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Abstract: The gut microbiota has been implicated in the context of sexual maturation during pu-
berty, with discernible differences in its composition before and after this critical developmental
stage. Notably, there has been a global rise in the prevalence of precocious puberty in recent years,
particularly among girls, where approximately 90% of central precocious puberty cases lack a clearly
identifiable cause. While a link between precocious puberty and the gut microbiota has been observed,
the precise causality and underlying mechanisms remain elusive. This narrative review aims to
systematically elucidate the potential mechanisms that underlie the intricate relationship between
the gut microbiota and precocious puberty. Potential avenues of exploration include investigating
the impact of the gut microbiota on endocrine function, particularly in the regulation of hormones,
such as gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating
hormone (FSH). Additionally, this review will delve into the intricate interplay between the gut micro-
biome, metabolism, and obesity, considering the known association between obesity and precocious
puberty. This review will also explore how the microbiome’s involvement in nutrient metabolism
could impact precocious puberty. Finally, attention is given to the microbiota’s ability to produce
neurotransmitters and neuroactive compounds, potentially influencing the central nervous system
components involved in regulating puberty. By exploring these mechanisms, this narrative review
seeks to identify unexplored targets and emerging directions in understanding the role of the gut
microbiome in relation to precocious puberty. The ultimate goal is to provide valuable insights
for the development of non-invasive diagnostic methods and innovative therapeutic strategies for
precocious puberty in the future, such as specific probiotic therapy.

Keywords: precocious puberty; gut microbiota; endocrine disruption; metabolism and obesity;
children’s health; microbiota–gut–brain axis; probiotics

1. Introduction

It is well known that the human gut microbiota undergoes a transitional phase around
weaning and subsequently stabilizes [1], evolving towards an adult-like composition within
2–3 years after birth [2–4]. However, differences in microbial community structure and
diversity persist between children and adults [5,6]. Meanwhile, the gut microbiota (GM)
begins to exhibit gender-specific differences during adolescence, suggesting a link between
GM and sexual maturation [3,5]. Interestingly, disruptions in GM accompany abnormal
sexual maturation, with the highest incidence observed in precocious puberty [7].

Precocious puberty refers to the onset of secondary sexual characteristics in girls before
the age of 8 and in boys before the age of 9 [8]. Central precocious puberty (CPP) is the
most common type of precocious puberty, characterized by the premature activation of the
hypothalamic–pituitary–gonadal axis (HPGA), 15–20-times more prevalent in girls than
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boys [9]. This condition not only affects the adult height of patients but also increases the
risk of various diseases in childhood and adulthood [10]. Currently, despite the identifi-
cation of some causes of CPP, up to 90% of girls with CPP have no clear explanation for
the premature activation of their HPGA [9,11,12]. Additionally, the CPP diagnosis and
treatment methods still result in the poor acceptance of children, often accompanied by
adverse reactions and other problems. Therefore, there is an urgent need to further explore
the etiology of precocious puberty to provide clues for the development of non-invasive
diagnostic and therapeutic methods.

Recent research has indicated associations between precocious puberty and the gut
microbiota and its metabolites [7,13–17]. However, the specific mechanisms remain unclear.
The purpose of this narrative review is to summarize the potential mechanisms of interac-
tion between the gut microbiota and precocious puberty, including metabolic pathways,
hormonal regulation, nutritional status, and the gut–brain axis, to provide insights into
the discovery of new targets for precocious puberty and the development of microbiota-
based interventions (probiotics, prebiotics, and fecal microbiota transplantation) for its
management.

2. Methods

A comprehensive literature assessment was conducted through a systematic search
of the PubMed database, spanning from its inception to December 2023. The review
encompassed original articles, meta-analyses, reviews, and animal studies, focusing on the
intricate interplay between puberty and gut microbiota. The search employed specific terms,
including “gut microbiota”, “polycystic ovary syndrome”, “puberty”, “precocious puberty”,
“central precocious puberty”, “peripheral precocious puberty”, “hormones”, “probiotics”,
“hypothalamic-pituitary-gonadal axis”, “metabolites”, “fecal microbiota transplantation”,
and “obesity”. The inclusion of articles in this review was meticulously determined by the
authors based on their relevance to constructing a cohesive narrative review.

3. Gut Microbiota
3.1. Developmental Trajectory of Gut Microbiota

The gut microbiota, as a complex microbial ecosystem within the human body [18],
undergoes evolutionary changes at different stages of human life, potentially impacting
health [19].

Early life is crucial for the establishment of the gut microbiota [20–22]. During this
period, the gut microbiota evolves from a relatively simple structure into a more complex
and stable community [23–25]. Factors, such as mode of delivery [23,26–31], breastfeed-
ing [28,31,32], early antibiotic exposure [3,24,28,31,33,34], and host-related factors [34–36],
play decisive roles in the early development of the gut microbiota.

The gut microbiota in childhood and adolescence begins to exhibit a certain degree
of stability and complexity [1,4,37]. However, compared to adulthood, the gut microbiota
in children may be more susceptible to environmental influences [38] and has not yet
reached the complexity of the adult microbiota [19,39]. Importantly, gender differences
in the gut microbiome emerge during adolescence and persist into adulthood [40]. A
cross-sectional study revealed that the gut microbiota’s diversity remains stable in pre-
adolescent subjects after the age of 5, with no apparent gender differences. However, upon
entering adolescence, significant differences in the gut microbiota between adolescent males
and females become evident, suggesting a close association between adolescent sexual
maturation and changes in the gut microbiota [41]. This study unveiled gender-specific
differences in the gut microbiota during different adolescent stages, with gender-dependent
gut microbiota diversity linked to sex hormones [41]. Nonetheless, dynamic changes in the
gut microbiota before and after adolescence are still lacking in research [41]. Furthermore,
the specific mechanisms of interaction between hormonal changes during adolescence and
the gut microbiota require further investigation.
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In adulthood, the gut microbiota typically reaches a relatively stable state but re-
mains influenced by dietary habits, lifestyle, medication use (especially antibiotics), and
health status [42]. With advancing age, the gut microbiota in elderly individuals may
undergo changes due to alterations in dietary habits, immune decline, chronic diseases,
and medication use [18,43].

3.2. Functions of Gut Microbiota

The gut microbiota exerts profound effects on the health and disease status of the host,
encompassing functions related to nutrient metabolism, host immune regulation, and its
potential impact on the central nervous system (Figure 1) [44,45].
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The gut microbiota plays a crucial role in nutrient metabolism [46]. Gut bacteria
are involved in the breakdown of dietary fibers [47] and undigested proteins within the
host [45], generating beneficial metabolites, such as short-chain fatty acids (SCFAs) [48]
(e.g., butyrate and propionate), neuroactive compounds (e.g., nitric oxide), polyamines,
and aromatic compounds. SCFAs, in particular, not only provide energy for intestinal
epithelial cells [49] but also modulate host energy balance [50,51], regulate inflammatory
immune responses [51,52], and enhance intestinal barrier function [48,53]. Furthermore,
the breakdown metabolism also produces γ-aminobutyric acid (GABA), norepinephrine,
dopamine, histamine, and serotonin [54], which have an impact on regulating the gut–brain
axis or maintaining host nitrogen balance [45].

The gut microbiota can also communicate with the central nervous system via the gut–
brain axis and participate in the regulation of various central nervous system-related disor-
ders [55]. The gut and brain form the gut–brain axis through bidirectional neural, endocrine,
and immune communication, where changes in one organ can affect the other [56–58]. The
gut microbiota composition and its secreted metabolic products and signaling molecules
can influence both the enteric nervous system and the central nervous system, thereby
affecting host emotions and behavior [59]. The symbiotic gut microbiota is closely associ-
ated with various central nervous system disorders and psychiatric illnesses [60], such as
Parkinson’s disease [61–63], Alzheimer’s disease [64–67], schizophrenia [68,69], multiple
sclerosis [70], depression [71–74], autism [75,76], and anxiety disorders [55,77,78]. This
discovery provides a new perspective for the treatment of central nervous system disorders
and psychiatric illnesses.

www.figdraw.com
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4. Precocious Puberty
4.1. Definition

Precocious puberty is typically defined as the onset of signs of puberty in girls before
the age of 8 and in boys before the age of 9 [8]. Precocious puberty can be categorized
into two main types based on its underlying mechanisms: CPP and peripheral precocious
puberty. CPP results from the premature activation of the HPGA, which is the most
common type. Peripheral precocious puberty, on the other hand, is caused by abnormal
hormone secretion without involving the premature activation of the HPGA [79].

4.2. Epidemiology of Precocious Puberty

Precocious puberty demonstrates a global trend of prevalence [80], but the incidence
rates vary across different countries and regions. An observational study in the United
States showed that by the age of 7, 10% of white girls and 23% of black girls had entered
puberty [81]. In Europe, approximately 5% of girls start developing breast tissue before the
age of 8 [82]. A study in Denmark reported an incidence rate of 0.2% for girls and less than
0.05% for boys [83]. These differences may be related to factors, such as race, lifestyle, and
environmental factors. Additionally, precocious puberty is more common in girls than in
boys, with up to 90% of female patients having idiopathic precocious puberty, meaning
the cause is unknown [9,11,12,84,85]. Precocious puberty in boys is less common and often
associated with organic lesions such as hypothalamic tumors [85,86].

4.3. Etiology and Risks of Precocious Puberty

Although some causes of precocious puberty have been identified, including con-
genital and acquired central nervous system damage, genetic mutations, obesity [87–89],
exposure to endocrine-disrupting chemicals, and early exposure to sex hormones, many
of the mechanisms behind idiopathic precocious puberty remain unclear [9]. Meanwhile,
precocious puberty has significant impacts on the physical and psychological health of
sufferers. It not only affects their adult height [90] and psychological well-being [91] but
also increases the risk of various diseases during adulthood, including mental disorders,
hypertension, type II diabetes [92], ischemic heart disease [93], stroke, estrogen-dependent
cancers [94], cardiovascular diseases, and more [9]. Therefore, a further exploration of
the mechanisms underlying precocious puberty in girls is urgently needed to provide a
theoretical basis for the development of prevention, diagnosis, and treatment strategies for
precocious puberty.

4.4. Current Diagnosis and Treatment of Precocious Puberty

The key to diagnosing precocious puberty in children lies in distinguishing between
CPP and peripheral precocious puberty, with the gonadotropin-releasing hormone (GnRH)
stimulation test being the gold standard for this differentiation [95,96]. This test aims to
determine if the pituitary gland can be stimulated by GnRH and release gonadotropins,
such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), to stimulate the
gonads (ovaries or testes) to produce sex hormones (estrogen or testosterone) [95,96]. In this
test, a GnRH analogue is injected into the child, and the peak levels of LH and the LH/FSH
ratio in the child’s blood within 120 min after the injection are observed. If the LH peak is
>5 IU/L [95,97] and the LH/FSH ratio is >0.6 [98], a diagnosis of CPP is made. However,
this test can be painful and distressing for the child, leading to poor acceptance by both
the child and their family. Therefore, there is an urgent need to develop new non-invasive
diagnostic strategies.

Currently, treatment options for children with precocious puberty also face challenges
related to poor acceptance by the children and the occurrence of various adverse reactions.
For peripheral precocious puberty or slowly progressing precocious puberty in children,
treatment often involves dietary and lifestyle adjustments. On the other hand, for rapidly
progressing CPP, treatment often requires the administration of GnRH agonists [9]. The
principle behind this treatment is that GnRH analogues bind to the GnRH receptors on the
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anterior pituitary gonadotroph cells, preventing them from binding to GnRH secreted by
the hypothalamus, thus suppressing the pituitary–gonadal axis. This leads to a reduction
in LH and FSH release, feedback inhibition of sex hormone secretion from the ovaries, a
decrease in testosterone levels, and delayed skeletal maturation [99,100]. However, this
treatment approach also presents several challenges, including the pain and poor compli-
ance associated with repeated injections, high medical costs, potential adverse reactions
(such as allergies and vaginal bleeding), and local complications like aseptic abscesses
that can lead to treatment inefficacy [101,102]. Therefore, optimizing the current treatment
strategies for precocious puberty is urgently needed to improve children’s acceptance
and minimize adverse reactions. Future research should focus on developing safer, more
effective, and easily accepted treatment methods, including the development of new drugs
and personalized treatment plans. Additionally, providing psychological support and
education for patients and their families is crucial to enhance the overall effectiveness of
precocious puberty treatment and improve the quality of life for sufferers.

4.5. Dysbiosis of Gut Microbiota in Precocious Puberty

In recent years, increasing evidence has suggested that dysbiosis of the gut micro-
biota may play a significant role in the pathogenesis of precocious puberty in children.
An observational study in China included 27 girls with CPP, 24 overweight girls, and
22 healthy controls, revealing differences in gut microbiota among the three groups [7].
Among them, girls with CPP showed increased alpha diversity in their gut microbiota,
significant increases in bacteria, such as Alistipes, Klebsiella, and Sutterella, and enhanced
inter-bacterial correlations [7]. Another cross-sectional study demonstrated significant
differences in gut microbiota and metabolites between children with CPP and healthy con-
trols, with the Streptococcus genus potentially serving as a candidate molecular marker for
CPP treatment [103]. Similarly, in an observational study, fecal samples from 25 girls with
idiopathic CPP and 23 healthy girls were subjected to 16S rDNA sequencing to compare
microbial compositions between the groups. The study found a significant enrichment in
various bacterial species in girls with CPP, including Ruminococcus gnavus, Ruminococcus
callidus, Ruminococcus bromii, Roseburia inulinivorans, Coprococcus eutactus, Clostridium letum,
and Clostridium lacatifermentans [17]. These studies collectively demonstrate significant
alterations in the structure and composition of gut microbiota in girls with precocious pu-
berty, indicating an association between gut microbiota and precocious puberty. However,
most studies are based on 16S rDNA or 16S rRNA sequencing techniques, which may not
be sufficient to detect small microbiota alterations compared to metagenomics sequenc-
ing [104]. Furthermore, the causal relationship and underlying mechanisms between gut
microbiota and precocious puberty require further exploration. A deeper investigation into
the role and mechanisms of gut microbiota in the development of precocious puberty could
provide new insights into the pathogenesis of precocious puberty and the development of
novel non-invasive diagnostic and therapeutic strategies.

5. Interaction and Potential Mechanisms between Gut Microbiota and
Precocious Puberty

Figure 2 depicts the factors involved in the interactions between gut microbiota and
precocious puberty. These factors are discussed in greater detail in the following paragraphs.
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5.1. Metabolic Pathways

The gut microbiota is considered a metabolic “organ” that not only aids in extracting
nutrients and energy from ingested food but also produces a myriad of metabolites that
regulate the host’s metabolism through their homologous receptors [105]. The interaction
between the gut microbiota, its metabolites, and host metabolic pathways plays a critical
role in host health and homeostasis. Simultaneously, several metabolic pathways within the
bodies of children with precocious puberty undergo changes, including alterations in lipid
metabolism, bile acid metabolism, amino acid metabolic pathways, and neurotransmitter
metabolic pathways.

5.1.1. Neurotransmitter Metabolic Pathways

In a study by Li et al., a comparison of gut microbiota between 27 girls with CPP and
22 healthy controls revealed the enrichment of Alistipes, Klebsiella, and Sutterella in CPP
patients’ gut microbiota [7]. These bacteria, often abundant in patients with neurological
disorders [106], may trigger the early onset of puberty by secreting metabolites related
to neurotransmission, such as serotonin and dopamine, which activate the HPGA [7].
This suggests that specific gut microbiota may influence precocious puberty by secreting
neurotransmitter-like metabolites, acting on the HPGA. However, further validation and
exploration of potential mechanisms are needed.

5.1.2. Amino Acid Metabolic Pathways

Moreover, several observational studies have shown associations between nitric oxide
synthesis and the progression of precocious puberty [103]. Functional predictions of the gut
microbiota in girls with CPP show increased nitric oxide synthesis and positive correlation
with FSH and insulin in children with CPP [7]. However, whether nitric oxide exacerbates
precocious puberty and its underlying mechanisms requires further investigation.

5.1.3. Lipid Metabolism

Currently, the most studied metabolites regarding their impact on precocious puberty
are SCFAs, which are derived from the gut microbiota. Several observational studies have
pointed to the synthesis and metabolism of SCFAs as enriched metabolic pathways in
the gut microbiota of CPP, peripheral precocious puberty PPP, and healthy children [17].

www.figdraw.com
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These studies demonstrate significant differences in SCFA-related metabolic products
between children with precocious puberty and healthy children. However, the specific
mechanisms and causative relationships remain unclear. Nevertheless, an animal study
conducted by Wang et al. provided some preliminary answers to this question. Wang
et al. [15] investigated the effects of gut microbiota and its derived SCFAs on the HPGA in
obese-induced precocious puberty rats by adding acetate, propionate, butyrate, or their
mixture to a high-fat diet. The study found that obese-induced precocious puberty rats
experienced an earlier first estrous cycle, increased expression of Kiss1, GPR54, and GnRH
in the hypothalamus, and early gonadal maturation. Additionally, the gut microbiota of
precocious puberty rats exhibited dysbiosis, and the production of SCFAs was reduced.
Adding acetate, propionate, butyrate, or their mixture to the high-fat diet significantly
reversed precocious puberty in rats, reduced hypothalamic GnRH release, and delayed the
development of the gonadal axis through the Kiss1-GPR54-PKC-ERK1/2 pathway. This
study provides the first causal-level evidence that gut microbiota-derived SCFAs can reverse
the process of sexual maturation and partially elucidates the underlying mechanisms.
This finding offers important clues for the non-invasive treatment of precocious puberty,
demonstrating that gut microbiota-derived SCFAs are a promising therapeutic approach
for preventing obesity-induced precocious puberty.

5.1.4. Bile Acid Metabolism

Bile acids are another essential metabolic product of the gut microbiota, originating
from endogenous molecules synthesized from cholesterol in the liver and further metabo-
lized by the gut microbiota [107]. Existing research has confirmed that glycodeoxycholic
acid induces the secretion of interleukin-22 (IL-22) by group 3 innate lymphoid cells in the
intestine, and IL-22 subsequently improves polycystic ovary syndrome (PCOS) [108]. Some
studies suggest that CPP and PCOS share a common pathogenic basis: dysfunction of the
HPGA [109]. However, research on the relationship between bile acids and precocious
puberty is still lacking. Therefore, investigating the influence of bile acids on precocious
puberty and the associated mechanisms is a promising direction, providing a theoretical
basis for developing new targets for the non-invasive treatment of precocious puberty.

5.2. Hormonal Regulation

Precocious puberty is a condition closely associated with sex hormones. Premature
exposure to high levels of gonadotropins, including LH and FSH, triggers the secretion
of sex hormones from the gonads, advancing sexual maturity and leading to a series of
diseases related to prolonged exposure to high levels of sex hormones. Gemmiger and LH
enriched in the gut microbiota of girls with precocious puberty show a positive correlation,
as well as Fusobacterium and FSH [17]. In a high-fat-diet-induced precocious puberty
mouse model, GnRH was positively correlated with Desulfovibrio, Lachnoclostridium, gCA-
900066575, Streptococcus, anaerobic bacteria, and Bifidobacterium [14]. This suggests that gut
microbiota abundance is related to hormone levels, implying that the gut microbiota may
influence precocious puberty by regulating hormone levels. Conversely, hormone levels
may also affect the abundance of certain gut microbiota. Koren et al. observed significant
changes in the gut microbiota composition during pregnancy in 91 women, irrespective of
their health status, particularly during the three months of pregnancy when estrogen levels
peak [110,111]. The gut microbiota and its metabolites are associated with host insulin
sensitivity [17]. Insulin can induce the adrenal secretion of androgens and regulate LH
pulse secretion [112,113], indirectly indicating an association between the gut microbiota
and sex steroid hormones.

Microbial-secreted beta-glucuronidase can metabolize estrogen from its conjugated
form to its deconjugated form. Dysbiosis and reduced diversity in the gut microbiota
decrease beta-glucuronidase activity, leading to decreased estrogen deconjugation, re-
duced circulating estrogen, and resulting in highly pathogenic conditions, such as obesity,
metabolic syndrome, cardiovascular diseases, and cognitive decline [114,115]. An increase
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in the number of bacteria producing beta-glucuronidase can elevate circulating estrogen
levels and lead to diseases such as endometriosis and cancer [116]. These studies collec-
tively demonstrate that the gut microbiota is closely related to various sex hormone-related
diseases, including precocious puberty, complications of pregnancy, adverse pregnancy out-
comes, PCOS [117], endometriosis, and cancer. However, mechanistic research in this area
is limited, and more effort should be directed towards exploring the potential pathogenic
mechanisms mediated by the microbiota–hormone axis, offering novel therapeutic and
preventive strategies.

5.3. Nutritional Status

A healthy nutritional status is crucial for the growth and puberty development of
children and adolescents [118–120], and it is estimated to account for up to 25% of the
variation in pubertal timing [118]. An increasing body of research indicates that the timing
of puberty onset is associated with overnutrition and an energy imbalance. An animal
experiment by Wang et al. [16] found that offspring mice exposed to high-fat diets during
maternal lactation exhibited signs of adolescent obesity, early puberty, irregular estrous
cycles, and glucose metabolism disorders. Co-housing these offspring mice with those from
mothers on a normal diet reversed changes in gut microbiota composition, early puberty,
and insulin insensitivity induced by maternal high-fat diets. This suggests that early-life
high-fat diets may lead to precocious puberty and that the colonization of a healthy gut
microbiota can reverse this phenomenon, further indicating the involvement of obesity-
related gut microbiota in early puberty [16]. In another animal experiment, post-weaning
high-fat diets were found to increase serum estradiol, leptin, deoxycholic acid (dCA), and
GnRH in mice, leading to precocious puberty [14]. Population studies have also shown
the phenomenon of gut microbiota involvement in precocious puberty in connection with
obesity, with gut microbiota enriched in girls with idiopathic CPP showing a correlation
with obesity [17].

Furthermore, early nutrition is a key factor in puberty development. Breast milk
appears to play a critical role in puberty development, as it is a unique source of beneficial
bacteria and compounds that shape the infant’s microbiota and influence the development
of various physiological functions, such as the gastrointestinal, immune, and nervous
systems [121]. Breastfeeding directly exposes infants to maternal gut microbiota through
the gut–breast axis and indirectly shapes the infant’s gut microbiota during early life [121],
further affecting the process of puberty development. Hvidt et al., based on a cohort study,
found that a lack of breastfeeding was associated with accelerated puberty development
in boys, while there was no significant correlation with girls’ puberty development [122].
Al-Sahab et al. observed a negative correlation between exclusive breastfeeding and age at
menarche in a population-based cohort study [123]. Similarly, Ong et al. demonstrated in
the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort that breastfeeding
might have a protective effect on early menarche in girls [124]. These studies emphasize
the complex and sometimes inconsistent role of breastfeeding in influencing the timing of
puberty, but the specific mechanisms remain unclear.

Therefore, nutritional status plays an important role in the occurrence and develop-
ment of precocious puberty, not only by affecting body weight and hormone levels but
also through indirect pathways, such as influencing the gut microbiota. In-depth research
into the role of nutritional intake in precocious puberty will help better understand the
mechanisms underlying precocious puberty and may provide valuable information for the
development of prevention and intervention strategies.

5.4. The Potential Role of the Gut Microbiota–Brain Axis in Precocious Puberty

Scientists proposed that the gut microbiota can influence brain function and behavior
through various mechanisms, including the microbiota’s immune response, metabolism,
neurotransmitters, and the gut–brain neural pathway [125]. The concept of the microbiota–
gut–brain axis has provided a new perspective for studying the pathogenesis of brain
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diseases, identifying new intervention targets, and holds promise for the concept of “treat-
ing brain diseases through the gut.” In the pathogenesis of CPP, the premature activation of
the HPGA is a critical component. Therefore, it is essential to investigate the overall effect
of the gut microbiota on the HPGA.

Existing research has found that antibiotic-induced alterations in the colonic microbiota
of piglets regulate the expression of aromatic amino acids and neurotransmitters in the
hypothalamus [126]. The gut microbiota regulates hypothalamic inflammation and leptin
sensitivity in mice fed a Western diet through a GLP-1R-dependent mechanism [127]. These
studies suggest that the gut microbiota can modulate the expression of metabolites and
neurotransmitters in the hypothalamus, as well as gene expression levels.

The gut microbiota can also impact the gonadal organs within the HPGA. The gut
microbiota and its metabolic products play a regulatory role in ovarian dysfunction and
insulin resistance associated with PCOS. PCOS patients have significantly increased levels
of common Bacteroides in their gut microbiota, while levels of glycodeoxycholic acid and
tauroursodeoxycholic acid are reduced. Mechanistically, glycodeoxycholic acid induces
the secretion of IL-22 by intestinal group 3 innate lymphoid cells through GATA binding
protein 3, thereby improving the PCOS phenotype [108]. Interventional studies have
shown that improving the content of beneficial gut bacteria can promote spermatogenesis.
Gut microbiota transplantation can increase sperm concentration by 2–3-times and sperm
vitality by approximately 10-times. At the cellular level, there is a gradual increase in the
number of cells in the seminiferous tubules, from spermatogonia to spermatocytes, round
sperms, and spermatozoa. Metabolomic and testicular metabolic profiling have shown
that fecal microbiota transplantation can improve blood metabolic products, regulate the
testicular microenvironment through the bloodstream, and promote spermatogenesis,
improving sperm count and vitality. Gut microbiota transplantation is highly specific and
does not affect all diseases in the body but specifically regulates spermatogenesis [128].

In summary, the regulatory role of the gut microbiota on both the hypothalamus and
gonads suggests that the gut microbiota may influence precocious puberty by acting on
the HPGA rather than individual organs. However, there is currently no systematic study
elucidating the impact of the gut microbiota on the HPGA, and the specific mechanisms
and potential therapeutic applications require further investigation. Understanding the
interaction between the gut microbiota and the HPGA in precocious puberty is not only
crucial for revealing its pathological processes but may also provide a biological basis for
the development of new treatment strategies.

5.5. The Potential Confounding Factors That Could Influence the Observed Associations between
Gut Microbiota and Precocious Puberty

The interplay between gut microbiota and puberty may vary significantly based on
genetic, environmental, and lifestyle factors. The genetic background accounts for approx-
imately 50–80% of the variability in pubertal onset and progression [129]. Certain ethnic
groups, notably African American and Hispanic populations, exhibit an earlier onset of pu-
berty attributed to genetic and nutritional factors [130]. Concurrently, a substantial body of
research indicates that genetic factors can also influence the human gut microbiome [131–133].
Host genetic polymorphisms and/or mutations progressively alter the gut microbiota,
intersecting with other environmental influences, leading to changes in the composition
and function of the gut microbial community [134]. Environmental factors, including
substances with the potential to interfere with the endocrine system (such as phthalates,
dioxins, polybrominated biphenyls, and polychlorinated biphenyls), appear to play a role
in influencing the timing of puberty [129,135,136]. In future research investigating the link
between gut microbiota and precocious puberty, as well as its underlying mechanisms, it is
crucial to meticulously address and control for the impact of these confounding variables.
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6. The Prospects of Microbiota-Associated Therapies
6.1. Probiotics

Probiotics have been widely used in recent years for the prevention and adjunctive
therapy of various diseases due to their non-invasive nature [137–140]. Regarding probiotic-
related research in precocious puberty, there are currently only two animal experimental
studies that have been reported. One study reported that probiotic treatment could re-
verse soy isoflavone (SI)-induced precocious puberty in female mice, possibly due to an
increased production of SCFAs brought about by changes in the gut microbiota of the
recipient mice [141]. The probiotics used in this study were commercial, consisting of live
Bifidobacterium longum, Lactobacillus bulgaricus, and Streptococcus thermophilus [141]. Another
animal experiment demonstrated that probiotic intake could reverse early maternal sepa-
ration stress-induced precocious puberty in female rats, indicating that probiotic therapy
restored the normal onset of puberty in rodents [142]. The probiotics used in this study
were also commercial, with ingredients including 95% Lactobacillus rhamnosus R0011 and
5% Lactobacillus helveticus R0052 [142]. These studies all suggest that probiotic intake has a
stabilizing effect on the timing of puberty onset in rodents, although the specific mecha-
nisms need further exploration. Furthermore, the translation of the aforementioned animal
study results to the human population requires additional clinical trial evidence. Future
research efforts should prioritize more population-based intervention studies. Simultane-
ously, current research on probiotics for precocious puberty lacks specificity and future
research should further investigate probiotics specifically related to precocious puberty for
more targeted and effective treatment.

However, concerning probiotic therapy, the alterations in the gut microbiota it induces
may be transient [143]. Several probiotic treatment trials have failed to observe significant
changes in the gut microbiota, suggesting that individuals might require an extended
treatment duration to achieve therapeutic effects. Future clinical trial research should
place greater emphasis on post-intervention follow-ups to assess the optimal intervention
duration for probiotic therapy.

6.2. Fecal Microbiota Transplantation (FMT)

FMT refers to the transfer of fecal material containing the gut microbiota from a healthy
donor to a recipient with dysbiosis, using methods, such as colonic infusion, nasogastric,
nasoenteric, or endoscopic approaches. The objective is to restore the normal diversity and
functionality of the gut microbiota [144,145]. Currently recognized as an effective treatment
for recurrent Clostridium difficile infection [146], FMT is also considered a potential therapy
for certain extraintestinal diseases, including neurodegenerative disorders, owing to the
bidirectional communication of the gut–brain axis [147,148]. Additionally, recent animal
experimental evidence suggests FMT as a potential intervention for anti-aging and altering
the life course stages [149]. This raises the question of whether FMT could also influence
the timing of puberty, a crucial life stage, providing a novel direction for the treatment of
precocious puberty. However, no studies have provided clues to date, and further research
is warranted to explore the impact of FMT on the onset of puberty in humans. Table 1
summarizes data from studies on the interaction between gut microbiota and precocious
puberty mentioned in the text. Table 2 summarizes the population studies mentioned in the
text regarding the interaction between the gut microbiota and precocious puberty, along
with an evaluation of the methodological limitations of the reviewed studies.
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Table 1. Current research on the interaction between gut microbiota and precocious puberty.

Author, Year Location Study Type Sample Details Methods Key Findings

Li et al.,
2021 [7] China Observational

study

n = 73, 27 CPP girls,
24 over-weighted girls,

22 healthy controls
16S rRNA sequencing

1. The CPP group exhibited increased α-diversity in GM, significant
elevations in Alistipes, Klebsiella, and Sutterella bacteria, enhanced
inter-bacterial correlations
2. In the CPP group, increased nitric oxide synthesis positively
correlated with FSH and insulin.

Dong et al.,
2020 [17] China Observational

study
n = 58, 25 ICPP girls,
23 healthy controls 16S rDNA sequencing

1. The ICPP group had higher GM diversity.
2. 36 candidate GM biomarkers for patients with ICPP screening were
identified.
3. The GM of the ICPP group was enriched for the microbial functions of
cell motility, signal transduction, and environmental adaptation.
4. Positive correlations were also detected between Fusobacterium and
FSH, and Gemmiger and LH.

Wang et al.,
2020 [16]

The United
States

Animal
experiment C57BL/6 mice 16S rRNA sequencing

1. Co-housing reversed early puberty induced by MHFD during
lactation through the fecal–oral route via increasing GM richness.
2. Co-housing reversed insulin insensitivity in offspring induced by
MHFD during lactation.

Wang et al.,
2022 [15] China Animal

experiment female Sprague Dawley rats 16S rDNA sequencing

SCFAs can act on Kiss1 neurons and their receptor GPR54 and then
reduce the release of hypothalamic GnRH and pituitary LH and FSH
through the PKC-ERK1/2 pathway and delay the development of the
ovary and uterus.

Bo et al.,
2022 [14] China Animal

experiment C57 mice
16S rDNA sequencing,

untargeted metabolomics
sequencing

1. HFD after weaning caused precocious puberty in mice.
2 “HFD-microbiota” transplantation promoted the precocious puberty
of mice.
3. Estrogen changes the composition and proportion of gut microbiota
and promotes precocious puberty in mice.

Cowan et al.,
2018 [142] Australia Animal

experiment Sprague Dawley-derived rats Probiotic treatment

1. Stressed females exhibited earlier pubertal onset compared to
standard-reared females, whereas stressed males matured later than
their standard-reared counterparts.
2. A probiotic treatment restores the normative timing of puberty onset
in rodents of both sexes.
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Table 1. Cont.

Author, Year Location Study Type Sample Details Methods Key Findings

Yuan et al.,
2022 [141] China Animal

experiment female c57/bl mice 16S rRNA sequencing,
Probiotic treatment

95% daidzein has the potential to advance the timing of puberty onset in
female mice, and gut microbiome can be a therapeutic target to regulate
the timing of puberty onset.

Huang et al.,
2023 [103] China Observational

study
n = 150, 91 CPP patients,

59 healthy controls

16S rRNA sequencing,
untargeted metabolomics

sequencing

1. Identified the altered microorganisms and metabolites during the
development of CPP and constructed a classifier for distinguishing CPP.
2. Revealed the nitric oxide synthesis was closely associated with the
progression of CPP and the genus Streptococcus could be a candidate
molecular marker for CPP treatment.

Abbreviations: CPP, central precocious puberty; GM, gut microbiota; ICPP, idiopathic central precocious puberty; FSH, follicle-stimulating hormone; LH, luteinizing hormone; GnRH,
gonadotropin-releasing hormone; MHFD, maternal high-fat diet; SCFAs, short-chain fatty acids; HFD, high-fat diet.

Table 2. Assessment of the quality of population studies on the interaction between the gut microbiota and precocious puberty.

Author, Year Study Type Sample Details Methods Key Findings Methodological Limitations

Li et al., 2021 [7] Observational study
n = 73, 27 CPP girls,

24 over-weighted girls,
22 healthy controls

16S rRNA sequencing

1. The CPP group exhibited increased α-diversity in GM,
significant elevations in Alistipes, Klebsiella, and Sutterella

bacteria, enhanced inter-bacterial correlations
2. In the CPP group, increased nitric oxide synthesis

positively correlated with FSH and insulin.

16S rRNA sequencing provides taxa
resolution up to the genus level and is unable

to yield information on the functional
characteristics compared to newer techniques

such as shotgun-metagenome sequencing.

Dong et al.,
2020 [17] Observational study n = 58, 25 ICPP girls,

23 healthy controls 16S rDNA sequencing

1. The ICPP group had higher GM diversity.
2. 36 candidate GM biomarkers for patients with ICPP

screening were identified.
3. The GM of the ICPP group was enriched for the

microbial functions of cell motility, signal transduction,
and environmental adaptation.

4. Positive correlations were also detected between
Fusobacterium and FSH, and Gemmiger and LH.

1. 16S rDNA cannot provide taxa information
on the functional characteristics.

2. Fecal metabolomics were not investigated.
3. Researchers did not administer and analyze

dietary questionnaires.

Huang et al.,
2023 [103] Observational study n = 150, 91 CPP patients,

59 healthy controls

16S rRNA sequencing,
untargeted metabolomics

sequencing

1. Identified the altered microorganisms and metabolites
during the development of CPP and constructed a

classifier for distinguishing CPP.
2. Revealed the nitric oxide synthesis was closely

associated with the progression of CPP and the genus
Streptococcus could be a candidate molecular marker for

CPP treatment.

1. Although 16 s rRNA sequencing was
widely used to characterize microbial
communities, it existed limitations in

explaining complete genetic information
compared to metagenomic sequencing.

2. Candidate microorganisms need to be
further cultured to judge the origin of

metabolites more accurately.

CPP, central precocious puberty; GM, gut microbiota; ICPP, idiopathic central precocious puberty; FSH, follicle-stimulating hormone; LH, luteinizing hormone.
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7. Discussion

The exact mechanisms underlying precocious puberty remain incompletely under-
stood. Identified causes include congenital and acquired central nervous system damage,
genetic changes, environmental endocrine disruptors, and premature exposure to sex hor-
mones. However, the etiology of CPP remains unclear in 74–90% of affected girls, making
it the most common form of precocious puberty [9,11,12]. The significant changes in the
gut microbiota before and after puberty suggest a relationship with sexual maturation.
Moreover, increasing observational studies indicate disturbances in the gut microbiota of
children with precocious puberty. Non-invasive treatments, such as probiotics and fecal mi-
crobiota transplantation, are increasingly being used in clinical practice to adjunctively treat
gastrointestinal diseases [150] (such as ulcerative colitis, Crohn’s disease, irritable bowel
syndrome, etc.), brain–gut axis-related neurological diseases [151–153] (such as Parkinson’s
disease, Alzheimer’s disease, anxiety, depression, autism, etc.), and endocrine system and
immune system diseases [154,155] (such as diabetes, obesity, lupus, rheumatoid arthritis,
allergies, etc.). This suggests that focusing on the mechanisms by which precocious puberty
interacts with the gut microbiota is a promising research area, providing a theoretical
basis for the development of specific probiotic strains or fecal microbiota transplantation
treatments for precocious puberty.

However, it is currently unknown whether the gut microbiota can affect precocious
puberty. Present studies predominantly adopt a cross-sectional approach, yielding corre-
lations with limited persuasiveness. The necessity lies in conducting longitudinal cohort
studies, offering more robust evidence with a causal direction. These studies are crucial
to comprehensively investigate the dynamics of the gut microbiota and its potential in-
volvement in the development of precocious puberty in humans. Additionally, animal
experiments can validate whether the gut microbiota can regulate precocious puberty and
elucidate the molecular mechanisms involved. Nevertheless, evidence from animal studies
may not precisely replicate human physiology and pathology. Therefore, clinical trials are
imperative to elucidate the causal association between the gut microbiota and precocious
puberty in humans.

Building upon prior research, this paper suggests several novel avenues for investigat-
ing the interaction between gut microbiota and precocious puberty. First, the interaction
between the gut microbiota and precocious puberty mainly occurs through four path-
ways: microbiota metabolism, microbiota–hormone interactions, microbiota nutritional
status, and microbiota–HPGA interactions. These pathways are closely related, and future
research should combine nutritional status, microbiota metabolism products, hormone
regulation, and HPGA interactions to systematically elucidate the potential homeostatic
system between the gut microbiota and precocious puberty. This will further enhance our
understanding of the pathological mechanisms of precocious puberty. Secondly, probiotics
and fecal microbiota transplantation (FMT) emerge as potential non-invasive treatments
for precocious puberty. While the application of probiotics in treating precocious puberty
is currently limited to animal experiments, we posit that future investigations should
prioritize additional clinical experiments to further explore the therapeutic potential of
probiotics for precocious puberty.

However, there are also limitations to this study. This narrative review, lacking specific
criteria for evaluating the quality of population studies, has subjective inclusion and
exclusion criteria for the literature. Therefore, in the future, there should be an effort to
conduct systematic reviews in this field to the greatest extent possible.

8. Conclusions

In conclusion, the current research preliminarily confirms a correlation between pre-
cocious puberty in humans and the gut microbiota. Animal studies have shown that
specific gut microbiota and their metabolites can reverse precocious puberty in rodent
models. However, the causal effects and underlying interaction mechanisms between
human precocious puberty and gut microbiota remain to be elucidated. This narrative
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review summarizes the potential molecular mechanisms mentioned in existing studies
and proposes potential microbiome-related therapeutic approaches for precocious puberty.
Future population studies are needed to clarify the causal relationship between the gut
microbiota and human precocious puberty, as well as to elucidate their potential interaction
mechanisms. Concurrently, clinical trials exploring specific probiotics and their metabo-
lites for children with precocious puberty could provide new insights for non-invasive
treatment options.
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