-alpha (EF1α) regions were amplified with the primer
pair EF1α-EF (5′-GCTCCYGGHCAYCGTGAYTTYAT-3′) and EF1α-ER (5′-ATGACACCRA
CRGCRACRGTYTG-3′) [38]. Then, the sequencing was carried out at Sangon Biotech
(Shanghai, China). The sequences were deposited into the NCBI GenBank Database
(NCBI, https://www.ncbi.nlm.nih.gov/ accessed on 17 January 2024). And all sequences
were compared with already-published sequences using the BLAST tool from the NCBI
GenBank Database [39]. After that, we used MEGA X to align each sequence. Then,
a phylogenetic tree was formed based on the maximum likelihood (ML) method in
PhyloSuite v1.2.1 [40–42].

2.2. Bioassay of the Metarhizium robertsii Strain GQH6
2.2.1. Experimental Insects

The insect tested in this study was the third-instar larvae of Monochamus alternatus
Hope (Coleoptera: Cerambycidae). The larvae were obtained commercially and reared on
sawdust in 24-well plastic boxes ventilated with several holes at 25 ± 2 ◦C, 60 ± 5% RH
with completely darkness. Third-instar larvae with good condition of M. alternatus were
selected for this bioassay.

2.2.2. Preparation of Fungal Suspension

Before the bioassay, the M. robertsii strain GQH6 was cultured by the one-quarter-
strength SDAY medium (2.5 g/L peptone, 10 g/L D-glucose anhydrous, 2.5 g/L yeast
extract, 20 g/L agar, 1 L sterile water) in an artificial incubator at 25 ± 2 ◦C, 60 ± 5% RH, and
a 12:12 L:D photoperiod for 14 days to produce enough conidia. The conidia were scraped
by the sterilized wood chips, and then they were transferred into 20 mL of sterile water
containing 1% glycerin and 0.05% Tween-80. The suspension was adequately vortexed
by a vortex oscillator. The conidia concentration of suspension were determined using a
hemocytometer under 10× or 40× magnification on the microscope (ECLIPSE TE2000-S,
Nikon, Tokyo, Japan). Then, the suspension was diluted into the concentrations of 109, 108,
107, 106 and 105 conidia/mL, and 20–40 mL for each concentration. The sterilized water
containing 1% glycerin and 0.05% Tween-80 was for the control group.

2.2.3. Bioassay

The 15 healthy larvae of third instar were selected for one biological replicate of each
concentration. There were three biological replicates for each concentration. In total, in
three biological replicates of each concentration, the 45 third-instar larvae of M. alternatus
were treated. The impregnation was the method used for the bioassay in this study. For
one larva, it was placed into the suspension for 3–5 s, so that it was fully covered with
the suspension, and then the excess water in its body was removed by sterilized filter
paper. After infection, they were transferred to the 24-well plastic boxes immediately.
Then, all the 24-well plastic boxes were stored at an artificial incubator at 25 ± 2 ◦C,
60 ± 5% RH in completely darkness. The mortality of larvae was observed and recorded
for 21 consecutive days.

https://www.ncbi.nlm.nih.gov/
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2.3. Symptom Observations and Histopathological Observations

After being infected by the M. robertsii strain GQH6, the symptoms of infected larvae
were observed every day. In addition, on 0, 2, 4, 6, 8 days after infection by the suspension
of 109 conidia/mL, three infected larvae with typical symptoms were picked, and they were
individually put into a 5 mL tube filled with 4% paraformaldehyde solution. Then, they
were sent to Y&KBio (Xi’an, China) for making tissue sections after paraffin embedding,
paraffin sectioning and HE staining. After that, the tissue sections were observed under a
microscope (Ningbo Sunny Instruments Co., Ltd., Zhejiang, Ningbo, China) to accomplish
histopathological observation.

2.4. Statistical Analysis

For all experiments, we performed three biological replicates. The calculation of
corrected mortality (%) was as follows: corrected mortality (%) = (mortality of fungal
infected group − mortality of control group)/(1 − mortality of control group) × 100%.
The lethal concentrations (LC50 and LC90), were calculated using GraphPad Prism 8.0.2.
And the median lethal time (LT50 and LT90) was calculated with probit analysis (IBM
SPSS Statistics 27). The p < 0.05 was considered statistically significant. All figures were
produced by GraphPad Prism 8.0.2.

3. Results
3.1. Identification of the Metarhizium robertsii Strain GQH6

The M. robertsii strain GQH6 was molecularly identified by a phylogenetic tree using
the ribosomal internal transcribed spacer region (ITS) and the elongation factor 1-alpha
(EF1α) regions (Figure 1). The strain GQH6 and Metarhizium robertsii ARSEF 727 were
clustered in the same branch. And the accession numbers of the NCBI Database were
submitted (ITS: PP140918; EF1α: PP125304). After being cultured for 14 days on the SDAY
medium, the colony diameter of strain GQH6 was 4.7 cm (Figure 2a). On the obverse of the
colony, the center was reseda green and the edge was white (Figure 2a). On the reverse
of the colony, the center was pale yellow and the edge was white (Figure 2b). The hyphae
were achromic and linear (Figure 2d), and the conidia were achromic and elliptic (Figure 2c).
Using molecular identification combined with morphological identification, we discovered
the strain GQH6 was Metarhizium robertsii.
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Torrubiella luteorostrata NHJ12516 as outgroup.
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Figure 2. The morphological feature of the M. robertsii strain GQH6. (a) The obverse of the M. robertsii
strain GQH6 on SDAY medium; (b) the reverse of the M. robertsii strain GQH6 on SDAY medium;
(c) the feature of conidia (Bars = 10 µm); (d) the feature of hyphae (Bars = 10 µm).

3.2. Virulence of the Metarhizium robertsii Strain GQH6 against Monochamus alternatus Larvae

The corrected mortality (%), number of dead larvae, LC50/LC90 and LT50/LT90, were,
respectively, recorded and calculated for virulence of the M. robertsii strain GQH6. With the
increase in concentration, the corrected mortality of larvae rose gradually. The corrected
mortality caused by the M. robertsii strain GQH6 could reach 100% at high concentration
(109 conidia/mL and 108 conidia/mL), while the corrected mortality was 88.89 ± 5.88% at
107 conidia/mL, 44.44 ± 5.88% at 106 conidia/mL, and 17.78 ± 2.22% at 105 conidia/mL
(Figure 3a). At 109 conidia/mL, the larvae began to die after two days of infection, and all
the larvae had died by the seventh day. And at 108 conidia/mL, the larvae also began to
die after two days, and all the larvae had died by the ninth day. At lower concentrations
(107 conidia/mL, 106 conidia/mL and 105 conidia/mL), the larvae began to die later and
the mortality was less than 100% (Figure 3b). The M. robertsii strain GQH6 had high
virulence against the third-instar larvae of M. alternatus, with the LC50 being 1.93 × 106

conidia/mL and the LC90 being 1.35 × 107 conidia/mL (Table 1). Similarly, with the
increase in concentration, the LT50 and LT90 of larvae reduced. At the highest concentration
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(109 conidia/mL), the LT50 was 3.96 days, and the LT90 was 5.45 days (Table 2), and showed
high virulence. And at 108 conidia/mL, the LT50 was 4.99 days, and the LT90 was 7.78 days.
It was also at a good level. In conclusion, the results indicated that the strain GQH6 of M.
robertsii showed high virulence against the third-instar larvae of M. alternatus.
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Figure 3. The histogram of corrected mortality (%) at different concentrations and the line chart of the
number of dead larvae everyday at different concentrations. (a) The histogram of corrected mortality
(%) at different concentrations; (b) the line chart of the number of dead larvae everyday at different
concentrations. The third-instar larvae of M. alternatus were treated by the conidia suspension of
the M. robertsii strain GQH6 with different concentrations (109, 108, 107, 106 and 105). After that,
the number of dead larvae was recorded everyday until 21 days later. The bioassay was conducted
with three replicates (15 larvae/replicate). Different letters (a, b, c, d) indicated statistical differences
between different concentrations (p < 0.05).

Table 1. The LC50 and LC90 of the M. robertsii strain GQH6 against the third-instar larvae of
M. alternatus.

Fungal Number LC50 (Spore/mL) 95% Confidence
Interval LC90 (Spore/mL) 95% Confidence

Interval

GQH6 1.93 × 106 1.40 × 106–2.69 × 106 1.35 × 107 3.85 × 106–4.41 × 107

Table 2. The LT50 and LT90 of the M. robertsii strain GQH6 against the third-instar larvae of
M. alternatus.

Fungal Number Conidial
Concentration LT50 (Days) 95% Confidence

Interval LT90 (Days) 95% Confidence
Interval

GQH6

109 3.96 3.85–4.08 5.45 4.83–6.43
108 4.99 4.79–5.18 7.78 5.66–12.99
107 6.49 6.19–6.78 11.37 10.12–13.18
106 11.83 10.99–12.66 - -

3.3. Symptom Observation of Infected Larvae

The symptoms of third-instar larvae of M. alternatus infected by the M. robertsii strain
GQH6 were obvious (Figure 4). The symptoms of larvae treated with high concentra-
tion of conidia suspension appeared earlier than those treated with low concentration.
Here, a batch of larvae, which died earliest, were taken as samples and analyzed. At
109 conidia/mL, after being injected by strain GQH6 for one day, the motion and epidermis
of larvae were not different with non-infected larvae (Figure 4a). Then, the dark spots
appeared and increased in number (Figure 4b–d), and the motion of the larvae became
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phlegmatic (Figure 4c,d). The larvae began to die after two days of inoculation. At the
fourth day, the white mycelia appeared on the surface of the dead larvae (Figure 4e); the
larva bodies became stiff. Similarly, at the fourth day, the living larvae were basically
inactive and covered with massive dark spots (Figure 4d). And then, the surface of the
larvae was covered with white mycelia. By the sixth day, green conidia appeared on the
surface of the larvae (Figure 4f) and gradually increased in number. Finally, the larva bodies
became green (surrounded by conidia at the eighth day) (Figure 4g). After the appearance
of the white mycelia, the larva bodies were always stiff (Figure 4e–g).
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at the fourth day; (f) the symptoms of infected larvae at the sixth day; (g) the symptoms of infected
larvae at the eighth day.

3.4. Histopathological Observation of Infected Larvae

The histopathological observation of the third-instar larvae of M. alternatus infected by
the M. robertsii strain GQH6 was carried out through the observation of tissue slices. The
muscle tissue (MT), adipose tissue (AT), and midgut (Mg) were the focus of observation
(Figures 5–8).
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Figure 5. The tissue slices of muscle tissue (MT) of M.alternaue larvae after infection by the M. rob-
ertsii strain GQH6. (a) The histopathological observation of muscle tissue at 0 days; (b) the histo-
pathological observation of muscle tissue at second days; (c) the histopathological observation of 
muscle tissue at fourth days; (d) the histopathological observation of muscle tissue at sixth days; 
and (e) the histopathological observation of muscle tissue at eighth days. MT: muscle tissue; AT: 
adipose tissue; Hy: hyphae; Co: conidia; H: congregation of hematocytes. Bars = 10 µm. 

Figure 5. The tissue slices of muscle tissue (MT) of M.alternaue larvae after infection by the M.
robertsii strain GQH6. (a) The histopathological observation of muscle tissue at 0 days; (b) the
histopathological observation of muscle tissue at second days; (c) the histopathological observation of
muscle tissue at fourth days; (d) the histopathological observation of muscle tissue at sixth days; and
(e) the histopathological observation of muscle tissue at eighth days. MT: muscle tissue; AT: adipose
tissue; Hy: hyphae; Co: conidia; H: congregation of hematocytes. Bars = 10 µm.
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Figure 6. The tissue slices of adipose tissue (AT) of M.alternaue larvae after infection by the M. rob-
ertsii strain GQH6. (a) The histopathological observation of adipose tissue at 0 days; (b) the histo-
pathological observation of adipose tissue at second days; (c) the histopathological observation of 
adipose tissue at fourth days; (d) the histopathological observation of adipose tissue at sixth days; 
(e) the histopathological observation of adipose tissue at eighth days. AT: adipose tissue; Hy: hy-
phae; Co: conidia; H: congregation of hematocytes. Bars = 10 µm. 

Figure 6. The tissue slices of adipose tissue (AT) of M.alternaue larvae after infection by the M.
robertsii strain GQH6. (a) The histopathological observation of adipose tissue at 0 days; (b) the
histopathological observation of adipose tissue at second days; (c) the histopathological observation
of adipose tissue at fourth days; (d) the histopathological observation of adipose tissue at sixth days;
(e) the histopathological observation of adipose tissue at eighth days. AT: adipose tissue; Hy: hyphae;
Co: conidia; H: congregation of hematocytes. Bars = 10 µm.
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Figure 7. The tissue slices of the midgut (Mg) of M.alternaue larvae after infection by the M. robert-
sii strain GQH6. (a) The histopathological observation of the midgut at 0 days; (b) the histopatho-
logical observation of the midgut at second days; (c) the histopathological observation of the mid-
gut at fourth days; (d) the histopathological observation of midgut at sixth days; (e) the histo-
pathological observation of the midgut at eighth days. Mg: midgut; MT: muscle tissue; AT: adi-
pose tissue; Hy: hyphae; Co: conidia; H: congregation of hematocytes. Bars = 100 µm. 

Figure 7. The tissue slices of the midgut (Mg) of M.alternaue larvae after infection by the M. robertsii
strain GQH6. (a) The histopathological observation of the midgut at 0 days; (b) the histopathological
observation of the midgut at second days; (c) the histopathological observation of the midgut at
fourth days; (d) the histopathological observation of midgut at sixth days; (e) the histopathological
observation of the midgut at eighth days. Mg: midgut; MT: muscle tissue; AT: adipose tissue;
Hy: hyphae; Co: conidia; H: congregation of hematocytes. Bars = 100 µm.
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Figure 8. The tissue slices of muscle tissue (MT), adipose tissue (AT) and the midgut (Mg) of M.al-
ternaue larvae after infection by the M. robertsii strain GQH6. (a) The histopathological observation 
of muscle tissue, adipose tissue and the midgut at 0 days; (b) the histopathological observation of 
muscle tissue, adipose tissue and the midgut at second days; (c) the histopathological observation 
of muscle tissue, adipose tissue and the midgut at fourth days; (d) the histopathological observa-
tion of muscle tissue, adipose tissue and the midgut at sixth days; and (e) the histopathological 
observation of muscle tissue, adipose tissue and the midgut at eighth days. Mg: midgut; MT: mus-
cle tissue; AT: adipose tissue; Hy: hyphae; Co: conidia; H: congregation of hematocytes. Bars = 100 
µm. 

At 0 day after infection, the muscle tissue was compact, and there were no hyphae 
and conidia (Figure 5a). At the second day, the hyphae (Hy) and conidia (Co) appeared 
around the muscle tissue (Figure 5b). At the fourth day, the hyphae and conidia became 
more, and the congregation of hematocytes (H) appeared (Figure 5c). At the sixth day, 
there were large numbers of hyphae attached to the muscle tissue, and the muscle tissue 
became loose (Figure 5d). At the eighth day, the muscle tissue was almost broken down, 
and the haemocoel was filled with hyphae and conidia (Figure 5e). 

Figure 8. The tissue slices of muscle tissue (MT), adipose tissue (AT) and the midgut (Mg) of
M.alternaue larvae after infection by the M. robertsii strain GQH6. (a) The histopathological observation
of muscle tissue, adipose tissue and the midgut at 0 days; (b) the histopathological observation of
muscle tissue, adipose tissue and the midgut at second days; (c) the histopathological observation of
muscle tissue, adipose tissue and the midgut at fourth days; (d) the histopathological observation of
muscle tissue, adipose tissue and the midgut at sixth days; and (e) the histopathological observation
of muscle tissue, adipose tissue and the midgut at eighth days. Mg: midgut; MT: muscle tissue;
AT: adipose tissue; Hy: hyphae; Co: conidia; H: congregation of hematocytes. Bars = 100 µm.

At 0 day after infection, the muscle tissue was compact, and there were no hyphae
and conidia (Figure 5a). At the second day, the hyphae (Hy) and conidia (Co) appeared
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around the muscle tissue (Figure 5b). At the fourth day, the hyphae and conidia became
more, and the congregation of hematocytes (H) appeared (Figure 5c). At the sixth day, there
were large numbers of hyphae attached to the muscle tissue, and the muscle tissue became
loose (Figure 5d). At the eighth day, the muscle tissue was almost broken down, and the
haemocoel was filled with hyphae and conidia (Figure 5e).

Regarding the adipose tissue, there were no obvious changes in the first 2 days
(Figure 6a,b); only a little hyphae had appeared (Figure 6b). Then, the hyphae increased,
and the adipose tissue was destroyed (Figure 6c). At the sixth day, the adipose tissue was
consumed by hyphae, and the adipose tissue became blurred (Figure 6d). Finally, at the
eighth day, the adipose tissue was completely blurred, and the adipose tissue was filled
with hyphae and conidia (Figure 6e).

Inside the midgut, there were no obvious changes in the first 4 days (Figure 7a–c),
except hyphae appearing around the midgut (Figure 7c). The hyphae and conidia passed
through the body wall, muscle tissue and adipose tissue of larvae, and then the hyphae
and conidia continued to proliferate and reach the midgut. The symptoms of the midgut
appeared later than those of muscle tissue and adipose tissue. At the sixth day, the
haemocoel around the midgut was filled with hyphae and conidia, and the midgut wall
was destroyed; a large number of hyphae had appeared inside the midgut (Figure 7d).
Finally, at eight days, the midgut structure became completely blurred (Figure 7e).

Overall, after being infected by the M. robertsii strain GQH6, there were enormous
changes in the body of the M. alternatus larvae (Figure 8). The hyphae and conidia continued
to proliferate from the outside to the inside. At the fourth day, the experimented larvae
died because of the hyphae growth and tissue destruction (Figure 8c). After that, the
larvae body became stiff. As showed in Figure 8d, the larvae body filled with hyphae.
It induced stiffness of the larvae. And the extrusion of hyphae continued to destroy the
tissue (Figure 8c,d), then the body of larvae completely filled with hyphae and conidia
(Figure 8d,e).

4. Discussion

In this study, the entomopathogenic fungi strain was identified as Metarhizium robertsii
by molecular identification and morphological identification. The internal transcribed
spacer (ITS) regions of rDNA and the elongation factor 1-alpha (EF1α) regions were fre-
quently used for the molecular identification of fungi [37,38]. Identification of multiple
genes (ITS and EF1α) improved the accuracy of molecular identification in this study. Using
a phylogenetic tree, the strain GQH6 was identified as Metarhizium robertsii. The morpho-
logical characteristics of the fungi, such as its macro-morphology and micro-morphology,
were also used to help to identify the fungal species [43]. The colony color on the medium
of Metarhizium strains was reseda green [44]. Through microscopic observation, the coni-
dia of Metarhizium were found to be oval [45]. This is consistent with the morphological
characteristics of Metarhizium.

The species of entomopathogenic fungal, which were found to be able to infect the
M. alternatus, were mainly Beauveria and Metarhizium [17,46]. Kim et al. [47] found that
the virulence of Metarhizium anisopliae JEF-279 against M. alternatus was high. And the
Metarhizium was also found to be highly virulent against M. alternatus under field con-
ditions [48]. Gebremariam et al. [49] defined that the LT50 value of entomopathogenic
fungal strains <5 days was high virulence, between 5–6 days was moderate virulence and
>6 days was low virulence. The LT50 of the M. robertsii strain GQH6 was 3.96 days at
109 conidia/mL, and 4.99 days at 108 conidia/mL. It showed high virulence against the
third-instar larvae of M. alternatus. There are many factors determining the virulence of fun-
gal strains. For example, fungal conidia can secrete a variety of cuticle-degrading enzymes
to help to penetrate an insect epidermis, and the activity and quantity of cuticle-degrading
enzymes also determine the virulence of the fungi [50]. Some entomopathogenic fungi
can secrete secondary metabolites, which can help the fungi to overcome the immune
system of insects [51]. The factors affecting the high virulence of the M. robertsii strain
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GQH6 against M. alternatus were still unclear and need further research to confirm these
hypotheses. In addition, the corrected mortality of the M. robertsii strain GQH6 against the
third-instar larvae of M. alternatus was 100% at 109 and 108 conidia/mL, 88.89 ± 5.88% at
107 conidia/mL. And the LC50 of the strain GQH6 was 1.93 × 106; the LC90 was 1.35 × 107.
These virulence indices showed high virulence against the M. alternatus larvae.

The symptom observation and histopathological observation were also necessary parts
for verifying the virulence of the entomopathogenic fungal strain [47,52]. After infected
by the strain GQH6, dark spots appeared on the epidermis of larvae, and increased. It
was reported that melanization (dark spots on the epidermis of larvae after infection) is
a reaction of the infected larvae to, for example, enhance cuticle pigmentation, heal its
wound, and activate its innate immune system [53]. After the larvae were infected, there
were many potent elicitors produced by fungi such as β-1,3-glucans [54]. This could cause
a strong immune response of the larvae and it might be the reason of the first appearance
of the dark spots. The motion of the larvae were found to be slow in this study. Kim
et al. [47] proved that some proteins produced by entomopathogenic fungi could cause
flaccid paralysis and tissue damage. It is speculated to be a major element of the insecticidal
mechanism. With the fungus gradually proliferated in the larvae body, it eventually
destroyed the tissue through toxins [12,13] and mycelium extrusion (Figures 5–8) [47], and
then it killed the larvae. The dead larvae were also found to be stiff in this study. Through
histopathological observation, we conjectured that the reason was that the mycelia grew
continuously, and finally the mycelia filled the larvae body. Entomopathogenic fungi can
infect the insects by penetration of the cuticle, and ingestion is not necessary [55]. This helps
to improve the virulence. In this study, the method of infection was immersion, not through
the digestive system of the M. alternatus larvae (Figure 7a–c). After infection by the M.
robertsii strain GQH6, the histopathological changes to the larvae were obvious. The main
symptoms were muscle tissue rupture, adipose tissue fracture and midgut disintegration
(Figures 5–8). Through observation of tissue sections, mycelia growth and tissue damage
were found (Figures 5–8). As for which genes or substances played a decisive role in
destroying tissues, this needs to be further researched [52]. It was roughly same as the
histopathological changes of Beauveria bassiana against Colorado potato beetle larvae [56].
These results indicated that the M. robertsii strain GQH6 isolated from the Loess Plateau
was highly virulent against the third-instar larvae of M. alternatus, not only by the virulence
indices, but also by symptom observation and histopathological observation. And this
study also provided detailed descriptions for the pathological process of the M. robertsii
against the M.alternatue larvae. In addition, “native” entomopathogenic fungi are more
adaptable to environmental conditions [57]. So the native entomopathogenic fungal strains
can increase the effectiveness of pest control [58], while non-native entomopathogenic
fungal strains decrease the virulence and even bring some ecological risks [59]. Therefore,
entomopathogenic fungi isolated from their natural environment are of great significance to
biological control. The M. robertsii strain GQH6, isolated from the Loess Plateau, was highly
virulent against the third-instar larvae of M. alternatus. In the future, if an outbreak of M.
alternatus occurs in the Loess Plateau, the M. robertsii strain GQH6 will be a good choice for
biological control. Even though our study was carried out in laboratory conditions, our
previous study developed a new method to transmit entomopathogenic fungi by a vector
mite into the frass holes of long-horn beetles [60]. Therefore, it is possible to transmit the
spores of the M. robertsii strain GQH6 to M. alternatus larvae by the new method described
above. On the other hand, some entomopathogenic fungi strains were found to be highly
virulent against Buraphelenchus xylophilus [61]. In the future, the potential of the M. robertsii
strain GQH6 to control Buraphelenchus xylophilus needs to be further studied.
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