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Abstract: Food security is an urgent global challenge, with cereals playing a crucial role in meeting
the nutritional requirements of populations worldwide. In recent years, the field of metagenomics
has emerged as a powerful tool for studying the microbial communities associated with cereal
crops and their impact on plant health and growth. This chapter aims to provide a comprehensive
overview of cereal metagenomics and its role in enhancing food security through the exploration of
beneficial and pathogenic microbial interactions. Furthermore, we will examine how the integration
of metagenomics with other tools can effectively address the adverse effects on food security. For this
purpose, we discuss the integration of metagenomic data and machine learning in providing novel
insights into the dynamic interactions shaping plant-microbe relationships. We also shed light on the
potential applications of leveraging microbial diversity and epigenetic modifications in improving
crop resilience and yield sustainability. Ultimately, cereal metagenomics has revolutionized the
field of food security by harnessing the potential of beneficial interactions between cereals and their
microbiota, paving the way for sustainable agricultural practices.
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1. Introduction

Cereal crops, such as wheat, sorghum, rice, maize, and barley, are staple food sources
for a large portion of the global population [1,2]. These crops have emerged as sources
for food security as well as biofuel production [1,3]. The cereal crops, like any other plant,
host a diverse range of microorganisms, including bacteria, fungi, archaea, and viruses,
collectively known as the plant microbiome [4]. These microorganisms form intricate
communities within the soil, on plant surfaces, and even inside plant tissues. The cereals-
microbe interactions are considered to be dynamic and can have beneficial, neutral, or
detrimental effects on plant health [5]. They are ubiquitous in agricultural systems and
play a diverse role in nutrient cycling, disease suppression, nutrient acquisition, defense
against pathogens, and tolerance to abiotic stresses [6].

Interactions between the host plant and pathogens that are not beneficial have been
classified as either predation or parasitism [7]. Parasitic/pathogenic microbes occur when
microorganisms use plant resources such as water and nutrients to the detriment of the
plant’s health, growth, and development [8]. Depletion of the plant’s resources reduces its
fitness and increases its susceptibility to diseases, potentially leading to the host’s death [9].
Cereal production yield and quality are also constrained by many environmental factors,
including certain diseases. Plant pathogens represent a constant and major food production
constraint, with global crop losses estimated to be 20–30%, principally in food-deficit
areas [10].
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Harnessing the potential of these microbial communities is a promising approach to
enhance crop production, reduce reliance on chemical inputs, and improve sustainability
in agriculture [11]. Food security is a critical global challenge, especially in the face of
population growth and climate change [1]. Ensuring a stable and sustainable food supply
is critical for the well-being and survival of individuals and communities worldwide [11].
Agriculture plays a critical role in meeting this challenge, and understanding the complex
interactions between plants, microbes, and their environments is crucial for enhancing food
security [12].

Metagenomics, a powerful tool in microbial ecology and genomics, enables researchers
to study microbial communities without the need for isolation and cultivation [13]. It
entails direct sequencing of DNA extracted from environmental samples, providing a
comprehensive view of the genetic diversity and functional potential of complex microbial
communities [14]. Metagenomics has revolutionized our understanding of the complex
relationships between microorganisms and their environments, including their interactions
with plants in agricultural systems [15]. This technology has emerged in recent years as
a valuable tool for deciphering the complex interactions between cereals and microbial
communities [13]. Researchers can identify key microbial players and pathways involved
in promoting plant health and productivity by investigating the genetic composition and
functional potential of these microbial communities [16].

Furthermore, the integration of metagenomics, machine learning, and epigenetics
represents a cutting-edge approach that holds great promise for unraveling the complex
interactions within microbial communities and their host organisms [17,18]. Metagenomics
provides a comprehensive view of the genetic composition of these communities, while ma-
chine learning algorithms offer powerful tools to analyze and extract meaningful patterns
from vast amounts of data. By incorporating epigenetic information, such as DNA methy-
lation patterns and histone modifications, researchers can gain a deeper understanding of
how environmental factors influence gene expression and phenotype [19]. This integrated
approach enables the identification of key microbial taxa, functional pathways, and epi-
genetic markers that play crucial roles in shaping host-microbe interactions, ultimately
leading to novel insights and potential applications in agriculture. This knowledge can then
be used to develop targeted crop improvement strategies, disease management strategies,
and sustainable agricultural practices [4].

2. Microbial Communities Interaction with Cereal Plants

Microbiome-related metagenomics techniques have analyzed microbial communities;
however, most of the studies conducted to date have largely dealt exclusively with bacterial
communities [20,21]. It is also worth noting that in recent years, researchers have also
largely focused on the belowground microbiome of all cereal crops, and not much has been
performed on the aboveground microbiome [22]. The bacterial microbiome of cereal crops
is largely dominated by Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes, Acidobacteria,
and Chloroflexi [20]. The most commonly detected bacterial genera in the wheat, sorghum,
and maize microbiome are Pantoea, Pseudomonas, Rhizobium, Bacillus, Sphingomonas, and
Stenotrophomonas [23–25]. Janthinobacterium, Pedobacter, and Erwinia are bacterial genera that
primarily dominate the wheat and barley phyllosphere [26,27]. Bacteria from the families
Comamonadaceae, Flavobacteriaceae, and Rhizobiaceae dominated the barley root-enriched
microbiota [28].

The studies targeting fungal communities have shown that cereals are dominated by
Ascomycota and, to a lesser extent, by Basidiomycota [29,30]. The genera Fusarium, Phoma,
Pyrenophora, Alternaria, and Leptosphaeria, which include well-known plant pathogens, are
reported to dominate the epiphytic fungal communities of cereal seeds [31–33]. Pathogenic
species commonly found in cereals include Aspergillus spp., Botrytis cinerea, Colletotrichum
spp., Epicoccum nigrum, Parastagonospora nodorum, Penicillium spp., Pyrenophora triticirepentis,
Ramularia collocygni, Stagonospora spp., and Ustilago maydis [34]. These species are known to
be causal agents of major diseases in cereals and other plants [35,36].
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The most economically important viruses identified using the metagenomics tools in
wheat and barley are wheat streak mosaic virus (WSMV), triticum mosaic virus (TriMV),
high plains wheat mosaic emaravirus (HPWMoV), soilborne wheat mosaic virus (SBWMV),
barley yellow dwarf virus (BYDV), and cereal yellow dwarf virus (CYDV) [37,38]. The
metagenomics tool also showed that maize was dominated by viruses from the Betaflexiviri-
dae or Tombusviridae families. In addition, a novel DNA virus belonging to the Geminiviridae
family was discovered in North American maize using the metagenomic approach [39,40].
Although the metagenomics tool has been used to characterize microbes, more research on
fungi, viruses, archaea, and protists in cereal crops will be crucial to fully understand the
relationship between plants, microbes, and the environment. The vital role of microbial
communities in agriculture, including their impact on plant health, growth promotion, nu-
trient cycling, and soil health, and their detrimental effects have been extensively explored.
The intricate role of microbes on crop plants is discussed further below.

2.1. Beneficial Interactions

As agricultural production intensified over the last few decades, producers became
increasingly reliant on agrochemicals as a relatively reliable method of crop protection,
aiding in the economic stability of their operations [41]. However, increased use of chemical
inputs leads to pathogen resistance to the applied agents as well as non-target environmen-
tal effects [42]. Furthermore, the rising cost of pesticides, particularly in less-affluent parts
of the world, and consumer demand for pesticide-free food have prompted a search for al-
ternatives. There are also a number of fastidious diseases for which there are few ineffective
or non-existent chemical solutions [43]. As a result, biological control is being considered
as an alternative or supplement to reducing the use of chemicals in agriculture [44,45].

A substantial proportion of plant-associated microorganisms is known for their antag-
onistic activity toward other microbes, including pathogens, due to their ability to produce
hormones (Berg, 2009 [46]). The continued development of biological control agents (BCAs),
which are used in agriculture to suppress pathogens, benefits greatly from the functional
group of antagonists that are being studied. Some of the restrictions on biocontrol activity
in the field can be lessened by using a combination of compatible biocontrol agents with dif-
ferent mechanisms of action. This combination can be effective in a wider range of climate
conditions. Combinations like these may have synergistic effects that lead to increased
protection, and a wider spectrum of diseases can be controlled [47,48]. This is accomplished
through a variety of mechanisms, the most important of which are phosphorus-solubilizing
bacteria, Bacillus, Pseudomonas, Enterobacter, and the fungi Talaromyces aurantiacus and As-
pergillus neoniger, which are extremely effective at increasing plant available phosphorus in
the soil, as well as improving crop growth and yield [49–51].

Under aerobic conditions, most iron is available in the soil in the insoluble form and is
not readily available to plants, despite the fact that it is required for major physiological
processes in plants, such as nitrogen fixation, photosynthesis, and respiration [52]. Microbes
have evolved special mechanisms to chelate insoluble iron via the release of siderophores
and the uptake of iron siderophore complexes via specific outer membrane receptor pro-
teins [53]. The involvement of siderophores as a cooperative trait in Pseudomonas spp. has
been well-established [54,55]. Mycorrhizal (symbiotic fungi) production of siderophores
has also been reported [56].

Plant growth is also influenced by hormones like gibberellins, indole acetic acid (IAA),
ethylene, and cytokinins. These hormones can be produced by the plant or by microbes as-
sociated with it, such as Burkholderia phytofirmans and certain fungi [57,58]. Plant-associated
microbes can also have an impact on hormonal balance [59]. Ethylene is an important
hormone effector, promoting plant growth at low levels while causing senescence, chloro-
sis, and leaf abscission at high levels. By lowering endogenous (1-aminocyclopropane-1-
carboxylate (ACC) levels, bacteria containing ACC deaminase can reduce ethylene levels,
resulting in increased root growth [60,61]. Because ethylene is a stress hormone, ACC
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deaminase-producing bacteria have the potential to protect plants from biotic and abiotic
stress [62,63].

2.2. Non-Beneficial Interactions

Non-beneficial interactions between cereal plants and pathogens can be classified as
either predation or parasitism [7]. Microorganisms that are parasitic or pathogenic exploit
the plant’s resources, like nutrients and water, at the expense of the plant’s development,
growth, and well-being [8]. The plant’s overall fitness is compromised, and it becomes
more prone to diseases as a result of this resource depletion, which may cause the host
plant to die [9]. Cereal yield and quality are hampered by environmental factors such as
diseases, and more than 100 pathogens, including fungal, bacterial, and viral pathogens,
can infect different parts of the plant in these crops [64]. Fungal diseases are more common
in cereals than viral and bacterial diseases. The growth and productivity of cereal crops
are seriously threatened by these pathogens. They may result in a number of symptoms
and damage, including rot, wilting, leaf spots, and stunted growth. Severe instances of
these diseases may result in notable reductions in grain yield and quality. Managing and
controlling these diseases is crucial for maintaining healthy cereal crops.

This can entail a number of strategies, such as using resistant cultivars, carrying out
appropriate crop rotation, maintaining good sanitation, and using the right fungicides
or other control measures when necessary. Researchers and farmers can create efficient
management plans to reduce adverse effects and optimize the quantity and quality of cereal
crops by having a thorough understanding of the variety and influence of these pathogens
on cereals. Early detection and proper management strategies are crucial in minimizing the
impact of these cereal pathogens on crop yield and quality. Table 1 below indicates some of
the major cereal diseases; the symptoms can vary depending on the cereal crop, pathogen
strain, and environmental conditions.

Table 1. Fungal and bacterial pathogens of cereals.

Cereal Diseases Bacteria/Fungi Symptoms Cereal Crops References

Fusarium head
blight Fusarium graminearum

Bleached or discolored spikelets, premature
ripening, and pink or orange fungal spore
masses on infected heads.

Wheat, rice, barley [65]

Bacterial leaf
blight Xanthomonas campestris

Symptoms include water-soaked lesions
with yellow halos on leaves. Lesions may
expand and coalesce, leading to leaf wilting
and plant death.

Wheat, sorghum,
barley crops [66]

Common charcoal
root rot

Cochliobolus sativus,
Macrophomina phaseolina

Symptoms include dark brown to black
lesions on the roots and lower stem.
Infected plants may exhibit stunted growth,
reduced tillering, and wilting.

Sorghum, barley,
wheat [67]

Tan spot Pyrenophora tritici-repentis

Symptoms include tan or brown necrotic
lesions with yellow halos on leaves. Lesions
may coalesce, leading to extensive leaf
damage and reduced grain yield.

Wheat, maize,
sorghum [68]

Fungal leaf blight Exserhilum turcicum Large cigar-shaped lesion oriented
lengthwise along the leaf.

Sorghum, wheat,
maize [69]

Bacterial leaf spot Pseudomonas syringae Water-soaked spot lesions on leaves. Sorghum, wheat [70]

Bacterial leaf
stripe

Burkholderia andropogonis,
Pseudomonas andropogonis,
Pseudomonas sorghicola

Characterized by long, narrow stripes that
can vary from red to black.

Maize, wheat, oats,
sorghum [71]

Anthracnose Colletotrichum sublineolum Small, circular, elliptical, or elongated spots. Sorghum, maize,
Barley, rye, oats [72]
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Table 1. Cont.

Cereal Diseases Bacteria/Fungi Symptoms Cereal Crops References

Leaf Scald Rhynchosporium secalis

Elongated, brown lesions with yellow halos
on leaves. Severe infections can lead to
premature leaf death and reduced
grain yield.

Barley [73]

Grain molds

Fusarium spp., Curvularia
lunata, Alternaria alternata,
Phoma sorghina and
other fungi

Pink, orange, or white seeds found on the
infected heads.

Sorghum, maize,
Wheat, oats [74]

Powdery mildew Blumeria graminis

White or gray powdery fungal growth on
leaves, stems, and panicles. Infected plants
may exhibit stunted growth, reduced
photosynthesis, and premature senescence.

Sorghum, maize,
Barley, oats [75]

Rust Puccinia purpurea

Reddish-brown pustules on stems, leaves,
and spikelets. Infected plants may exhibit
stunted growth, chlorosis, and reduced
grain yield.

Sorghum, maize,
Barley, oats [76]

3. Metagenomics: An Overview

Microorganisms represent two of the three domains of life, and about 99% of the
microorganisms cannot be cultured by standard techniques [77]. Therefore, culture-
independent methods are essential to understanding the genetic diversity, population
structure, and ecological roles of the majority of microorganisms [78]. In this context, the
advent of high-throughput next-generation sequencing (NGS) has revolutionized the field
of microbial ecology and brought classical environmental studies to another level [79]. In
fact, this type of technology has led to the establishment of the field of “metagenomics”,
first coined in 1998 and defined as the direct genetic analysis of genomes contained within
an environmental sample without the prior need for cultivating clonal cultures [15,77].
Next Generation Sequencing (NGS) has revolutionized the study of bacterial, viral, and
fungal communities in plants using the metagenomics approach.

3.1. Metagenomics Approaches for Studying Agricultural Microbiomes

A key component of metagenomics techniques for researching agricultural micro-
biomes is the examination of genetic material that has been directly extracted from envi-
ronmental samples, such as soil and plant roots [80]. This approach can shed light on the
composition, diversity, and functional potential of microbial communities associated with
agricultural systems [14]. Targeted and shotgun metagenomics are two common techniques
used in agricultural microbiome research [81]. The targeted/amplicon gene sequencing
approach targets a specific region of the gene [82]. DNA metabarcoding uses a distinct
pattern to identify living things; it is a short, highly variable, and standardized DNA region
of about 700 nucleotides in length [83]. Metabarcoding has been widely used to gain a
better understanding of evolutionary history and ecological biodiversity.

Metagenomics provides information about the taxonomic composition of microbial
communities, making it possible to identify different microbial taxa [84]. Using gene-
targeted sequencing to profile microbial communities is an easy and affordable way to
profile the taxonomic makeup of microbes. However, because of the target gene’s conserva-
tion and the amplicon product’s length, its taxonomic resolution is restricted. Furthermore,
targeted sequencing does not give us the microbe’s functional capacity [85,86].

The shotgun metagenomics technique entails sequencing every genetic molecule
found in an environmental sample without first amplifying or focusing on any particular
genes [87]. It enables the identification of microbial taxa that are both known and un-
known [88]. Shotgun sequencing in microbiome studies can simultaneously identify and
profile bacteria, fungi, viruses, and other types of microorganisms [81].
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However, greater sequencing depth is required, which comes at a higher cost [89].
Despite the high costs, it can significantly improve taxonomic resolution and provide
species-level assignment, whereas amplicon sequencing is limited to identifying gen-
era [82]. Shotgun metagenomics also has the advantage of providing direct evidence of
gene functional variation in the organisms present [90].

3.2. Utilization of Metagenome Studies to Identify Candidate Microbial Taxa and Genes

Metagenomics has enabled the identification of specific microbial species or groups
that potentially benefit cereals (refer to Table 2). These studies provide valuable infor-
mation on functional gene annotation within the cereal microbiome [91]. By comparing
metagenomic sequences to reference databases, researchers can identify genes involved in
various functions, such as nutrient cycling, plant growth promotion, disease suppression,
and stress tolerance [92]. These functional genes shed light on the potential mechanisms
underlying positive plant-microbe interactions [91]. Comparative metagenomic analysis
involves comparing datasets from different cereal varieties or growth conditions [93]. By
comparing the microbial composition and functional gene profiles between these datasets,
researchers can identify specific microbial taxa and genes consistently associated with
positive plant-microbe interactions. This approach also helps uncover candidate microbial
taxa and genes likely to play crucial roles in cereal health and growth.

To further explore the cereal microbiome, metagenome studies can be combined
with network analysis. This approach allows researchers to identify highly connected
microbial taxa and cereal genes within the cereal microbiome network [94]. By analyz-
ing co-occurrence patterns and interactions between microbial taxa and cereal genes, key
microbial species and potential candidate genes involved in positive plant-microbe interac-
tions can be identified. This network-based approach helps prioritize microbial taxa and
genes for further investigation and functional validation. Functional validation is crucial
to confirm the roles of potential candidate cereal genes in positive plant-microbe interac-
tions. This involves experimental techniques such as gene knockout or overexpression
in cereals to assess their impact on microbial recruitment and plant health. Functional
validation provides additional evidence for the involvement of candidate cereal genes in
regulating the cereal microbiome [95]. By utilizing metagenome studies, researchers can
uncover microbial taxa and candidate cereal genes associated with positive plant-microbe
interactions. This knowledge can be further explored for the development of targeted
interventions, such as microbial inoculants or genetic engineering approaches, to enhance
cereal health, productivity, and sustainability. (See Figure 1 for the general workflow in
identifying candidate taxa and genes).
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Table 2. Metagenomics studies in identifying candidate taxa and genes.

Taxa Classification Gene Identification Host Reference

Ascomycota, Basidiomycota,
Mortierellomycota,
Actinobacteria, Alphaproteobacteria,
Bacteriodota, Gammaproteobacteria

Plant pathogen interactions.
3-Indol Acetic Acid (IAA) pathways, tryptophan
metabolism, aminobenzoyl-glutamate. ACC
deaminase pathway.

Wheat
rhizosphere [96]

Actinobacteria, Chloroflexi, Cyanobacteria,
Firmicutes, Bacteroidetes, Proteobacteria,
Acidobacteria, Gemmatimonadetes,
Nitrospirae, Planctomycetes, Tenericutes, TM7

Iron metabolism.
Ferritin1, Oxoglutarate/iron-dependent oxygenase
Stabilizer of iron transporter
SufD/Polynucleotidyl transferase.

Maize
rhizosphere [97]

Plant growth promoting taxa.
Planctomycetes, Bacteroidetes,
Verrucomicrobia, Cyanobacteria,
Gemmatimonadetes, Chloroflexi, and
Firmicute

Genes mitigating salt stress.
Sulfur and glutathione metabolism bacterial
chemotaxis, Sulfate reduction (cysNC, cysQ, sat,
and sir), sulfur reduction (fsr), SOX systems (soxB),
sulfur oxidation (sqr), organic sulfur
transformation (tpa, mdh, gdh, and betC).

Grapevine
rhizosphere [98]

Streptomyces renae, Streptomyces flavovariabilis,
Streptomyces variegatus, Streptomyces chartreusis
and
Streptomyces cellvibrio

Genes for metabolism of plant polysaccharides,
iron, sulfur, trehalose, and vitamins, β-glucosidase
Cellulose-hydrolyzing
enzyme.

Tomato
rhizosphere [99]

Actinomycetia, Anaerolineae, Chloroflexia,
and Nitrospira

Catalyzation of the transfer of oligosaccharides,
dentification, nitrification, nitrate reduction genes,
ureB, ureA, glnA, nxrB, amoA_A, amoC_A, amoB_B,
norC, nirS, nirK, nirD,
narJ, narH, napC
nirA, narC
nitrate reductase (Anr) and the gene pmoA.

Forest deep
soil [100]

Actinobacteria, Bacteroidetes, Firmicutes, and
Proteobacteria

Carbohydrate metabolic processing, cell adhesion,
pathogenesis, response to abiotic stimulus, and
responses to chemicals.

Barley
Rhizosphere [101]

Pseudomonas, Agrobacterium, Cupriavidus,
Bradyrhizobium, Rhizobium, Mesorhizobium,
Burkholderia, Cellvibrio, Sphingomonas,
Variovorax and Paraburkholderia

Plant-microbe and
microbe-microbe interactions, nutrition
acquisition, and plant growth promotion genes,
pqqB, appA,
phnCEF, nrtABC, phoRPA, senX3, regX3,
pmoA/amoA, ics, irp9, nagG, nagH, udC, nirK.

Citrus
rhizosphere [102]

Rhizophagus, Burkholderia, Trichoderma,
Fusarium, Ochrobactrum phage POA1180,
Blastococcus, Microvirga, Nocardioides,
Geodermatophilus, Belnapia, Solirubrobacter,
Arthrobacter, Mycobacterium phage Edugator, and
Mycobacterium phage Kratio

Not identified.
Cleome pallida
(Desert plant)
rhizosphere

[103]

Kaistobacter and Rubrobacter Bacillus
Nocardioides,
Cellulomonas, Skermanella, Methylobacterium,
Modestobacter and Aeromicrobium, Rhizobiales,
Kaistobacter, Rubrobacter or Bacillus

Metabolism of carbohydrate (especially C
degradation) and membrane transporters.
Carbohydrate degradation metabolism,
carbohydrate synthesis, and its related energy
metabolism.

Chickpea,
wheat [104]

3.3. Applications of Metagenomics in Enhancing Food Security

The availability of next-generation sequencing platforms enables metagenomic studies
of bacterial, viral, and fungal disease complexes [105]. One of the key benefits of cereal
metagenomics is the identification of beneficial microorganisms that can enhance crop pro-
ductivity and resilience. Beneficial microbes can promote nutrient availability, improve soil
fertility, stimulate plant growth, and provide protection against pathogens [106]. Further-
more, cereal metagenomics can help to develop strategies to mitigate the adverse effects of
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climate change on food security. Climate change-induced abiotic stressors, such as drought,
salinity, and extreme temperatures, pose significant challenges to cereal crop production.
By studying the microbiome’s role in conferring stress tolerance, researchers can identify
microbial taxa and functional genes associated with stress resilience. This knowledge can
be harnessed to develop microbial-based strategies for enhancing stress tolerance in cereal
crops, thereby ensuring food security in the face of changing climatic conditions.

A number of papers have been published that describe the use of next-generation
sequencing analysis of fungi infecting crop plants [107–110]. Metagenomic analyses have
revealed the presence of plant growth-promoting bacteria, mycorrhizal fungi, and other
beneficial microorganisms in the rhizosphere and endosphere of cereal crops. The use
and demand for biopesticides and biofertilizers in agriculture and advancement in se-
quencing and metagenomics analysis have led to the discovery of beneficial microbes [111].
Understanding the functional potential of these microbial communities can lead to the
development of novel biofertilizers, probiotics, and biocontrol agents to enhance cereal
crop production [112].

Using next-generation sequencing (NGS) metagenomics approaches, Masenya et al. [25]
compared the microbial communities between the resistant and the susceptible sorghum
recombinant lines to identify any differences induced by pathogen infection. The results of
the study revealed that pathogen infection led to distinct microbial community composition
in the sorghum RILs. The presence of the pathogen influenced the abundance and diversity
of specific microbial taxa in the leaf tissues. This suggests that pathogen infection plays a
significant role in shaping the sorghum-associated microbiome. The study provides valu-
able insights into the interactions between pathogen infection and the sorghum-associated
microbiome. Understanding the changes in microbial community composition induced
by pathogen infection can contribute to the development of strategies for managing plant
diseases in sorghum and potentially other crops.

Similarly, in a study by Bziuk et al. [113], metagenomic analysis was conducted to
investigate the impact of powdery mildew infection on the barley leaf microbiome. The
researchers found that the presence of the pathogen altered the composition of the leaf
microbiome, indicating a potential role of the microbiota in the defense response against
powdery mildew. Metagenomic studies of crop and crop-related species may also be useful
for the identification and surveillance of known and novel viral pathogens of crops. Lappe
et al. [39] discovered novel viruses through the use of metagenomics.

This approach enabled the identification of beneficial microorganisms that naturally
exist in the soil and have the ability to promote plant health and combat diseases [114–116].
It has also led to the identification of not only plant growth promotion but also disease
suppression and/or other fitness-enhancing traits [117]. Several fungal and bacterial
taxa in wheat plots were identified, suggesting the potential role of beneficial microbes
in suppressing diseases [118]. Similarly, Terrazas et al. [101] discovered that the barley
microbiota supports the assembly of a phylogenetically diverse group of bacteria that may
be required to sustain plant performance.

The majority of the beneficial microbes identified were assigned to the bacterial phyla
Proteobacteria and Firmicutes and the fungal phyla Ascomycota, specifically the genus
Trichoderma [119,120]. Members of the genera Pseudomonas and Bacillus/Paenibacillus have
also been frequently identified as plant-beneficial bacteria. For instance, inoculation with
Pseudomonas stutzeri increased plant development and had a positive impact on bacterial
community composition, particularly among diazotrophs and ammonia-oxidizers [121].
Therefore, metagenomics can be leveraged to develop innovative strategies for disease
management and prevention, as the beneficial microorganisms can be isolated and utilized
as biocontrol agents or sources of resistance genes. Consequently, enabling the researchers
to develop sustainable and effective strategies to protect and enhance crop productivity.
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3.4. Implications of Metagenomic Studies on Positive Plant Microbiome Interactions

Metagenomic studies demonstrating the presence of heritable taxa within microbiomes
and their influence on positive plant microbiome interactions throughout evolutionary
timelines have several implications. They can shed light on the co-evolutionary dynamics
between plants and their associated microbiota [122]. By studying the heritable taxa within
microbiomes, researchers can uncover long-term interactions that have shaped the genetic
and functional diversity of both plants and microbes. This understanding helps unravel the
complex and dynamic nature of positive plant microbiome interactions over evolutionary
timescales [123].

These studies can identify conserved beneficial microbes that have co-evolved with
plants over time. The heritable taxa may play key roles in nutrient acquisition, stress
tolerance, and disease resistance. By characterizing their genomes and understanding their
functions, researchers can develop targeted strategies to harness their beneficial effects for
crop improvement and sustainable agriculture [124]. Metagenomics studies highlighting
the presence of heritable taxa within microbiomes emphasize the importance of conserving
and restoring natural plant-microbe interactions. Understanding the evolutionary his-
tory of positive plant microbiome interactions can guide conservation efforts, ensuring
the preservation of beneficial microbial communities and their functions in natural and
agricultural ecosystems [125].

Metagenomics research can uncover ancient plant-microbe interactions that have per-
sisted over evolutionary timescales. These interactions may involve heritable taxa that
have co-evolved with specific plant lineages, providing unique benefits to their hosts.
Understanding these ancient interactions can inspire the development of novel strategies
for sustainable agriculture, including the utilization of ancestral microbial consortia or the
reintroduction of specific microbial lineages to enhance plant health and productivity [122].
Metagenomic studies demonstrating the heritability of certain microbial taxa provide
valuable insights for microbiome engineering efforts. By understanding the evolutionary
history and genetic traits of beneficial microbes, researchers can design synthetic microbial
communities or engineer specific microbial strains to enhance positive plant microbiome
interactions. This knowledge can facilitate the development of targeted interventions for
crop improvement and ecosystem restoration. In summary, metagenomic studies revealing
the presence of heritable taxa within microbiomes and their influence on positive plant mi-
crobiome interactions throughout evolutionary timelines provide a deeper understanding
of the long-term dynamics and potential applications of plant-microbe interactions. This
knowledge can contribute to sustainable agriculture practices, conservation efforts, and the
development of innovative strategies for crop improvement, refer to Figure 2.
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4. Metagenomics and Integrated Epigenetics and Machine Learning Analysis
4.1. Practical Applications and Benefits of Employing Machine Learning in Epigenomic and
Metagenomic Analysis

The intricate community of microorganisms associated with plant roots has been
shown to be essential for plant health and overall fitness [126,127]. As a result, it has
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become a significant focus on plant-microbe interactions [114,115]. The plant’s response to
these microbes is governed by an integrated network that includes not only the immune
system but also other intrinsic biological systems within the plant itself [116,128]. Epigenetic
factors, including DNA methylation, modifications to histone tails, chromatin accessibility,
and DNA architecture, are closely linked to key cellular processes. When these components
become dysregulated, it can lead to abnormal gene expression and disease [128]. The
eukaryotic epigenome plays a crucial role in establishing and maintaining cellular identity
and function.

DNA methylation is a well-known epigenetic modification that can be studied in
metagenomics data. Several tools and pipelines have been developed to identify and
quantify DNA methylation patterns in microbial genomes within metagenomics samples.
The impact of defects in the RNA-directed DNA methylation (RdDM) pathway, which is
responsible for establishing de novo DNA methylation, on plant resistance to P. syringae
has been elusive [19,129]. Another study conducted in Arabidopsis demonstrated that
Dicer-like (DCL) mediated siRNA production influences the assembly of the root micro-
biota, whereas downstream RdDM has no effect, suggesting that DCLs regulate the root
microbiota through alternative epigenetic mechanisms [130]. As a result, it remains an
important question whether and how epigenetic regulation can impact the assembly of
root-associated microbial communities. It has been observed that simultaneous alterations
in DNA methylation and histone modifications can be more effective, or even necessary, for
epigenetic gene regulation [131,132]. An example of this is the Arabidopsis IBM1 (Increased
in Bonsai Methylation 1) protein, which is involved in histone H3 lysine modifications.

In rice (Oryza sativa), histone methylation has been found to regulate the structure
and composition of the root microbiota, particularly the hub species in the microbial
network. Mutants DJ-jmj703 (JmjC domain-containing protein defective in histone H3K4
demethylation) and ZH11-sdg714 (defective in H3K9 methylation) exhibited significant
differences in the root microbiota compared to their corresponding wild types at both the
phylum and family levels. These differences included a consistent increase in the abundance
of Betaproteobacteria and a decrease in Firmicutes [19]. These findings highlight the
significant role of rice histone methylation in regulating the assembly of the root microbiota,
shedding light on the connection between plant epigenetic regulation and root microbiota.
In rice, DCL3 is responsible for processing 24-nt siRNAs (Small interfering RNA), which
are involved in H3K9 methylation of histones [133].

Evidence is accumulating to suggest that epigenetic modifications are involved in the
transcriptional regulation of plant disease resistance [17]. For example, DNA methylation
in promoter regions can restrict the transcriptional expression of disease resistance genes,
such as RMG1 and RLP43, in Arabidopsis thaliana. This limitation negatively impacts the
plant’s resistance to bacterial pathogens like Pseudomonas syringae [134]. While previous
research has examined the role of epigenetic regulation in plant disease resistance against
specific pathogens, the potential impacts of epigenetic regulation on the composition of the
root microbiota have remained uncertain. Notably, active DNA demethylation has been
shown to play a positive role in plant resistance to pathogens such as P. syringae [135,136].

4.2. Machine Learning Coupled with Epigenomics in Identifying Differentially Methylated Regions

Recently, there has been development and reporting of machine learning techniques
for the systematic detection of differentially methylated regions (DMRs) [137]. The potential
to specifically modify the epigenome offers exciting possibilities for advancing our under-
standing of how epigenetic modifications function and for manipulating cell phenotypes
in both research and therapeutic contexts. Epigenetic mechanisms play a crucial role in
regulating gene expression in plants, responding to developmental processes and environ-
mental cues, and ultimately impacting the plant’s overall characteristics [138]. Applied
epigenetics is a rapidly evolving field of study, presenting new opportunities to enhance
crop productivity. By combining epigenomics with machine learning, we can identify
regions of the plant genome that undergo differential methylation during interactions with
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associated microbiota. However, the available data on the connection between epigenetics
and plant-microbe interactions are currently limited [17,139].

Nevertheless, there are a few notable examples where a link has been established.
One such example is the role of DNA methylation in the formation of root nodules during
Rhizobium symbiosis in Medicago truncatula [139]. It has been found that a demethylase gene
called DEMETER (AtDME) is involved in regulating a significant number of genes that
are crucial for the differentiation of plant and bacterial cells, which is necessary for nodule
organogenesis in symbiotic interactions [139]. An example of this is also demonstrated
by Vigneaud et al. [140], who utilized epigenomics and transcriptomics approaches to
investigate the interactions between poplar plants and the ectomycorrhizal fungus Laccaria
bicolor. Their findings revealed that manipulating the expression levels of two demethylase
genes (DML) and a chromatin remodeler (DDM1) influenced various parameters related
to poplar root colonization by L. bicolor. Notably, they observed differential methylation
in 288 transposable elements and 86 genes between hypomethylated mutant lines and
wild-type poplar plants. This study serves as a proof of principle, shedding light on the role
of the host plant’s epigenetic machinery during interactions with ectomycorrhizal fungi.
It also raises intriguing questions about the potential influence of DNA methylation on
plant interactions with endophytic fungi and bacteria. Epigenetic modifications have been
observed in the seeds of Geranium sylvaticum, as well as the roots and leaves of Geranium
robertianum, during arbuscular mycorrhizal (AM) symbiosis with the fungus Funneliformis
mosseae [141].

Despite these advancements, there is still a need to further investigate the molecu-
lar mechanisms that govern plant-microbiome associations at a community level. It is
paramount to identify the genes that enable plants to regulate the establishment of a ben-
eficial root microbiota, as this knowledge will inform future breeding programs aimed
at sustainably enhancing crop yield and quality. Deep learning and machine learning
approaches hold immense potential for disease management, particularly in surveillance
activities. These techniques are anticipated to facilitate precise monitoring of the host’s
response and changes in microbiome composition, such as in the field of microbiome
engineering [142]. By successfully integrating AI pipelines and multi-omics approaches, we
can promise accurate isolation and identification of diverse microbes from various samples.

5. Metagenomics Workflow for Studying Agricultural Microbiomes

The metagenomics workflow typically consists of several steps, from sample collection
to data analysis. Below is a high-level overview of the metagenomics workflow.

5.1. Sample Collection and DNA Analysis

The collection of environmental samples, such as soil, plant rhizosphere, and leaves
from the agricultural system of interest, is the initial step. To preserve the microbial
community, proper sampling techniques and storage conditions should be used [143].
Following sample collection, appropriate methods are used for DNA extraction. This step
involves breaking open microbial cells and isolating the DNA for downstream analysis.

5.2. Library Preparation and Sequencing

Prepare a sequencing library by fragmenting the extracted DNA and attaching se-
quencing adapters. Depending on the sequencing platform and study objectives, this
step may involve additional steps like size selection or PCR amplification [144]. Perform
high-throughput sequencing of the prepared library using next-generation sequencing
platforms. This generates millions of short DNA sequence reads that represent the genetic
material present in the sample [145].

5.3. Bioinformatics Analysis

The initial step is quality control checks in which adapter sequences, low-quality reads,
and other artifacts are removed from the raw sequence data. Trimming, filtering, and
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merging paired-end reads may be part of this process [146]. The pre-processed sequences
are examined to ascertain the microbial community’s functional potential and taxonomic
composition. This can be accomplished using various bioinformatics tools and databases.
Bioinformatics pipelines are available that can be used to predict functional annotations
based on obtained sequences for functional analysis [85,147]. R and R studio are then used
to interpret and visualize the results of taxonomic and functional analyses to gain insights
into the composition and potential activities of the microbial community [148]. This could
include generating taxonomic abundance profiles, diversity indices, functional pathway
analysis, or other visualizations. Statistical analysis to identify significant differences
or correlations in the microbial community composition or functional potential between
different samples or treatments is conducted using R and R Studio [148]. See Figure 3
for a detailed overview of the bioinformatics pipelines for metagenomics studies. Some
of the listed pipelines have been updated, including (version 4.0), Kraken (upgraded to
Kraken 2), DIAMOND (version 2.0), Qiime2, MEGAN (version 6), HUMAnN (version 3),
MetaGenomeThreader (version 1.6.2), and MetaPhyler (version 1.25) [147,149–153].
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6. Challenges and Limitations in Metagenomics Studies

Metagenomics is a powerful approach to studying microbial communities and their
genetic potential. Both metabarcoding and shotgun metagenomics are powerful tech-
niques that allow for the study of microbial communities and have revolutionized the field
of microbial ecology. However, there are certain limitations that researchers should be
aware of, and therefore, we will discuss some of the key limitations of metabarcoding and
shotgun approaches.

6.1. Sample Preparation Biases

Sample collection, DNA extraction, and library preparation processes can all introduce
biases that affect the representation and diversity of microbial communities. The recovery
and detection of specific microbial taxa can be influenced by factors such as sampling
location, preservation methods, and DNA extraction protocols, potentially leading to
skewed results. As a result, it is critical to ensure that standard procedures are followed.

6.2. Bias in DNA Extraction

The extraction of DNA from environmental samples can introduce biases. Different
extraction methods may favor the recovery of specific microbial groups over others, result-
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ing in an under- or over-representation of specific taxa in the metagenomic dataset. This
bias may have an impact on the accuracy and completeness of the microbial community
profile [191].

6.3. PCR Biases

The PCR amplification process used in metabarcoding can introduce biases and arti-
facts [192]. Certain taxa or DNA templates may be favored over others during PCR am-
plification, resulting in an overrepresentation or underrepresentation of certain microbial
groups in the final sequencing data. This bias can affect the accuracy and representativeness
of the microbial community composition [193].

6.4. Reference Database Limitations

Metabarcoding uses reference databases to assign taxonomic identities to the sequences
obtained. These reference databases, however, may be incomplete or biased toward well-
studied organisms [194]. This can lead to misidentification or underrepresentation of certain
taxa, particularly for less well-known or novel species. Furthermore, the composition and
quality of reference databases can differ across ecosystems or regions, affecting the accuracy
of taxonomic assignments [195].

6.5. Detection Limits

Metabarcoding may be limited in detecting rare or low-abundance taxa within a
microbial community. This is especially important when studying complex ecosystems with
high microbial diversity or when analyzing low biomass samples. Due to sequencing depth
limitations and PCR amplification biases, rare taxa may be missed or underestimated [196].

6.6. Taxonomic Resolution

The limited taxonomic resolution provided by metagenomics metabarcoding is one
of its main limitations. Metabarcoding typically involves amplifying and sequencing a
specific genomic region. These regions, however, may not have enough resolution to
accurately classify and identify species [197]. Unless the long fragment approach is used,
which produces Amplicon Sequence Variants (ASVs), this can result in the grouping of
closely related species into the same operational taxonomic unit (OTU), making it difficult
to distinguish their individual ecological roles [198].

6.7. Fragmented Genomes

The sequencing and assembly of DNA fragments from environmental samples is the
foundation of shotgun metagenomics. This can result in fragmented genomes, making
accurate reconstruction of complete genomes for individual microorganisms difficult [199].
This limitation can make it difficult to analyze microbial functional potential and identify
specific genes or pathways.

6.8. Difficulty in Functional Annotation

While metagenomics provides information about the genetic potential of microbial
communities, functional annotation of the sequences obtained can be difficult. Assigning
specific functions to genes or predicting metabolic pathways from metagenomic data is
a difficult task that frequently necessitates further experimental validation or integration
with other omics approaches [200].

6.9. Computational and Storage Requirements

Metagenomic data analysis necessitates substantial computational and storage re-
sources. The large volume of sequencing data generated in metagenomics studies can
present difficulties in data management, computational infrastructure, and analysis
pipelines [79,201]. Adequate computational resources and expertise are required to effec-
tively handle and process metagenomic datasets.
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Despite these limitations, metagenomics is still a useful tool for investigating microbial
diversity, community structure, and functional potential. We now have a much better
understanding of microbial communities thanks to this technique. Researchers can max-
imize the utility of metagenomics and gain valuable insights into microbial ecosystems
by understanding these limitations and employing appropriate controls and validation
strategies. However, it is critical to understand the limitations so that the constraints can be
carefully considered and addressed.

6.10. Challenges Associated with Identifying Primary Cereals Loci

It has been discovered that host genetics play a significant role in determining the
composition of the plant microbiome. However, it remains challenging to identify the
specific genetic loci that control microbial selection [202]. While there is consistent evidence
of the interaction between host genetics and plant microbiome composition, pinpointing
the genetic elements responsible for host-genotype-dependent microbiome acquisition and
assembly in plants is still a difficult task. Some studies have started to explore the impact
of individual host genes on microbiome composition based on prior hypotheses of gene
involvement [203,204]. However, these studies are limited to a small subset of plant genes
that are predicted to be involved in microbiome-related processes.

Additionally, many plant traits that are expected to influence microbiome composition
and activity, such as root exudation and root system architecture [205], are complex and
potentially regulated by a large number of genes. Therefore, there is a need for alternative
large-scale and unbiased methods to identify the genes that control the host-mediated
selection of the microbiome. Genome-wide association studies (GWAS) offer a powerful
approach to map the loci associated with complex traits in genetically diverse populations.
GWAS can be a valuable tool in identifying microbes that are sensitive to host genotypes
and linking them to the genetic loci that influence their colonization. Microbiome genome-
wide association studies (mGWAS) have been used to understand the interaction between
host genetic variation and the microbiome in Arabidopsis thaliana [6,206].

However, understanding the factors that shape host-microbe interactions and their
impact on phenotypes is still limited. Additionally, the beneficial effects of bacterial strains
on hosts are often specific to certain cultivars and species, making it challenging to apply
them universally. Therefore, it is crucial to uncover the genetic variability for agronomic
traits, which can expand the gene pool for breeding programs and improve the effectiveness
of genetic engineering for stress tolerance. While some loci associated with specific traits
have been identified through GWAS in millet, the loci related to plant growth or yield
remain unknown. In a previous study, the microbial composition of the root zone microbiota
in millet and its correlation with yield traits through extensive sampling and analysis was
examined [202]. The genetic variations associated with agronomic traits in foxtail millet
were identified. Although GWAS has been widely used to understand plant phenotypes,
its ability to capture complex agronomic traits is limited. To address this challenge, a new
approach called microbiome-wide association studies (MWAS) has emerged, which has
successfully identified gut microbial markers for complex traits in human cohorts. However,
MWAS in plants has been relatively scarce. Therefore, combining GWAS, MWAS, and
mGWAS can provide valuable insights into precision agriculture, particularly regarding
genotype-dependent microbial effects in cereals, see Figure 4.
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7. Reliability and Reproducibility

Metagenomics is an effective tool for understanding and harnessing the potential
of crop microbial communities. However, it is important to note that challenges still
exist, such as potential biases introduced during DNA extraction, PCR amplification, and
sequencing [207]. High-throughput sequencing data can also be affected by different
technical errors. As a consequence, the reproducibility of experiments can be weakened
and consequently results in falsely identified microorganisms [208]. Nevertheless, the
reliability and reproducibility of metabarcoding and metagenomics in microbial profiling
have been extensively studied and are generally considered to be high [209]. Technological
advancements and standardization efforts are continuously improving the reliability and
reproducibility of metabarcoding and metagenomics in microbial profiling.

Efforts have been made to ensure the reproducibility of these techniques and include
standardized protocols, such as DNA extraction methods. Errors can be identified when
comparing the results obtained using different methods of DNA extraction, and good
reproducibility is achieved using one method [210]. The PCR amplification primers have
been developed to minimize variation between studies. However, the more primers are
used in parallel, the more PCR artifacts occur. Nevertheless, bioinformatics approaches are
available to remove the artifacts introduced during library preparation. The sequencing
results obtained on different platforms are characterized by low reproducibility with each
other because of differences in systematic errors on the different platforms [211]. Increasing
the sequencing depth, as measured by the number of reads per sample, is the primary
method for improving reproducibility [90]. Preferably, all the sequences of the experiment
should be obtained on the same platform (at least in the same study).

A poor choice of the clustering algorithm amplicon sequencing variants or operational
taxonomic units, as well as identity threshold, can be detrimental to the performance. It is
fundamentally important that all comparisons must be made only between results obtained
using the same clustering method [212]. Allali et al. [211] demonstrated that the analysis
of the same sample with different mathematical packages and/or different sequencing
platforms leads to data irreproducibility.

8. Contribution of Large-Scale Cereal Microbe Genetic Datasets to the Advancement
of Knowledge

The contribution of large-scale cereal microbe genetic datasets to the advancement of
knowledge is significant and far-reaching. These datasets provide valuable insights into
the genetic makeup and interactions of microorganisms associated with cereal crops [22].
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By analyzing the genetic profiles of these microbes, scientists can identify specific genes or
pathways responsible for promoting plant growth, suppressing pathogens, or improving
nutrient availability [202]. This knowledge can then be used to develop targeted strategies
for enhancing crop productivity and reducing the reliance on chemical inputs. Furthermore,
large-scale cereal microbe genetic datasets enable researchers to understand the complex
interactions between microorganisms and their cereal hosts [213].

By studying the genetic information of both the microbes and the plants, scientists
can unravel the intricate networks of molecular communication and signaling that occur
between them [214]. This knowledge can help in the development of novel approaches
for managing plant diseases, such as using beneficial microbes as biocontrol agents or
engineering crops with enhanced disease resistance. In addition, these datasets contribute to
our understanding of the evolution and diversity of cereal-associated microorganisms [215].
By comparing the genetic sequences of different microbial strains, researchers can trace
their evolutionary history and identify patterns of genetic variation. This information can
shed light on the origins of specific traits or adaptations and provide insights into the
mechanisms driving microbial diversity.

Overall, the contribution of large-scale cereal microbe genetic datasets to the advance-
ment of knowledge is immense. These datasets provide a wealth of information that
helps us understand the complex interactions between microorganisms and cereal crops,
identify beneficial microbes, unravel molecular communication networks, study microbial
evolution, and discover novel genes and pathways. By harnessing this knowledge, we can
develop innovative strategies for improving crop productivity, sustainability, and resilience
in the face of environmental challenges.

9. Advances Facilitated by HTS Technologies in Understanding Cereals-Associated
Microorganisms
9.1. Long Read Sequencing

Generating metagenome-assembled genomes (MAGs) from a shotgun metagenome
dataset is one of the best techniques for investigating these prokaryotic phantoms [216].
For these assembly-focused studies, PacBio long-read and Oxford Nanopore sequencing
technologies offer superior performance, enabling researchers to generate more MAGs
and more circular single-contig MAGs than short-read sequencing alternatives [217,218].
Moreover, long-read technologies are now capable of providing methylation patterns,
which can help establish associations between multiple replicons, potentially revealing
the presence of multiple chromosomes and plasmids within a genome [219]. Despite the
advantages, barriers to long-read sequencing still exist, causing short-read platforms to
continue dominating much of the metagenomics sequencing market. This has led to the
rise of technologies such as synthetic long reads and Hi-C that use alternative library
preparation methods and short read sequencers as alternatives to long-read sequencing.

9.2. Hi-C

An alternative approach to enhance genome assembly is through the use of Hi-C.
This method capitalizes on the ability to link co-located DNA during library preparation.
Initially employed to improve genome assembly for larger genomes, Hi-C has more recently
been applied to metagenomics studies [220]. During library preparation of metagenomic
samples, the DNA within bacterial cells is cross-linked by binding to surrounding proteins.
Subsequently, restriction enzymes are used to cut the DNA, and ligation is performed.
This process enables DNA fragments from the same cell to stick together [221]. After
sequencing, the reads are computationally assigned to the respective cell, thereby improving
the generation of MAGs and enabling the linkage of plasmid and phage DNA to specific
host strains. Commercial kits and analysis pipelines are available, with Phase Genomics
being a major contributor in this field. Hi-C is a powerful technology that provides direct
and quantitative measurements of DNA sequences from shotgun sequencing [220]. It yields
a higher number of high-quality genomes and captures insights at the strain level. This
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technique significantly enhances the quality and reliability of assembled genomes from
shotgun metagenomic samples, facilitating accurate identification of plasmids, phages,
antibiotic resistance genes, and other mobile genetic elements within host cells [222]. The
improved assembly and strain-level genomic resolution of the microbiome will aid in
tracking genes associated with antibiotic resistance and disease prevention.

9.3. CRISPR

Recently, gene-editing approaches such as clustered regularly interspaced short palin-
dromic repeats (CRISPR) have been utilized to enhance host systemic-induced resistance
against phytopathogens [204]. Additionally, these techniques have been employed to
expedite the domestication of wild crops, allowing for the reintroduction of beneficial
plant growth-promoting (PGP) traits from the rhizosphere microbiome of wild relatives of
specific crops [223–225]. These strategies have the potential to address challenges related
to the persistence of microbial bio-inoculants and concerns regarding the containment
of genetically modified rhizosphere microbiomes. By combining signal recognition with
containment techniques, these approaches offer promising solutions.

9.4. Machine Learning

There are two main challenges in microbiome data analysis, which include species
identification and model selection. Computational models that analyze microbiome data
can aid in the association analysis between the microbiome and plant hosts. This is because
microbiome data obtained through next-generation sequencing (NGS) is complex, sparse,
noisy, and high-dimensional. To meet these technical demands, researchers have turned
to machine learning-based methods, such as random forest (RF), to study the impact of
the microbiome on plant growth [226]. This is due to the rapid development of machine
learning (ML) techniques, which have resulted in significant advancements in microbiome
research. These techniques have allowed researchers to delve into the data-rich world of
microbiome analysis.

10. Future Directions and Emerging Technologies

To provide a comprehensive analysis of crop microbe research, various omics tools
and techniques are available for the analysis of agricultural microbiome research. The
metatranscriptomics approach entails sequencing and analyzing RNA molecules found in
environmental samples. It provides insights into the active microbial community and their
gene expression patterns, assisting in the understanding of the agricultural microbiome’s
functional activities and metabolic processes. Another approach is metaproteomics, which
involves the identification and quantification of proteins expressed by the microbial com-
munity in a given sample. It provides information on microbial communities’ functional
activities and interactions with the agricultural environment. We also have metabolomics,
which is the study of small molecules produced by microbial communities known as
metabolites. It details the metabolic activities and chemical interactions of microbes in the
agricultural microbiome.

Although each approach provides valuable information separately, when combined,
they paint a more comprehensive picture and can hold the key to an in-depth understand-
ing of microbiomes [227]. These omics approaches can enhance metagenomics research
by providing comprehensive data on functional potential, metabolism, expressed proteins,
and microbial community activity. Scientists can identify potential targets for genetic engi-
neering or the development of new crop protection products by examining the functional
genes and pathways found in microbial communities.

The integration of omics tools in microbial studies allows for a more comprehensive
understanding of microbial communities, their functional potential, and their responses to
environmental changes. It enables researchers to identify key players and processes within
a community, uncover novel metabolic pathways, and discover potential biomarkers for
disease diagnosis or environmental monitoring. Ultimately, the integration of omics tools
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enhances our understanding of microbial ecosystems and opens new avenues for biotech-
nological applications and interventions. As a result, combining these omics approaches
can help researchers gain a better understanding of the functional capabilities, metabolic
pathways, and interactions within microbial communities. This multi-omics approach
allows for a more in-depth exploration of microorganisms’ complex dynamics and ecolog-
ical roles in a variety of environments, including the phylosphere, soil ecosystems, and
aquatic habitats.

11. Conclusions

Cereal metagenomics offers a promising avenue for enhancing food security by lever-
aging the beneficial interactions between cereal crops and their associated microbiota.
By unraveling the complexities of the cereal microbiome, researchers can identify novel
microbial resources and functional genes that can be utilized to improve crop productiv-
ity, nutrient uptake, and stress tolerance. The integration of cereal metagenomics with
conventional breeding and agronomic practices holds significant potential to address the
challenges of global food security in a sustainable and environmentally friendly manner.

Understanding the interactions between cereals and microbial communities is of
paramount importance for improving their productivity and resilience to environmental
stresses. Microbes associated with cereal crops can contribute to nutrient acquisition,
pathogen suppression, and tolerance to abiotic stresses, thereby enhancing crop growth
and overall yield. Therefore, the metagenomics approach has direct implications for food
security. Integration of omics tools for microbial studies involves combining multiple high-
throughput technologies to gain a comprehensive understanding of microbial communities
at various levels. By integrating genomics, transcriptomics, proteomics, and metabolomics,
researchers can obtain a holistic view of the genetic potential, gene expression, protein
profiles, and metabolic activities of microorganisms within a community. This will also
facilitate our understanding of the interplay between microbiomes and cereal crops, as
it is central to the elucidation of the response to biotic and abiotic stress in agriculturally
important crops.
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224. Zsögön, A.; Čermák, T.; Naves, E.R.; Notini, M.M.; Edel, K.H.; Weinl, S.; Freschi, L.; Voytas, D.F.; Kudla, J.; Peres, L.E.P. De novo
domestication of wild tomato using genome editing. Nat. Biotechnol. 2018, 36, 1211–1216. [CrossRef] [PubMed]

225. Li, T.; Yang, X.; Yu, Y.; Si, X.; Zhai, X.; Zhang, H.; Dong, W.; Gao, C.; Xu, C. Domestication of wild tomato is accelerated by genome
editing. Nat. Biotechnol. 2018, 36, 1160–1163. [CrossRef] [PubMed]

226. Chang, H.X.; Haudenshield, J.S.; Bowen, C.R.; Hartman, G.L. Metagenome-wide association study and machine learning
prediction of bulk soil microbiome and crop productivity. Front. Microbiol. 2017, 8, 519. [CrossRef]

227. Aguiar-Pulido, V.; Huang, W.; Suarez-Ulloa, V.; Cickovski, T.; Mathee, K.; Narasimhan, G. Metagenomics, metatranscriptomics,
and metabolomics approaches for microbiome analysis. Evol. Bioinform. 2016, 12, 5–16. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jare.2020.12.008
https://www.ncbi.nlm.nih.gov/pubmed/34194833
https://doi.org/10.1371/journal.pcbi.1008972
https://www.ncbi.nlm.nih.gov/pubmed/33961626
https://doi.org/10.1038/s41592-022-01539-7
https://doi.org/10.1186/s13059-020-1935-5
https://doi.org/10.1038/nbt.4037
https://www.ncbi.nlm.nih.gov/pubmed/29227468
https://doi.org/10.1111/1755-0998.13020
https://www.ncbi.nlm.nih.gov/pubmed/30972949
https://doi.org/10.1101/2021.05.04.442591
https://doi.org/10.1038/s41467-023-42967-z
https://doi.org/10.1038/s41477-018-0259-x
https://doi.org/10.1038/nbt.4272
https://www.ncbi.nlm.nih.gov/pubmed/30272678
https://doi.org/10.1038/nbt.4273
https://www.ncbi.nlm.nih.gov/pubmed/30272676
https://doi.org/10.3389/fmicb.2017.00519
https://doi.org/10.4137/EBO.S36436
https://www.ncbi.nlm.nih.gov/pubmed/27199545

	Introduction 
	Microbial Communities Interaction with Cereal Plants 
	Beneficial Interactions 
	Non-Beneficial Interactions 

	Metagenomics: An Overview 
	Metagenomics Approaches for Studying Agricultural Microbiomes 
	Utilization of Metagenome Studies to Identify Candidate Microbial Taxa and Genes 
	Applications of Metagenomics in Enhancing Food Security 
	Implications of Metagenomic Studies on Positive Plant Microbiome Interactions 

	Metagenomics and Integrated Epigenetics and Machine Learning Analysis 
	Practical Applications and Benefits of Employing Machine Learning in Epigenomic and Metagenomic Analysis 
	Machine Learning Coupled with Epigenomics in Identifying Differentially Methylated Regions 

	Metagenomics Workflow for Studying Agricultural Microbiomes 
	Sample Collection and DNA Analysis 
	Library Preparation and Sequencing 
	Bioinformatics Analysis 

	Challenges and Limitations in Metagenomics Studies 
	Sample Preparation Biases 
	Bias in DNA Extraction 
	PCR Biases 
	Reference Database Limitations 
	Detection Limits 
	Taxonomic Resolution 
	Fragmented Genomes 
	Difficulty in Functional Annotation 
	Computational and Storage Requirements 
	Challenges Associated with Identifying Primary Cereals Loci 

	Reliability and Reproducibility 
	Contribution of Large-Scale Cereal Microbe Genetic Datasets to the Advancement of Knowledge 
	Advances Facilitated by HTS Technologies in Understanding Cereals-Associated Microorganisms 
	Long Read Sequencing 
	Hi-C 
	CRISPR 
	Machine Learning 

	Future Directions and Emerging Technologies 
	Conclusions 
	References

