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Abstract: Bacillus subtilis, a probiotic bacterium with engineering potential, is widely used for the
expression of exogenous proteins. In this study, we utilized the integrative plasmid pDG364 to
integrate the hemagglutinin–neuraminidase (HN) gene from Newcastle disease virus (NDV) into
the genome of the B. subtilis 168 model strain. We successfully constructed a recombinant B. subtilis
strain (designated B. subtilis RH) that displays a truncated HN antigen fragment on the surface of
its spores and further evaluated its immunogenic effects in mice. Using ELISA, we quantified the
levels of IgG in serum and secretory IgA (sIgA) in intestinal contents. The results revealed that
the recombinant B. subtilis RH elicited robust specific mucosal and humoral immune responses in
mice. Furthermore, B. subtilis RH demonstrated potential mucosal immune adjuvant properties by
fostering the development of immune organs and augmenting the number of lymphocytes in the
small intestinal villi. Additionally, the strain significantly upregulated the relative expression of
inflammatory cytokines such as IL-1β, IL-6, IL-10, TNF-α, and IFN-γ in the small intestinal mucosa. In
conclusion, the B. subtilis RH strain developed in this study exhibits promising mucosal immunogenic
effects. It holds potential as a candidate for an anti-NDV mucosal subunit vaccine and offers a novel
preventive strategy for the poultry industry against this disease.

Keywords: Bacillus subtilis; Newcastle disease virus (NDV); spore surface display; mucosal immunity

1. Introduction

Bacillus subtilis is a probiotic bacterium that is widely used for engineering purposes
to express exogenous proteins [1,2]. Under conditions of extreme stress or nutrient scarcity,
B. subtilis generates a distinct cellular form known as the spore. The spore’s core and cortex
are crucial for its formation and integrity. Encompassing the cortex is the spore’s coat
layer, composed of approximately 80 unique coat proteins, which collectively define the
spore surface [3]. This robust architecture endows B. subtilis spores with high resistance,
enabling them to withstand acid and bile salt challenges within the intestine tract [4,5].
Beyond its capacity to elicit both mucosal and humoral immune responses within the host,
B. subtilis also functions as an effective carrier or adjuvant for mucosal vaccine delivery [6].
Leveraging spore surface display technology enables the stable presentation of antigenic
proteins on the spore surface. Research efforts have yielded the development of protective
antigens through the utilization of diverse coat proteins, such as cotB, cotC, cotG, etc., as
anchoring agents. This approach facilitates the expression of antigenic proteins on the
spore surface and culminates in the creation of recombinant probiotics that are rich in
immunogenic properties [7–9]. Recombinant strains of B. subtilis are characterized by their
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ease of storage and transport, which simplifies the immunization process and reduces stress
in animals. These strains exhibit a broad spectrum of applications in the field of animal
immunization. Recent advances have led to the successful display of various antigenic pro-
teins on the spore surface, including tetanus toxoid fragment C, ovalbumin [10,11], cholera
toxin [12], the transmissible gastroenteritis virus spike protein [13], the highly pathogenic
avian influenza H5N1 hemagglutinin protein [14], and the Vibrio OmpK protein [15]. The
induction of specific immune responses by these recombinant probiotics underscores their
exceptional immune attributes and probiotic functionalities.

Newcastle disease virus (NDV) is the causative agent of Newcastle disease (ND), a
significant poultry disease. Characterized by high contagiousness, ND is categorized by
the World Organization for Animal Health (WOAH) as a List A disease in animals, necessi-
tating legal reporting [16]. In China, the Ministry of Agriculture ranks it as a Class II animal
epidemic disease. Challenges in eradicating NDV stem from suboptimal vaccination, anti-
genic drift, limited duration of immunity, and immunosuppressive conditions [17–19]. The
hemagglutinin–neuraminidase (HN) protein, a surface glycoprotein of NDV, is renowned
for its ability to elicit the production of neutralizing antibodies within poultry, thereby
serving as a pivotal protective antigen. The globular head domain of the HN protein houses
the essential functional regions, including the active site and all antigenic sites [20,21]. This
domain is instrumental in the virus’s infectivity and pathogenicity, positioning the HN
protein as an optimal target for the genetic engineering of vaccines aimed at combating
ND [22–24]. Currently, the main types of genetically engineered vaccines for ND include
nucleic acid vaccines, subunit vaccines, and live-vector vaccines [25–27]. The attachment
and entry of NDV into host cells are facilitated by its binding to two major salic acid (SA)
receptors present on the membrane of target cells. Specifically, SAα2,3-Gal receptors are
prevalent in chicken small intestinal epithelial cells, while SAα2,6-Gal receptors are more
common in avian trachea ciliated epithelial cells [28,29]. Consequently, NDV exhibits a
specific mucosal tropism and can readily infect birds through the respiratory and digestive
tracts. Mucosal vaccines have the capacity to elicit the production of sIgA, establishing mu-
cosal immunity through various immunization routes such as intranasal, ocular, drinking
water, and aerosol administration. These methods significantly enhance local immunity
within the respiratory and digestive tracts [30,31]. In summary, mucosal immunization
plays a crucial role in managing ND, and the development of recombinant probiotic-based
mucosal vaccines against NDV is currently a paramount strategy in this field.

In this study, we engineered probiotics using the B. subtilis model strain 168. By
integrating a fusion gene into the genome of B. subtilis 168 via the integration plasmid
pDG364, we successfully constructed the recombinant B. subtilis RH. This strain displays
the truncated HN (HNJD) protein of Newcastle disease virus on its spore surface. We
then proceeded to assess the specific immune response and mucosal immune adjuvant
effect elicited by B. subtilis RH in mice. The novel oral vaccine developed herein offers
an innovative approach for the prevention of NDV-related diseases, presenting a fresh
alternative in disease management strategies.

2. Materials and Methods
2.1. Strains, Vaccines, Cell, Plasmids, Primers Sequences, and Experimental Ethics

The bacterial strains (Escherichia coli BL21/DH5α and Bacillus subtilis 168), vaccines
(NDV vaccine strain LaSota/CS2), chick embryo fibroblasts (CEF), plasmids (pUCm-T,
pET-32a, and pDG364-cotB), and primer sequences utilized in this study are itemized in
Supplementary Table S1. All methodologies and animal experimentation were carried out
in accordance with the “Guide for the Care and Use of Laboratory Animals”, receiving
approval from the Institutional Animal Care and Use Committee of Sichuan Agricultural
University (approval number: SYXK Chuan 2019-187).
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2.2. Cloning of Truncated HN Gene

The E.Z.N.A® Total RNA Kit II (Omega, Honolulu, HI, USA) was used to extract the total
viral RNA from the NDV LaSota vaccine strain (GenBank accession No. AY845400.2). Subse-
quently, the extracted RNA was reverse-transcribed to synthesize cDNA. The hemagglutinin–
neuraminidase-truncated (HNJD) gene was PCR-amplified using the cDNA as a template
and HNJD-F1/R1 primers [32]. The amplicon was then T-A-cloned into a pUCm-T vector to
generate the recombinant plasmid pUCm-T-HNJD, which was sequenced and subjected to
site-directed mutagenesis to eliminate potential restriction sites that might interfere with the
subsequent steps (performed by Tsingke Biotechnology Co., Ltd., Beijing, China).

2.3. Preparation of Hyperimmune Serum and Prokaryotic Expression of HNJD

Female New Zealand rabbits weighing 2.0 ± 0.2 kg were used to produce anti-NDV
hyperimmune serum. Each rabbit received a subcutaneous injection of 2 mL of the live
vaccine (LaSota strain). This was followed by weekly booster immunizations, and serum
collection occurred subsequent to three consecutive vaccinations. Hemagglutination inhi-
bition (HI) assays were performed to determine the HI antibody titers against NDV, and
optimal dilutions were ascertained and preserved for further use.

The pUCm-T-HNJD plasmid and the pET-32a vector were digested with BamH I and
EcoR I enzymes (Takara Bio, Dalian, China). The resulting target fragments were ligated
to form the expression plasmid pET-32a-HNJD1, which was then transformed into E. coli
BL21. The successfully expressing strain was designated as E. coli BL21/pET-32a-HNJD.
The expression of the recombinant protein was induced with isopropyl-β-D-thiogalactoside
(IPTG) added to a Luria–Bertani (LB) broth at a final concentration of 1 mM. After incubation
at 37 ◦C with shaking at 160 rpm for 6 h, 1 mL of bacterial culture was collected, while
the pET-32a vector alone served as a negative control. The bacterial cells were lysed by
ultrasonication and centrifuged at 10,000× g for 1 min. The pellet was collected and
subjected to SDS-PAGE, followed by transfer onto a PVDF membrane (Solarbio, Beijing,
China). The membrane was blocked with 5% skim milk at 37 ◦C for 2 h and then incubated
overnight at 4 ◦C with rabbit-derived NDV hyperimmune serum (diluted 1:200 in TBST).
HRP-conjugated goat anti-rabbit IgG (diluted 1:2000 in TBST, BOSTER, Wuhan, China) was
used as the secondary antibody. After a 2 h incubation at room temperature and washing
with TBST, color development was performed using the DAB Color Development Kit
(BOSTER, Wuhan, China) according to the manufacturer’s instructions. If the HNJD protein
specifically binds to anti-NDV hyperimmune serum, a brown band should be visible on
the membrane after immunoblotting.

2.4. Construction and Transformation of Recombinant Integration Plasmid

The plasmid pDG364-cotB developed in our previous work [33], was utilized. Em-
ploying the methodology detailed in Section 2.3, we constructed the recombinant plasmid
pDG364-cotB-HNJD. Competent cells of B. subtilis 168 were prepared following Julkowska
et al.’s protocol [34]. The plasmid pDG364-cotB-HNJD was linearized with an Xba I enzyme
digestion prior to being introduced into the competent cells. Through homologous double-
crossover recombination, the target gene was integrated into the amyE (amylase) locus
of B. subtilis (Figure 1B). Positive clones were identified on chloramphenicol (5 µg/mL)
resistance plates and further screened on a 1% starch nutrient agar medium. Genomic DNA
from the recombinant bacteria was extracted, and a PCR analysis was performed with
primer pairs amyE-F/R, amyE-F/HNJD-R2, cotB-F/HNJD-R2, and HNJD-F2/R2. Amplifica-
tion products were verified by gel electrophoresis. The correctly identified recombinant
strain was designated B. subtilis RH.
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Figure 1. Schematic representation of homologous recombination and the structure of RH spores.
(A) Diagram of the integrative plasmid pDG364-cotB-HNJD. (B) Homologous double-crossover
recombination between the recombinant plasmid pDG364-cotB-HNJD and the genome of B. subtilis
168 occurs, leading to the integration of the target gene into the amyE locus. (C) Structure depiction of
RH spores showing the fusion expression of the anchor protein cotB and the HNJD protein on the
surface of the spores.

2.5. Sporulation and Immunofluorescence Microscopy

Sporulation was induced using Difco sporulation medium (DSM) according to the
method described by Stasiłojć et al. [35]. After approximately 24 h of sporulating culture,
spores were treated with 2.0 mg/L of lysozyme at 37 ◦C for 2 h to eliminate any residual
vegetative cells. The purified spores were then obtained by sequential washing with 1 M of
NaCl, 1 M of MgCl2, and distilled water, as detailed in reference [7]. Finally, the spread
plate technique was employed to enumerate the spore colonies.

Immunofluorescence microscopy was used to verify the successful display of the
HNJD protein on the spore surface [36], as indicated in Figure 1C. A purified spore sus-
pension was prepared and affixed to microscope slides according to the method described
previously [37]. Rabbit anti-NDV hyperimmune serum (diluted 1:200 in PBST) served as
the primary antibody, while Cy3-conjugated goat anti-rabbit IgG (diluted 1:200 in PBST,
BOSTER, Wuhan, China) was used as the secondary antibody. Additionally, serum from
non-immunized mice was applied as the primary antibody to establish a negative control.
The immunofluorescence images were captured using a fluorescence microscope (DMi8,
Leica, Tokyo, Japan).

2.6. Immunization of Mice and Collection of Samples

A total of 100 three-week-old female BALB/c mice underwent a seven-day acclimatiza-
tion period before being randomly distributed into five groups, each comprising 20 individ-
uals. Each group was then subdivided into five cages, with four mice per cage. The feeding
regimen and immunization schedule for the mice are detailed in Figure 2. The mice in
group A served as the control group and were provided with a basal diet. Group B received
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a diet mixed with 2.0 × 106 CFU per gram of wild-type B. subtilis 168 spores (168-spores).
Group C was intraperitoneally administered 100 µL of inactivated vaccine (strain LaSota,
with viral content equal to or exceeding 1.0 × 108 ELD50 prior to inactivation) on days 1,
15, and 29. Group D was fed a diet containing 2.0 × 106 CFU per gram of B. subtilis RH
spores (RH-spores). Group E received an RH-spore suspension (2.0 × 1010 CFU/mL) via
oral gavage. The mice in group E received 0.1 mL daily on days 1–3, 15–17, and 29–31, as
previously described [38]. Each mouse was given 3–5 g of this diet daily.
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Figure 2. Schematic representation of the vaccination and feeding trail. Group A: untreated control;
Group B: mixed diet with 168-spores; Group C: inactivated vaccine administered; Group D: mixed
diet with RH-spores; Group E: RH-spores administered via gavage.

The experimental period spanned 42 days. On days 0, 14, 28, and 42, five mice from
each group were randomly selected, and their serum and small intestinal contents were
harvested and preserved at −80 ◦C. The body weight of the mice was recorded on day 42.
Following euthanasia, ileal tissues and contents were gathered, and the ileal tissues were
preserved in 4% paraformaldehyde. The spleens and thymuses were excised, and organ
indices were calculated as follows:

organ index = weight of organ (mg)/weight of body (g)

2.7. Detection of NDV-Specific Serum and Mucosal Antibodies

Serum IgG antibody levels were quantified using a competitive enzyme-linked im-
munosorbent assay (ELISA) with the Serum Antibodies to Newcastle Disease Virus ELISA
Kit (Zhenrui Bio, Shenzhen, China). The serum IgG levels were expressed as S/N (sample-
to-negative control) values:

S/N = (OD450 nm of sample well)/(OD450 nm of negative control well)

The indirect ELISA method was used to detect the anti-NDV sIgA in the small intesti-
nal contents. The ELISA plates were coated with NDV antigen, provided by Shenzhen
Zhenrui Biotech Co., Ltd., Shenzhen, China. The intestinal contents were diluted to 1:100
with PBST, and serum from unimmunized mice served as the negative control. The sec-
ondary antibody used was horseradish peroxidase (HRP)-conjugated goat anti-mouse
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IgA (diluted to 1:1200 in PBST, Abcam, Cambridge, UK). The levels of sIgA in the small
intestinal contents were expressed as P/N (positive-to-negative control) values:

P/N = (OD450 nm of sample well)/(OD450 nm of negative control well)

2.8. Microneutralization Test

The serum-neutralizing antibody (NA) titers were detected with a microneutralization
assay, as previously described [39]. CEF cells were seeded in 96-well plates and used
for virus neutralization tests when they reached a confluency rate of 50–60%. All serum
samples underwent heat inactivation at 56 ◦C for 30 min and were then serially diluted
two-fold from 1:50 to 1:1600 in Dulbecco’s Modified Eagle Medium (DMEM). Subsequently,
50 µL of the NDV CS2 vaccine strain (200 TCID50) was combined with an equal volume of
the diluted serum and incubated together at 37 ◦C for 1 h. This mixture was then added to
a 96-well plate containing CEF cells, with three replicate wells for each sample. The cells
were maintained in DMEM supplemented with 2% fetal bovine serum (FBS) at 37 ◦C and
5% CO2. It is crucial to note that if the virus is neutralized by serum antibodies, it will be
unable to infect the cells. After incubation for 72 h at 37 ◦C and 5% CO2, the NA titer for
each group was calculated as the geometric mean titer (GMT), which was established by
identifying the lowest serum dilution that prevented cytopathic effects in over 50% of the
CEF cells.

2.9. Hemagglutination Inhibition Test

The HI assay was performed in accordance with the National Standard of the People’s
Republic of China [40]. Serum samples were twofold diluted in a 96-well plate. A total of
25 µL of NDV antigen containing four hemagglutination units was introduced into each
well, including a positive control. After 30 min of incubation, 25 µL of a 1% suspension
of chicken red blood cells was added to each well and incubated for an additional 30 min.
The results were observed, and the HI titers were defined as the highest dilution of serum
that completely inhibited NDV hemagglutination.

2.10. Gene Expression of Cytokine in Ileum

Total RNA from ileal tissues samples was extracted using the Animal Total Isolation
Kit (Foregene Co., Ltd., Chengdu, China). The extracted RNA was subsequently reverse-
transcribed into cDNA using the RT-Easy™ II (Foregene, Chengdu, China). The expression
levels of cytokine-related mRNAs, including interleukin 1 beta (IL-1β), interleukin 6 (IL-6),
interleukin 10 (IL-10), interferon gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α),
were quantified by real-time quantitative PCR (RT-qPCR) according to the methodology
described by Xin et al. [41]. Primer sequences are listed in Supplementary Table S2. Beta-
actin (β-actin) served as the reference gene for data normalization. The relative expression
of the target genes was calculate using the 2−∆∆CT method:

∆∆CT = (CT, target gene − CT,β− actin) experimental group − (CT, target gene − CT,β− actin) control group

2.11. The Morphology of Ileum

Tissue sections were prepared from ileal tissue fixed in 4% paraformaldehyde (Service-
Bio Technology Co., Ltd., Wuhan, China). The imaging of the target areas was performed
using an Eclipse Ci-L photographic microscope (Nikon, Tokyo, Japan), following the
method described previously [42]. Image analysis was conducted using Image-Pro Plus 6.0
software, with results reported in millimeters. For each intestinal sample, five random fields
were selected to measure the villus height (VH) and crypt depth (CD) and to determine the
VH/CD ratio. A 100× magnification field was used, and five intact villi were chosen from
each tissue section for measurement. The height of the intestinal villi and the number of
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intraepithelial lymphocytes (IELs) were measured. The number of IELs per unit length of
villus was then calculated as follows:

Number of IELs per unit height = IELs/height of intestinal villus

2.12. Statistical Analysis

Data were analyzed using one-way ANOVA followed by the Friedman test for mul-
tiple comparisons. Statistical analyses were conducted with IBM SPSS Statistics 26 (IBM
Corporation, Armonk, NY, USA), and results are presented as mean ± standard deviation
(SD). Statistical significance was denoted by letters, where different letters indicate signifi-
cant differences (p < 0.05) between groups. Similar letters indicate no significant difference
among groups (p > 0.05). Data visualization was performed using Origin 2021 (OriginLab,
Northampton, MA, USA).

3. Results
3.1. Construction and Transformation of Recombinant Plasmid

Figure 3 illustrates the construction of recombinant plasmids and the outcomes of the
transformation. The HNJD gene was approximately 642 bp in size (Figure 3A). Sequencing
revealed that the HNJD gene contained an EcoR I restriction site, with the original and
mutated sequences detailed in Supplementary Table S3. The HI titer of the rabbit anti-
NDV hyperimmune serum reached a value of 13log2. An analysis via 12% SDS-PAGE
and Western blotting (shown in Figure 3B,C) confirmed that the E. coli BL21/pET-32a-
HNJD expression product exhibited a protein band around 42 kDa, signifying successful
recombinant protein expression with reactivity to NDV-specific antibodies. Following
double-enzyme digestion validation, the recombinant plasmid pDG364-cotB-NHJD was
introduced into B. subtilis-competent cells (Figure 3D). PCR identification was performed
using four primer sets, with the wild-type B. subtilis genome serving as the control. The
results presented in Figure 3E demonstrated that all DNA bands were congruent with
their theoretical sizes. Furthermore, Figure 3F indicated that the recombinant B. subtilis
lost its ability to break down starch due to the insertion of the fusion gene cotB-HNJD
into the amylase-encoding locus. In conclusion, we successfully engineered a strain of
B. subtilis RH.
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the empty pET32a plasmid vector; Lanes 3 and 4: expression products after induction with IPTG
for 6 h. (C) Western blot analysis of transmembrane proteins. (D) Double digestion verification of
pDG364-cotB-HNJD. M: DNA marker (250–15,000 bp); Lanes 1–4: products from the recombinant
plasmid digested with Xba I, BamH I/EcoR I, Hind III/EcoR I, and BamH I/Hind III, respectively.
(E) PCR identification of B. subtilis 168 and B. subtilis RH. M: DNA marker (250–10,000 bp); Lanes 1
and 2: amyE-F/R; Lanes 3 and 4: amyE-F/HNJD-R1; Lanes 5 and 6: cotB-F/HNJD-R1; Lanes 7 and
8: HNJD-F2/R2. (F) Identification of B. subtilis RH with amylase activity assay. B. subtilis RH was
cultivated on a medium containing 1% starch and then stained with iodine solution.

3.2. Sporulation and Immunofluorescence Microscopy

The results of the indirect immunofluorescence assay for the recombinant B. subtilis RH
are presented in Figure 4. Red fluorescent signals were exclusively observed in B. subtilis
RH when viewed under a microscope, using anti-NDV hyperimmune serum as the primary
antibody. This observation confirms that the HNJD protein was successfully expressed on
the surface of B. subtilis RH spores and was capable of binding to NDV antibodies.
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der 40× magnification using bright-field microscopy; (B) Spores of B. subtilis 168 and RH under
40× magnification using fluorescence microscopy, with different serums serving as the primary
antibody and Cy3-conjugated goat anti-rabbit IgG employed as the secondary antibody.

3.3. Detection of NDV-Specific Serum and Mucosal Antibodies

The ELISA results for serum IgG and mucosal sIgA are depicted in Figure 5. The
serum IgG levels were quantified using a competitive ELISA approach. The S/N value is
inversely related to the concentration of IgG, with lower S/N values indicating higher IgG
concentrations. Throughout the study, Groups A and B exhibited consistently lower IgG
levels, whereas Groups C, D, and E had significantly elevated serum IgG levels (p < 0.05),
with Group C demonstrating the highest concentration of serum IgG. The serum IgG
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level was higher in Group D compared to Group E. The sIgA levels in the ileal content
were determined using an indirect ELISA method. Higher P/N values are indicative
of increased sIgA levels. It was observed that Groups A, B, and C did not generate
substantial levels of sIgA antibodies. In contrast, both Groups D and E showed a marked
increase in sIgA levels (p < 0.05), which progressively rose over time, reaching a plateau on
day 28. Notably, Group D achieved higher levels of sIgA than Group E. This suggests that
B. subtilis RH effectively triggered an immune response in the mice through both mixed
feeding and gavage administration methods. The mixed feeding method elicited a stronger
mucosal immune response, potentially due to an extended period of stimulation of the
mucous membranes.
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Figure 5. Immune responses in mice following immunization using different methods. Serum IgG
levels are depicted as S/N values, while sIgA levels in the mucosa are represented by P/N values.
The data are reported as mean values with SD, based on a sample size of n = 5. Statistical analysis
involved one-way ANOVA, followed by a Friedman test. Bars labeled with distinct lowercase letters
indicate a significant difference at the p < 0.05 level.

3.4. Detection of NA and HI Antibody Titers

Using the Reed–Muench method, the TCID50 for the NDV CS2 vaccine strain was
determined to be 10−6.2/0.1 mL. As depicted in Figure 6, Groups C, D, and E exhibited
significantly elevated NA and HI titers compared to Groups A and B (p < 0.05). Group
C achieved the highest NA and HI titers, and Group D exhibited significantly higher HI
titers than Group E (p < 0.05). These findings indicate that mucosal immunization can elicit
the robust production of neutralizing antibodies in mice and that the levels of NA and HI
antibodies are correlated with the route of mucosal administration.
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followed by a Friedman test. Bars labeled with different lowercase letters indicate a statistically
significant difference at the p < 0.05 level.

3.5. Gene Expression of Cytokine in the Ileum

Cytokines related to immunity were quantified using RT-qPCR, and the results are
shown in Figure 7. We observed a significant upregulation in the relative mRNA expression
of IL-1β, IL-6, IL-10, TNF-α, and IFN-γ in the spore-immunized groups (Group B, D, and E).
Notably, all cytokine mRNA expression levels were higher in Group D compared to Group
E (p < 0.05), indicating that mixed feeding was more effective than gavage administration.
While the expression of IL-6 and IL-10 was significantly elevated in Group C compared to
Group A (p < 0.05), their levels remained lower than those in the spore-immunized groups.
This indicates that inactivated vaccines can enhance cytokine expression in the intestinal
mucosa by modulating the systemic immune response, but this effect is less pronounced
than the direct action of the spores on the mucosal surface.
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3.6. Histomorphology and Intraepithelial Lymphocytes of the Mouse Ileum

Figure 8A illustrates the ileum morphology of the mice from each group, revealing
a clear and intact histological structure of the ileum. The measurements of VH and CD
in the mouse ileum are shown in Figure 8B. The mice from the spore-immunized groups
exhibited a significant increase in VH and the VH/CD ratio and a decrease in CD compared
to Groups A and C (p < 0.05). However, no significant differences were observed among
the spore-immunized groups (p > 0.05). The number of IELs per unit length of the intestinal
villi was quantified and is also presented in Figure 8B. The spore-immunized groups
exhibited a significantly higher number of IELs per unit length compared to Groups A
and C (p < 0.05), with Group D demonstrating the highest count. These findings suggest
that the administration of B. subtilis 168 and RH can effectively enhance intestinal mucosa
development and promote the maturation of intestinal structures in mice. Notably, B. subtilis
RH appears to be more effective in stimulating the proliferation of IELs and modulating
the immune response within the intestinal mucosa.
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3.7. Mouse Immune Organ Index

Figure 9 demonstrates that the spleen index was increased in all groups except for
Group A. Notably, Group D exhibited a significantly higher spleen index than both Group
C and Group E (p < 0.05). In contrast, no significant differences were found in the thymus
index across all the groups (p > 0.05).
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4. Discussion

In the realm of livestock and poultry production, probiotics are increasingly being
adopted as a viable alternative to antibiotics [43]. B. subtilis, a probiotic species, has been
acknowledged by the FDA as safe and is commonly incorporated into functional feed
additives due to its robust probiotic characteristics and the convenience of its isolation
and cultivation. This bacterium exhibits remarkable resistance to the harsh conditions
within the gastrointestinal tract, enabling it to maintain potent biological activity in the
digestive system [44,45]. It contributes to enhanced digestion by providing enzymes, an-
timicrobial peptides, and other advantageous metabolic byproducts, which collectively
improve feed efficiency, growth performance, and the integrity of the gut barrier [46,47].
B. subtilis also plays a pivotal role in modulating the intestinal microbiota and the immune
response, thereby warding off pathogenic microorganisms and preventing diseases [48–50].
In addition, B. subtilis is often employed as an engineering bacterium for the efficient
expression of exogenous proteins. A technique for displaying proteins on the surface
of B. subtilis spores was first proposed by Isticato et al. [51] in 2001. They successfully
expressed a 459-amino-acid C-terminal fragment of the tetanus toxin (TTFC) on a spore
surface, demonstrating its reactivity. With the elucidation of the B. subtilis genome and
advances in proteomic research, this technique has been effectively utilized across various
domains, including mucosal immunization, industrial enzyme production, environmental
remediation, pharmaceutical development, and more [3]. Owing to its probiotic attributes
and stability, B. subtilis holds promising advantages as a mucosal adjuvant for the deliv-
ery of antigenic proteins. Recombinant probiotics displaying the HN protein can elicit
specific immune responses when used as mucosal vaccines, offering substantial potential
in research and application areas. Our laboratory has successfully constructed several
recombinant B. subtilis strains that display heterologous proteins, including Salmonella
OmpC [52], Rotavirus VP8 [33], and Porcine circovirus type 2 Cap proteins [53]. In the
current study, we excised a portion of the antigenic region from the HN protein and spliced
it into smaller fragments following Chen’s methodology [32]. This approach preserved
the native hemagglutinin–neuraminidase active sites of the HN protein, along with the
majority of its antigenic sites and all the cysteine residues crucial for its tertiary structure.
The resulting truncated HN protein is efficiently expressed in prokaryotic systems as a
monomer, in contrast to the wild-type tetramer form. The prokaryotically expressed HNJD
protein is readily recognized by NDV-specific antibodies, demonstrating robust reactivity.
Immunofluorescence assays corroborated the accurate expression and correct anchoring of
the HNJD protein to the spore surface during sporulation.

Upon ingestion by animals, B. subtilis spores can safely navigate through the stomach
and germinate within the upper intestine, where they undergo a brief period of multipli-
cation before sporulating again in the lower intestine [54,55]. Both spores and vegetative
cells possess the capacity to interact with intestinal epithelial cells, thereby stimulating
the proliferation of intestinal-associated lymphocytes and fortifying the mucosal immune
system [56]. The mucosal immune system is pivotal for immune defense, acting as the
body’s initial barrier against pathogenic invasion. In the context of preventive vaccination
against Newcastle disease, eliciting an effective mucosal immune response can significantly
diminish the rates of infection and morbidity, constituting the most efficacious strategy
for the prevention and control of the disease [57]. In our investigation, we discovered that
B. subtilis RH has the capacity to induce both systemic and local mucosal immune responses.
It was observed that supplementing mice with B. subtilis RH resulted in elevated levels of
serum IgG and intestinal sIgA. sIgA is the most abundant immunoglobulin produced by the
intestinal mucosa, contributing to mucosal homeostasis by inhibiting pathogen adherence
to the mucosal surface and playing a vital role in the early prevention of infection [58]. In
contrast, commercial vaccines administered via intraperitoneal injection fail to stimulate
the production of anti-NDV-specific sIgA in mice. This limitation is due to the fact that most
commercial vaccines delivered through non-intestinal routes provide only partial protec-
tion against clinical infections and do not completely eliminate infection at the site of initial
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mucosa invasion. Chicks immunized with commercially inactivated vaccines often require
mucosal immune adjuvants to elicit the effective production of specific mucosal antibodies,
as indicated in previous studies [59,60]. HI and NA assays are used to measure antibody
potency, reflecting their capacity to neutralize the virus and prevent infection. Through mi-
croneutralization and HI assays, we have shown that serum antibodies derived from mice
vaccinated with RH-spores effectively neutralize NDV, preventing its cellular invasion. This
suggests that antigen delivery via spores can effectively penetrate the selectively permeable
mucus layer of the intestinal tract, leading to the generation of antibodies and the secretion
of cytokines by associated lymphocytes [61,62], which contributes to combating disease
infections. Gonçalves et al. [15] immunized zebrafish with spores displaying the Vibrio
antigen OmpK, leading to a 50–90% increase in survival rates after infection with Vibrio
anguillarum and Vibrio parahaemolyticus. Oh et al. [63] constructed a recombinant B. subtilis
strain expressing the protective antigen (PA) of Bacillus anthracis, which successfully elicited
a protective immune response in mice, with the level of protection varying according to the
immunization method used. In our study, we observed that the immunogenic effect was
dependent on the mode of administration, with the mixed feeding group showing superior
performance over the intermittent gavage group in all measured parameters, including
IgG and sIgA levels, as well as NA and HI titers. This could be attributed to the fact that
dietary spores germinate in the jejunum and ileum, whereas spores and vegetative cells
do not permanently colonize the intestine and are only in it for a brief duration [54,64].
Our findings suggest that continuous feeding immunization is more effective at inducing
intestinal mucosal immunity and probiotic effects than high-dose gavage administered
a limited number of times, aligning with previous research conducted in our laboratory.
Additionally, gavage may induce stress and disrupt homeostasis in animals, indicating that
intermittent gavage is not an effective or suitable immunization method.

In our study, B. subtilis RH modulated the expression levels of cytokines such as IL-1β,
IL-6, IL-10, TNF-α, and IFN-γ in mouse ileal tissues. These cytokines are instrumental in
orchestrating the Th1/Th2 pathway, which is essential for the regulation of both innate
and adaptive immune responses in animals [65]. CD4+ T lymphocytes can differentiate
into either Th1 or Th2 cell subsets. The elevated expression of IL-1β, TNF-α, and IFN-γ
contributes to cellular immunity by fostering a converging Th1-type immune response.
IFN-γ, acting as a pivotal activator of cellular immunity, stimulates CD8+ T lymphocytes
and macrophages to eliminate foreign pathogens or infected cells. On the other hand, IL-6
and IL-10 respond to Th2 chemotaxis and also propel the proliferation of T and B cells,
thereby enhancing the innate immune response [35]. Unlike many commercially inactivated
vaccines that predominantly elicit Th2-type responses [66], B. subtilis RH is capable of
promoting both cellular and innate immunity. The spores of the wild-type B. subtilis strain
also upregulated cytokine expression, demonstrating their capacity to bolster the immune
system. This observation aligns with the findings reported by LEE et al. [67].

Compared to conventional injectable vaccines, mucosal vaccines offer convenience,
enhanced safety, and cost-effectiveness. Our investigation has demonstrated that B. sub-
tilis RH can elicit a specific immune response when administered orally, highlighting its
potential as an adjuvant for mucosal vaccines, which is particularly advantageous in the
livestock and poultry industries. Measures such as gut histomorphometry and immune
organ indices are frequently employed in research to assess gastrointestinal development
and performance. The morphology of the small intestine directly mirrors the health of the
gut, as well as its digestive and absorptive capabilities, which are critical for sustaining the
intestinal immune system [68–70]. Longer villi correlate with epithelial cell proliferation
and can stimulate cell mitosis, whereas shorter villi and deeper crypts are associated with
nutrient malabsorption and diminished gastrointestinal function [71–74]. Our research
has determined that dietary supplementation with B. subtilis RH results in an increase in
the height of ileal villi and a decrease in crypt depth, thereby enhancing intestinal tissue
structure in mice. In related findings, Dong et al. [75] found that B. subtilis BYS2 not only
increased the height of avian duodenal and jejunal villi but also increased the villi-to-crypts
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rates, reduced viral load following NDV infection, and significantly improved survival
rates. Jayaraman et al. [76] discovered that B. subtilis PB6 could replace antibiotic growth
promoters (AGP) to prevent necrotizing enterocolitis while concurrently improving small
intestine organization and the growth performance of broilers through mixed feeding. The
intestinal mucosa’s epithelial layer is replete with IELs, which are crucial for preserving in-
testinal epithelial integrity and play a pivotal role in immune surveillance and cell-mediated
mucosal immunity [56,77]. In our study, both strains of B. subtilis effectively stimulated
the proliferation of IELs in the mouse ileum, thereby enhancing immunoprotection against
virus challenges and potentially blocking the infection route of NDV. However, it remains
uncertain if this effect is replicated with commercial vaccines. The organ index serves as an
objective measure to assess the growth and development of immune organs and is a crucial
parameter for evaluating the micro-ecological impacts of probiotics [78,79]. Our findings
indicate that B. subtilis RH promotes splenic growth in mice, yet its influence on thymic
development was not evident on day 42. This could be attributed to the fact that the thymus
is among the first immune organs to develop and undergoes age-related involution [80],
culminating in no significant disparity between the experimental groups. Furthermore,
B. subtilis RH has been utilized as a genetically engineered probiotic for animal feed at
the recommended dosage (1.0–2.0 × 106 CFU/g), which is consistent with that of most
probiotics [81,82]. This approach ensures that it functions as an immune adjuvant while
eliciting an effective immune response. In a related study by Pham et al. [83], when the
conventional dose (1.0 × 106 CFU/g) of CotB-VP28 spores in feed pellets was increased
by 50-fold (5.0 × 107 CFU/g) or 1000-fold (1.0 × 109 CFU/g) for black tiger shrimps, the
enhancement in protection against spot syndrome virus infection was marginally increased
by only 2.5% and 7.5%, respectively. Thus, routine dosages of spore supplementation can
provide effective immune protection, and higher concentrations are not only unnecessary
but also impractical in the poultry industry due to cost implications. Nonetheless, we posit
that the optimal concentration of various recombinant B. subtilis strains may differ depend-
ing on the vectors used, the expression methods, and efficiency. Future poultry experiments
could explore the immunoprotective effects across different dosages. In summary, these
findings indicate that B. subtilis RH, when used as a feed additive, significantly enhances
the development of intestinal and immune organs in animals, promotes the proliferation of
immune-related lymphocytes, and shows promise as a mucosal immune adjuvant.

Although B. subtilis RH was capable of inducing an effective specific immune response,
the IgG levels and NA titers were not as high as those achieved with commercial vaccines.
One plausible explanation for this discrepancy could be the absence of a linker peptide,
which might impact the expression of exogenous proteins. The inclusion of a linker peptide
can form a stable helical structure that bridges the anchor protein and the target protein,
alleviating rigidity issues and enhancing their stability and expression. However, the direct
fusion of anchor proteins may lead to undesirable outcomes such as incorrect folding, low
yields, and compromised biological activity [84]. Hinc et al. [85] compared the expression
efficiency of fusion proteins in cotZ-UreA versus cotB-GGGEAAAKGGGG-UreA, finding
that the latter, which incorporates flexible linker peptides, expressed up to 100-fold more
recombinant proteins on a spore than the former. Although various types of linker peptides
have been designed over time [86,87], the ideal configuration remains elusive. The selection
of different anchor proteins [8,85] and ligation strategies [88,89] can also significantly
enhance the presentation efficiency of exogenous proteins. Determining how to improve
the display efficiency of the HNJD protein on the spore surface may be a focus of our future
research endeavors. Looking ahead, omics technologies should be harnessed to uncover
the precise mechanisms through which B. subtilis RH induces immune responses and exerts
its probiotic effects.

5. Conclusions

In this study, we developed a recombinant B. subtilis RH strain capable of expressing
the NDV HN protein on the surface of its spores. This innovation induced both mucosal
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and systemic immune responses in mice. Additionally, the recombinant B. subtilis enhanced
the expression of cytokines in the ileum, fostered the development of immune organs and
the intestinal tract, and stimulated the proliferation of intestinal-associated lymphocytes.
As such, it also serves as a mucosal immune adjuvant, positioning it as a potential novel
probiotic strain engineered to combat NDV. The evaluation of its immunogenicity in mice
conducted herein lays the groundwork for future challenge studies in poultry models.
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