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Abstract: One practice for handling farm dairy effluent (DE) comprises recycling them to the soil
with the challenge of balancing the tradeoff associated with environmental pollution through nutrient
and microorganism loading. This study investigated seasonal bacterial community composition,
diversity, abundance, and pathogenic indicators in untreated (Raw) and lagoon-stabilized (Lagoon)
DE. The correlation between bacterial profiles and DE physicochemical characteristics was also
analyzed. Pathogen-indicator bacteria were studied by enumerating viable counts and the bacterial
community structure by 16S rRNA gene sequence analysis. Lagoon storage effectively reduced
total solids (64%), suspended solids (77%), organic carbon (40%), and total nitrogen (82%), along
with total coliforms, Escherichia coli, and enterococci. However, this efficiency was compromised
in winter. Lagoon and Raw sample bacterial communities presented different compositions, with
several environmental variables correlating to microbial community differences. Lagoon-treated DE
exhibited the most diverse bacterial community, dominated by Firmicutes (40%), Proteobacteria (30%),
and Bacteroidota (7.6%), whereas raw DE was mainly composed of Firmicutes (76%). Regardless of
the season, dominant genera included Trichococcus, Romboutsia, Corynebacterium, and Paeniclostridium.
Overall, the study emphasizes the importance of lagoon treatment for DE stabilization, showcasing
its role in altering bacterial community composition and mitigating environmental risks associated
with pathogens and nutrients, particularly in summer.

Keywords: facultative stabilization lagoon; 16S rRNA sequencing; pathogen indicators;
physicochemical composition; environmental risk

1. Introduction

Farm dairy effluents (DE), the wastewater produced from washing down the dairy
holding yards during and after milking, is generally managed in South America through
direct application to pasture as a fertilizer (raw) or following partial treatment in stabiliza-
tion lagoons [1]. The development of a circular economy led to the recycling of organic
materials in the farm to complete nutrient and C cycles in the system [2]. Nevertheless,
careful management is required to use the effluent nutrient and water resources effectively,
avoiding environmental impacts. One matter of concern in using DE as liquid organic
fertilizer is its potential microbial pollution, as manure is a reservoir for many microbial
populations, including pathogens, which can cause contamination and harm public and
animal health [3].

Dairy production intensification entails high volumes of effluents, which must be
treated and stored for efficient use as fertilizer for crop and pasture production. There
is a higher risk of pathogen transfer into the food chain when fresh manure is applied
to the land than when waste is stored in lagoons, among other reasons to decrease the
pathogen number [4]. Two-stage stabilization lagoons (anaerobic followed by facultative
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lagoon) are one of the most common effluent management systems due to their low
operation and maintenance costs in treating dairy effluent to remove significant amounts of
suspended solids and organic contaminants [5]. However, this treatment may be ineffective
in removing N and P and decreasing the number of bacterial indicators [6], potentially
allowing prolonged survival of fecal indicators and opportunities for frequent reinoculation
from recurring inputs to effluent storage [7,8].

Generally, the surface application of DE (tanks or irrigation pumps) occurs consistently
throughout the year [1], although one of the challenges of DE reutilization as a pasture N
supplier is its variable composition, complicating the prediction of its agronomic value [9].
Compositional variations in DE are likely due to the time of milking, age and breed of
the herd, feed quality, wash-water management, time relative to lactation, and seasonal
variations [6,10]. To assess the benefits and potential threats in the land application of DE
to the environment, it is imperative to quantify the temporal variation in its nutrients and
contaminants [11].

More information is needed on the microbial community composition and diversity
of untreated and lagoon-stabilized DE and its seasonal variability. Other studies have pro-
posed that the impact and the survival rate of microbes from manure waste-based products
on soil microbiomes largely depend on the type of treatment applied to manure [12]. Many
studies focus on environmental risk assessment by studying antibiotic-resistant bacteria or
their genes. Still, some studies propose that the microbial community of manure waste-
based products carries beneficial microorganisms with potential use as biofertilizers [13,14].
Thus, it is essential to expand this knowledge to fully understand how the DE application
to land impacts soil microbial dynamics.

There is scarce information regarding the bacterial composition, diversity, and abun-
dance of South American DE, either raw or lagoon-treated. Irazoqui et al. [15] recently
analyzed the microbial communities of two serial full-scale stabilization lagoon systems
using whole genome shotgun sequencing. The functional analysis of the genomes revealed
the central metabolic pathways and attributed them to several key organisms.

The knowledge of DE bacterial composition may help to elucidate ecological and envi-
ronmental issues as a potential invasion of these microbes into the resident soil microbial
community, especially since there is much concern about raw DE pathogenic contami-
nation. This work aimed to assess the microbial community and pathogenic bacterial
indicator differences between raw and lagoon-stabilized DE, and to determine the vari-
ability with the season and the physicochemical characteristics of DE. We hypothesize that
(1) raw and lagoon DE harbor different bacterial communities and potential pathogenic
risk, and (2) these bacterial communities and pathogenic indicators change in response to
the seasonal variability and physicochemical characteristics of DE.

2. Materials and Methods
2.1. Dairy Effluent Collection and Farm Characteristics

DE was collected from the dairy farm of Centro Regional Sur, Faculty of Agronomy
(Universidad de la República), with geographic coordinates 34◦36′47.83” S and 56◦12′54.00” W.
Samples were collected on 5 September 2019, 7 November 2019 (spring–summer season),
11 May 2020 (autumn), and 18 August 2020 (winter), with mean seasonal water temperatures
of 21.8, 26.4, 19.0, and 13.7 ◦C, respectively. Throughout the study, the farm ran a milking herd
of 200 cows that grazed temperate pastures year-round.

The farm site’s effluent management system comprises a conventional two-stage dairy-
shed waste-stabilization lagoon system (an anaerobic and a facultative lagoon operated
in series) with a solid trap for effluent pretreatment. The system received the effluent
generated by flushing the milking parlor and holding yard and chemically cleaning the
milking machinery with sodium hypochlorite. The raw DE (Raw) was collected immedi-
ately after the cleaning from a holding tank (for solid trap) into a 2 L sterile container. The
liquid portion undergoes gravimetric flushing into the two stabilization lagoons operated
in series, with a hydraulic retention time of 119 days. The lagoon DE (Lagoon) was collected
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in a 2 L sterile container 15 cm below the surface from four different cardinal points at
the facultative lagoon of 711 m3 volume and then composited. Three composite replicate
samples were obtained from each type of DE and stored refrigerated at 4 ◦C (chemical
analyses) or frozen at −20 ◦C (molecular analyses).

2.2. Characterization of Dairy Effluents

The pH and electric conductivity (EC) were measured in a mixture of effluent and
deionized water (1:2.5 v/v) through potentiometry. Total solids (TS) and suspended solids
(SS) were assessed gravimetrically following Standard Methods 2540 [16]. Total organic
carbon (TOC) was measured via oxidation using potassium dichromate, following Mebius’
technique [17]. Total nitrogen (TN) was analyzed by the Kjeldahl method [18]. Ammoniacal
N (NH4

+-N) was extracted using a 2 M KCl solution and quantified by colorimetric analysis
according to Rhine et al. [19]. By subtraction, organic N concentration (Norg) was deduced
from total Kjeldahl and NH4

+.
To determine elements P, K, Ca, Mg, and Na, samples were treated with HCl (20%)

and calcined at 550 ◦C for 5 h. Total P was determined by the molybdate blue method with
ascorbic acid [20]. Ca and Mg were determined by atomic absorption spectrometry, while
K and Na were determined by atomic emission spectrometry [21].

2.3. Quantification of Pathogenic Bacterial Indicators

A 2 L subsample from each DE was transported on ice to the laboratory for immediate
analysis. Total coliforms, E. coli, and enterococci numbers were determined by a ten-fold
dilution series of 10 mL of each DE in 90 mL of 0.01 M phosphate buffer followed by
agitation for 30 min in an orbital shaker at 200 rpm. The diluted samples were triplicated
on 3M™ E. coli/Coliform Petrifilm™ or Chromocult Enterococci agar (Merck, Darmstadt,
Germany). After incubation at 37 ◦C for 24 h, characteristic blue colonies were counted
as E. coli and red ones as total coliforms (CFU/100 mL) or incubated at 41 ◦C for 24 h to
enumerate enterococci.

2.4. Dairy Effluents DNA Extraction and 16S rRNA qPCR and Gene Amplicon Sequencing

An aliquot of 100 mL of each DE sample was centrifuged at 10,000× g for 10 min at
room temperature to obtain pellets. Following the manufacturer’s instruction, total DNA
was extracted using the PowerSoil® DNA Isolation kit (Qiagen®, Hilden, Germany) from
0.25 g fresh weight (FW) of each centrifuged sample of the DE. The DNA concentration
and purity were determined with NanoDrop® 2000c UV–vis spectrophotometry (Thermo
Scientific, Waltham, MA, USA). The extracted DNA samples were stored at −20 ◦C before
analysis.

Quantitative real-time PCR (qPCR) of the copy number (abundance) of total bacteria
was conducted with forward primer 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and the
reverse primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′) with 300 bp in length. An
initial incubation of 5 min at 95 ◦C was followed by 30 cycles of 30 s at 95 ◦C, 45 s at the
annealing temperature of 55 ◦C, and 50 s of extension at 72 ◦C.

The bacterial community composition was determined based on the variable V3-V4 region
of the 16S rRNA gene sequencing with forward primer 341F (5′-CCTACGGGNGGCWGCAG-
3′) and the reverse primer 805R (5′-GACTACHVGGGTATCTAATCC-3′). Amplicon library
preparation was performed using the DNA extracted from each DE sample and then sequenced
by the Illumina MiSeq platform (Illumina, San Diego, CA, USA) at Macrogen Inc. Company,
Seoul, Republic of Korea. The generated data (accession number SUB14171358) was processed,
demultiplexed, and quality-controlled using the DADA2 pipeline [22] with the “consensus”
method to remove any remaining chimeric and low-quality sequences. The taxonomic identifi-
cation (with 99% similarity) was performed using the SILVA database (v. 138) [23]. The data
were then analyzed in R using the Microeco package [24].
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2.5. Statistical Analysis

Data were analyzed in R version 4.1.0 (R Core Team, 2019). One-way analysis of
variance (ANOVA) for DE physicochemical characteristics and microbial indicators was
performed to evaluate the effect of DE type or sampling date (seasonal effect). To define the
statistical significance of the mean, Fisher’s LSD post hoc test was performed with a 95%
degree of confidence (p < 0.05). The Chao1 and the Shannon diversity indexes were used
to investigate bacterial community richness and evenness. β-diversity comparisons were
completed to evaluate communities using the Bray–Curtis index distance method. Visual
differences among DE type and sampling date were determined using principal coordinate
analysis (PCoA). Statistical differences in β-diversity among DE bacterial communities
were tested with PERMANOVA (permutational multivariate analysis of variance) [25],
and the PERMANOVA assumption of equal variance between groups was tested with
PERMDISP (permutational analysis of multivariate dispersions) [26] by using the Vegan
package in R [27].

The LEfSe (linear discriminate analysis effect size) algorithm identifies the most biolog-
ically informative features (for example: organisms, genes, or pathways) that consistently
explain differences between microbial communities by emphasizing statistical significance,
biological consistency, and effect relevance [28]. This study used the LEfSe algorithm to
identify microbes that characterized the differences between DE types.

To determine the associations among bacterial genus relative abundance and the
physicochemical parameters of DE, redundancy discriminant analysis (RDA) was per-
formed by using the Vegan package in R [27].

3. Results
3.1. Farm Dairy Effluents Physicochemical Characterization

The physicochemical characteristics of the inlet DE (Raw) and the treated DE (La-
goon) in a two-lagoon storage system were evaluated through seasonal sampling (Table 1).
Throughout the study period, there was considerable variation in the physicochemical pa-
rameters of the Raw relative to Lagoon DE samples (Table S1). Raw exhibited a pH ranging
from 6 to 8.5, while Lagoon was consistently slightly alkaline, 7.8 on average. In the coldest
seasons (May and August, for the South Hemisphere), Lagoon had significantly higher pH
than Raw, whereas the reverse was observed in September; no significant difference was
noted in November (Table 1). Electrical conductivity (EC) again exhibited greater variability
in Raw, ranging from 1.8 to 6.9. The highest EC value for Lagoon, around 2.6, was recorded
in November sampling. Significant differences in EC between the DE types were observed
only in November and May.

Table 1. Physicochemical characteristics of the farm dairy effluents obtained immediately after
washing off the milking parlor (Raw) or from the lagoon storage system (Lagoon) at four seasonal
sampling dates (n = 3 ± S.E).

mg L−1

Month Effluent pH EC (mS
m−1) TS (%) SS (%) Corg TKN NH4

+-N P K+ Na+ Mg2+ Ca2+

September Raw 8.5 ± 0.0 a 2.4 ± 0.0 a 0.8 ± 0.4 a 0.8 ± 0.4 a 514 ± 80 a 800 ± 39 a 216 ± 23 a 16 ± 1 b 722 ± 88 a 217 ± 17 a 100 ± 26 a 197 ± 61 a
Lagoon 7.7 ± 0.0 b 2.1 ± 0.1 a 0.1 ± 0.0 b 0.1 ± 0.0 b 359 ± 12 b 137 ± 14 b 87 ± 15 b 38 ± 1 a 150 ± 18 b 144 ± 17 b 31 ± 4 b 48 ± 5 b

November Raw 8.2 ± 0.4 a 6.9 ± 1.2 a 0.3 ± 1 a 0.3 ± 1 a 643 ± 35 a 538 ± 11 a 332 ± 47 a 84 ± 19 a 436 ± 107 a 131 ± 28 a 46 ± 9 a 76 ± 15 a
Lagoon 7.7 ± 0.0 a 2.3 ± 0.1 b 0.1 ± 0.0 b 0.1 ± 0.0 b 414 ± 19 b 95 ± 7 b 39 ± 1 b 36 ± 3 b 156 ± 13 b 75 ± 8 b 26 ± 3 b 47 ± 5 b

May Raw 7.3 ± 0.0 b 4.8 ± 0.1 a 0.6 ± 0.1 a 0.6 ± 0.1 a 736 ± 145 a 539 ± 9 a 75 ± 10 a 101 ± 5 a 277 ± 21 a 226 ± 19 a 73 ± 5 a 87 ± 5 a
Lagoon 7.8 ± 0.1 a 3.8 ± 0.0 b 0.1 ± 0.0 b 0.1 ± 0.0 b 275 ± 18 b 88 ± 2 b 37 ± 1 b 24 ± 4 b 224 ± 27 a 157 ± 15 b 38 ± 6 b 32 ± 6 b

August Raw 6.0 ± 0.0 b 1.8 ± 0.0 a 0.1 ± 0.0 a 0.1 ± 0.0 a 890 ± 22 a 281 ± 17 a 19 ± 1 b 19 ± 2 b 69 ± 4 b 16 ± 1 b 8.3 ± 1 b 15 ± 1 b
Lagoon 8.1 ± 0.0 a 2.3 ± 0.4 a 0.2 ± 0.0 a 0.2 ± 0.0 a 573 ± 42 b 231 ± 5 b 53 ± 4 a 26 ± 2 a 92 ± 12 a 52 ± 7 a 17 ± 2 a 23 ± 3 a

Different letters for each parameter indicate significant differences at p < 0.05 between Raw and Lagoon dairy
effluents at each sampling date.

Raw DE generally presented a higher percent of TS and SS compared to Lagoon DE,
with significant variability across sampling dates ( Tables 1 and S1). The TS in Raw ranged
from 0.3 to 2.3% and SS from 0.1 to 0.8%, whereas Lagoon DE levels were around 0.3%
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and 0.1%, respectively. Following stabilization in the lagoon, the TS and SS in the DE were
substantially reduced, except for winter sampling.

Despite the seasonal variations, the lagoon-stored DE consistently demonstrated
significantly lower TOC and TN than the raw DE. The reduction in TOC averaged around
40%, and for TN, it was around 82%, except for the August sampling, which accounted
for less than 20% of TN removal. Accordingly, NH4

+ content in winter sampling was
notably higher in Lagoon than Raw; however, this trend was reversed in the other three
sampling dates. Organic N fluctuated between 38% and 93% of the total N in Raw and
36 to 77% in Lagoon. The highest % organic N/Total N corresponded to the coldest
sampling date (August).

P content in Raw was highly variable, ranging 16–19 mg/L in September and August
to 84–101 mg/L in November and May, whereas the total P in Lagoon ranged between
24 and 38 mg/L. Significantly higher P content in Lagoon was observed in September and
August, while the highest P content for Raw was accounted for in November and May. In
September, November, and May, Raw had higher cation content than Lagoon, but again, in
winter sampling, Lagoon accounted for the highest cation content (Table S1).

When considering the seasonal effect of the physicochemical characteristics of DE
(Table S1), Raw DE generally exhibited its lowest nutrient content in winter sampling. The
highest difference in TN and cation content for Raw was observed between the winter and
spring sampling dates. Conversely, the TOC was higher in winter than in spring. Lagoon
DE also had higher TOC in winter, significantly higher than for the rest of the sampling
dates (Table S1), and TN was also significantly higher in winter. However, the cation
content in Lagoon decreased in winter sampling relative to the other three sampling dates.

3.2. Quantification of Pathogenic Indicator Bacteria in Farm Dairy Effluents

The total coliforms, E. coli, and enterococci numbers were detected at higher levels in
Raw than in Lagoon DE (Figure 1). The maximum difference in total coliform and E. coli
was observed in August (winter), with 108 CFU 100 mL−1 and 106 CFU 100 mL−1 for Raw
and Lagoon DE, respectively. Conversely, the maximum differences in enterococci were
observed for September and November (spring–summer) with an average concentration of
107 CFU 100 mL−1 and 102 CFU 100 mL−1 for Raw and Lagoon DE, respectively.
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Figure 1. Numbers of E. coli (a), total coliforms (b), and enterococci (c) in the Raw and Lagoon
dairy effluent samples (Log10 CFU/100 mL) at four sampling dates (September, November, August,
and May) (n = 3 ± S.E). The length of each box represents the interquartile range IQR = Q 3 − Q 1;
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Considering seasonal sampling, the highest counts of E. coli and total coliforms in Raw
DE were recorded in winter (August sampling), and the lowest was accounted for in spring
(September sampling). Similar patterns were observed for Lagoon DE, with E. coli and
total coliforms significantly elevated in winter but not differing significantly from summer
levels. Enterococci were near undetectable in Lagoon DE in spring–summer samplings
(<102 CFU 100 mL−1) but markedly increased in autumn. In contrast, enterococci count in
Raw DE was the lowest in winter, and significantly higher counts were recorded in autumn
(May sampling) and spring (p < 0.05).

3.3. Bacterial Abundance, Composition, and Diversity of Farm Dairy Effluents

During the winter sampling, a higher abundance of bacterial copies was recorded
for both DE types, and only at this sampling date were the bacterial 16S rRNA gene copy
numbers significantly higher in Lagoon than in Raw DE (Figure 2). Bacterial copy numbers
of Lagoon ranged from 4.3 × 1010 to 5.9 × 1011 copies 100 mL−1, whereas Raw DE ranged
from 5.3 × 1010 to 2.3 × 1011 copies 100 mL−1.
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Figure 2. The gene copy numbers for bacterial 16S rRNA in the Raw and Lagoon dairy effluent
samples at four sampling dates: August, May, November, and September. The length of each box
represents the interquartile range IQR = Q 3 − Q 1, and the horizontal line is the median value;
* p < 0.05, ns: not significantly different.

Sequencing of the 16S rRNA V3-V4 region generated sequence reads from 24,582 to
39,412 with an average of 32,053 for Lagoon DE. For Raw DE, sequence reads varied from
13,461 to 40,616, averaging 27,451. In the Lagoon DE, the most abundant phylum was
Firmicutes (40%), followed by Proteobacteria (30%) and Bacteroidota (7.6%), while in Raw,
the phylum Firmicutes accounted for 76% of the total relative abundance, followed by
Actinobacteriota (10%) (Figure S1).

A heat map of the top 40 genera in a total of 6392 ASVs is shown in Figure 3. Four gen-
era comprised about 30% of the bacterial genes in the DE (Lagoon and Raw): Trichococcus
(16–20%), Romboutsia (4–8%), Corynebacterium (1–8%), and Paeniclostridium (2–6%). Other



Microorganisms 2024, 12, 305 7 of 16

abundant genera in Raw were Lactococcus and Enterococcus, accounting for 4 and 5%, respec-
tively, while they were marginally detected in Lagoon samples. Certain genera exhibited
noticeable seasonal variations in relative abundance. Specifically, Jeotgalibaca, Psychrobacter,
Exiguobacterium, and Planococcus were more abundant in Lagoon during autumn (May)
and winter (August) samplings than in spring–summer (September–November) samplings.
In the Raw winter samples, however, Weisella and Paucilactobacillus had higher relative
abundance, while Jeotgalibaca had lower relative abundance than the other sampling dates.
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Figure 3. Microbial community heat map of the 40 most abundant genera in the Lagoon and Raw
dairy effluent samples at four sampling dates: September and November (spring–summer), May
(autumn), and August (winter).

The PERMDISP analysis revealed no significant difference in dispersion from Raw
and Lagoon and the sampling dates (p > 0.05). This suggests homogeneity of variance,
indicating that differences in α- and β-diversities primarily resulted from dissimilarity
rather than dispersion between DE type and sampling dates. Regardless of the sampling
date, Lagoon DE had a significantly higher α-diversity than Raw DE (Figure 4a,b). Within
each sampling date, November sampling (spring–summer) had significantly higher Chao1
and Shannon indexes than the other sampling dates (Figure 4c,d). In contrast, the August
sampling had the lowest α-diversity indexes.

PCoA plots, using a Bray–Curtis distance matrix, also showed that bacterial commu-
nities grouped into two clusters (Figure 5, PERMANOVA R = 0.77, p < 0.05). The first
two principal coordinates, PC1 and PC2, explained 22.8% and 15.4% of the data variation,
respectively, clearly separating the communities of Raw from Lagoon. The separation of
bacterial communities by sampling date was also visible in the PCoA (Figure 5). For Raw,
the bacterial community was segregated into the spring–summer (September–November)
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and the autumn–winter (May–August) clusters. For Lagoon, however, the September
sampling grouped with August, while the May and November sampling were distant from
them and between each other.
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Figure 4. Bacterial richness (Chao1 index) and evenness (Shannon index) according to the type
of farm dairy effluent (Raw or Lagoon) (a,b) or the sampling date (c,d); Aug: August, May, Nov:
November, Sep: September. Different letter indicate significant differences at p < 0.05 between Raw
and Lagoon dairy effluents or between sampling dates.
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The LEfSe analysis was carried out to identify the genera that predominantly con-
tribute to explaining the greatest differences between bacterial communities of Lagoon
and Raw DE (Figure 6). Among the 129 genus/ASVs that showed significant changes in
their relative abundances, 13 were particularly representative of Raw DE, encompassing
Firmicutes (Weissella, Lactococcus, Romboutsia, Enterococcus, Paeniclostridium, Atopostipes,
Facklamia, Streptococcus, Clostridium sensu stricto 1, UCG-005), Actinobacteriota (Corynebac-
terium and Bifidobacterium), and Cyanobacteria (Planktothrix NIVA-CYA 15). Within Raw
DE, Corynebacterium, Lactococcus, and Weissella emerged as the most significant genera (LDA
score ≥ 4.4), whereas, Proteobacteria (Thauera, GKS98 freshwater group, Novosphingobium,
Thiocapsa, Hydrogenophaga, Ottowia), Actinobacteriota (CL500-29 marine group), Verrucomi-
crobiota (Luteolibacter, Prosthecobacter), Planctomycetota (Rhodopirellula), and Bacteroidota
(Pedobacter, Flavobacterium) had a greater abundance in Lagoon, with Thauera differentially
predominant (LDA score > 4.0).
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3.4. Linking Bacterial Community with Farm Dairy Effluent Characteristics

RDA was performed to elucidate the potential relationship between the bacterial
community composition and the physicochemical properties of DE (Figure 7). The re-
sults showed that the first two axes explained 60% of the total variance. Both DE types
are clustered separately, with the Raw DE generally exhibiting the highest values for the
physicochemical parameters, as outlined in Table 1. Among the factors influencing micro-
bial community composition, TOC emerged as the most significant, followed by pH, TP, K,
and TN. The Mantel test supports these findings, revealing significant correlations with
organic N, NH4, TS, SS, Na, Ca, and Mg (Table S2).



Microorganisms 2024, 12, 305 10 of 16
Microorganisms 2024, 12, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 7. Relationship between bacterial communities and physicochemical parameters of farm 
dairy effluents (Raw or Lagoon) revealed by redundancy analysis (RDA). Pink arrows: dominant 
genera; black arrows: physicochemical properties of dairy effluents. Green and orange points cor-
respond to the bacterial community of the Raw and Lagoon dairy effluent samples, respectively. 
Corg: total organic carbon, Ntot: total nitrogen, Norg: organic nitrogen, CE: electrical conductivity, 
ST: total solids, SS: suspended solids. 

Genera, including Weissella, Corynebacterium, Lactococcus, and Paucilactobacillus, were 
mainly associated with TN. In contrast, Psychrobacter, Exiguobacterium, Romboutsia, and 
Paeniclostridium were negatively correlated with TOC, TN, organic N, and pH. In con-
trast, the Paeniclostridium was correlated with TP, and Acinetobacter was correlated with 
Na content. 

4. Discussion 
4.1. Bacterial Community Composition Changed with Farm Dairy Effluent Treatment  
and Season 

The dairy industry generates large volumes of effluents that are applied to land as 
organic fertilizers throughout the year, but it is not without environmental concerns. The 
study of DE’s microbial composition, nutrient-value content, and seasonal variation is 
imperative to designing best management practices for appropriate DE disposal, and this 
matter needs to be thoroughly evaluated. This study compared the physicochemical and 
bacterial composition of untreated (Raw) from that of lagoon-stabilized DE (Lagoon) and 
their variation across seasonal sampling. Our work revealed the first insights into the 
changes in the microbial community structure of the Raw samples from that of the La-
goon samples. Notably, Lagoon DE exhibited a distinct bacterial community composi-
tion, as evidenced by the microbial ASVs, alpha diversity indices, and PCoA (Figures 
3–5). We found phyla Firmicutes and Proteobacteria almost proportionally dominant in 
Lagoon DE (40–30%), followed by Actinobacteriota and Bacteroidota (Figure S1). In con-
trast, Raw was overwhelmingly dominated by Firmicutes (76%). Those phyla were con-
sistently dominant in DE, and the bacterial community was relatively stable at the phy-

Figure 7. Relationship between bacterial communities and physicochemical parameters of farm dairy
effluents (Raw or Lagoon) revealed by redundancy analysis (RDA). Pink arrows: dominant genera;
black arrows: physicochemical properties of dairy effluents. Green and orange points correspond
to the bacterial community of the Raw and Lagoon dairy effluent samples, respectively. Corg: total
organic carbon, Ntot: total nitrogen, Norg: organic nitrogen, CE: electrical conductivity, ST: total
solids, SS: suspended solids.

Genera, including Weissella, Corynebacterium, Lactococcus, and Paucilactobacillus, were
mainly associated with TN. In contrast, Psychrobacter, Exiguobacterium, Romboutsia, and
Paeniclostridium were negatively correlated with TOC, TN, organic N, and pH. In con-
trast, the Paeniclostridium was correlated with TP, and Acinetobacter was correlated with
Na content.

4. Discussion
4.1. Bacterial Community Composition Changed with Farm Dairy Effluent Treatment and Season

The dairy industry generates large volumes of effluents that are applied to land as
organic fertilizers throughout the year, but it is not without environmental concerns. The
study of DE’s microbial composition, nutrient-value content, and seasonal variation is
imperative to designing best management practices for appropriate DE disposal, and this
matter needs to be thoroughly evaluated. This study compared the physicochemical and
bacterial composition of untreated (Raw) from that of lagoon-stabilized DE (Lagoon) and
their variation across seasonal sampling. Our work revealed the first insights into the
changes in the microbial community structure of the Raw samples from that of the Lagoon
samples. Notably, Lagoon DE exhibited a distinct bacterial community composition, as
evidenced by the microbial ASVs, alpha diversity indices, and PCoA (Figures 3–5). We
found phyla Firmicutes and Proteobacteria almost proportionally dominant in Lagoon DE
(40–30%), followed by Actinobacteriota and Bacteroidota (Figure S1). In contrast, Raw was
overwhelmingly dominated by Firmicutes (76%). Those phyla were consistently dominant
in DE, and the bacterial community was relatively stable at the phylum level; however, the
composition of dominant genera varied considerably in different seasons (Figure 3).
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Irazoqui et al. [15] performed taxonomic profiling of facultative lagoons from Ar-
gentina dairy industries, showing the dominance of phyla Proteobacteria and Actinobacte-
riota and, in less proportion, Firmicutes and Bacteroidota. Overall, there were no major
differences in dominant phyla from our study’s bacterial community of the facultative
lagoon, suggesting a core microbial selection by this treatment system (Figure S1). In
addition, this observation aligns with the findings of Pandey et al. [29], suggesting that
lagoon environments develop similar microbial profiles over time. Coinciding with our
findings, Irazoqui et al. [15] also found members of Patescibacteria, Verrucomicrobia, and
Erysipelotrichales to be in lower abundance in facultative lagoons (Figures S1 and S2).

Differential microbial community composition was also reported in a DE treatment
plant [30,31]. These studies found that Firmicutes was the dominant phylum in raw (inlet) DE,
but it decreased after lagoon treatment, while Proteobacteria increased in the anoxic–oxic zone.
This difference may be explained by the growth inhibition of many of the obligate anaerobic
members of the Firmicutes in aerobic conditions, as suggested by McGarvey et al. [31]. In
accordance, Chang et al. [32] reported that treating DE with aeration and microalga and
bacteria consortia led to the same shift in the dominance of Firmicutes to Proteobacteria. These
findings coincided with our results, suggesting that Proteobacteria is also enriched during
treatment in the facultative lagoon environment. Indeed, genera Thauera, GKS98 freshwater
group, Novosphingobium, Thiocapsa, Hydrogenophaga, and Ottowia within Proteobacteria had
the largest effect in differentiating the lagoon-treated DE from the untreated one (Figure 6).
These genera have been isolated from several sludge-based anaerobic wastewater treatment
plants and identified as key members for removing N [30,33,34].

In contrast, the genera Corynebacterium, Enterococcus, Lactococcus, and Weissella were
associated with raw DE (Figures 3 and 6), most of which can be found in raw milk and
cattle feces [35,36], which were regular inputs present in fresh effluents.

Among the genera detected, Trichococcus, Romboutsia, Clostridium senso stricto 1, and
Paeniclostridium were highly abundant in both raw and lagoon-treated DE and at all sam-
pling dates. They were also major genera frequently detected in dairy manure treat-
ments [29–31,37,38]. Most Firmicutes have higher environmental adaptability and can
degrade various complex organic materials [39]. Furthermore, members of Firmicutes and
Bacteroidota have been reported to be present in different reactors because of their ability
to degrade organic compounds into monomers [40]. In this sense, Irazoqui et al. [15] identi-
fied Bacteroidetes and Clostridiales as key members of the communities in facultative ponds
involved in polymer and amino acid metabolism, respectively. They suggest that the high
amount of carbohydrates and proteins dumped in these ponds would make Clostridiales
important community members. Other studies based on metagenome-assembled genomes
indicate that Clostridiales also could play a role in polysaccharide degradation with sub-
strates rich in cellulose [41]. A previous study also reported that biogas slurry application
enriched the genera Paeniclostridium and Romboutsia in the soil, and they were implicated
in the transmission of antibiotic resistance genes (ARGs) [42].

Additionally, some archaea families were identified in both DE in less than 0.1%
relative abundance . Methanosaetaceae, a family of archaeal acetoclastic methanogens,
occurs in Lagoon DE. This is the predominant acetoclastic methanogen in anaerobic
digestor systems [43]. Methanosphaera and Methanobacteriaceae, archaeal families of hy-
drogenotrophic methane producers, were detected in Raw DE. Methanobrevibacter, another
hydrogenotrophic or formate methane producer, was present in both the Raw and Lagoon
DE samples. Identifying these archaeal families is of particular importance, given the
interest of the dairy industry in performing anaerobic digestion for energy production [44].

This study observed seasonal changes in the composition of the bacterial community
(Figures 3–5). The bacterial diversity indices increased in the spring/summer sampling
(November, Figure 4). This increase might be attributed to the higher temperatures that
produce the fastest-growing microorganisms that accelerate organic matter decomposition.
Although our study accounted for the higher total bacterial abundance in the winter
sampling for both DE (Figure 2), another study also found the lowest bacterial richness and
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diversity to be in winter in a wastewater treatment plant [45], and higher concentrations of
microorganisms were reported in summer than in the winter in air samples collected near
the dairy sludge tanks [46].

Although the highly abundant bacterial communities did not vary with the sampling
date, some genera showed a remarkable shift between the warm and cold sampling dates.
For example, the genera Jeotgalibaca, Psychrobacter, Exiguobacterium, and Planococcus were
enriched in the Lagoon samples during autumn and winter, Acinetobacter were enriched
in autumn, while Weisella were enriched in the Raw samples (Figure 3). In contrast,
Thauera had a greater relative abundance in the warmest samplings in Lagoon, while
Jeotgalibaca decreased in Raw during the winter (Figure 3). Other studies have reported this
seasonality in the microbial community of different DE and wastewater treatment systems
and attributed these changes mostly to environmental temperatures [38,45,47].

4.2. Variability in Physicochemical Properties of Farm Dairy Effluents and Their Relation with
Bacterial Community Structure

The variation in physicochemical parameters has both direct and indirect influence
on the activities of microorganisms. In this study, the Mantel test and RDA analysis
(Figure 7) revealed that the community composition of bacteria is significantly affected
by different physicochemical parameters of DE. The main factors influencing the bacterial
community were TOC, pH, and TN content. The dominant heterotrophic bacteria belonging
to Firmicutes and Proteobacteria may be implied in the organic C and N turnover in the
DE. Indeed, as indicated in Figure 7, the highly abundant genera Weissella, Corynebacterium,
Lactococcus, and Paucilactobacillus correlated significantly with TN, indicating that they play
key roles in transforming N compounds. TN, K, Na, pH, and suspended solids have been
previously demonstrated to correlate with bacterial community structure [48,49].

The RDA analysis also revealed that the stabilization lagoon system had lower levels of
organic carbon (TOC), nitrogen (TN and organic N), solids (ST and SS), and EC (Figure 7),
accounting for the expected lagoon purposes. However, there was high variability in nutrient
removal efficiency along the seasonal sampling. For example, a lower efficiency of TN removal
(20%) at treating DE in winter was observed in the Lagoon samples (Table S1). Therefore,
considering that low temperatures decrease the activity of various microorganisms and slow
the rate of organic matter degradation, it was expected that the TOC in DE would be higher
in winter sampling and, accordingly, higher TN and lower cation content concentrations were
found in the Lagoon samples (Tables 1 and S1). Previous studies showed similar results [38,50].
Thauera species were as identified as major denitrifying bacteria that occurred in digested DE [51],
and their increase revealed in the Lagoon samples during the warmest sampling may suggest a
role in N removal, as postulated by Ren et al. [34].

4.3. Risk of Pathogen Loads from Farm Dairy Effluent

Effective management of pathogenic risks linked to DE treatment is critical for public
health. Treated effluents from lagoon storage systems may still contain pathogenic bacteria,
posing a substantial risk of transporting zoonotic pathogens from land-applied DE through
runoff [52]. Our study delves into the risks posed by untreated DE and the efficacy
of lagoon stabilization in reducing pathogen loads across varying seasons. This study
used pathogenic indicator bacteria such as E. coli, total coliforms, and enterococci as
biomarkers to infer their reduction through DE treatment. The results demonstrated an
overall significant effect of the lagoon stabilization of DE on the microbial concentration of
indicator microorganisms. As expected, the number of bacterial biomarkers was highest
in the raw DE. After lagoon stabilization treatment of the DE, E. coli and total coliform
numbers declined almost two orders of magnitude (Figure 1), but were still too high to
achieve the levels recommended by the National Council for discharging to waterways
(5.0 × 103 UFC/100 mL) [53].

The sequencing analysis of 16S rRNA revealed that raw DE had dominant genera
such as Enterococcus, Streptococcus, and other possible pathogenic bacteria such as Facklamia
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(Figure 3) [54], all of which are manure-borne microorganisms regularly detected in cattle
manures and wastewaters [4,55]. The lagoon treatment could effectively eliminate the
majority of pathogenic bacteria, as the occurrence of these genera was not detected or
was in very low abundance. Most dominant pathogenic bacteria, such as Escherichia coli
O157:H7, Salmonella, Listeria, and Campylobacter [56–58], etc., associated with cow manure
and DE, may contaminate the forage crops when applied [4]. In our study, these genera
were not identified in either type of DE).

The season had a crucial effect on the persistence of pathogenic indicators [59]. The
fact that the highest counts of E. coli and total coliforms were recorded in winter for both
types of DE indicates greater consideration should be given to its environmental impact
during winter application. Indeed, it has been shown that the mechanism of pathogen
removal in natural attenuation lagoons has been associated with effluent exposure to
sunlight as a natural source of bacterial inactivation by UV light [60], explaining the higher
performance of lagoons in summer to reduce the number of pathogen indicators. A study
conducted in covered and open swine lagoons also showed that the reduction in solar
radiation contributed to the survival of bacterial indicators [48]. However, contrary to our
findings, they reported higher counts of pathogen indicators in swine lagoons occurring in
summer and the lowest in winter, but the densities of these bacteria were more associated
with the physicochemical composition of the wastewater rather than the season.

5. Conclusions

Our results highlight the lagoon system’s effectiveness in altering bacterial community
composition and reducing pathogen indicator levels, particularly in summer.

The 16S rRNA gene sequencing analysis demonstrated that a large, diverse bacterial
population inhabits the lagoon-stabilized DE and changes with the season.

These results emphasize the importance of adopting lagoon systems as a good practice
for mitigating the risks associated with pathogen loads from DE. However, the observed
decline in treatment efficiency during winter warrants further investigation to enhance
the robustness of lagoon systems under diverse environmental conditions. Knowledge
concerning the DE microbial community composition and its functional potential is crucial
to improving the efficiency and safeness of DE stabilization and application to pastures.
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in the Lagoon and Raw dairy effluent samples at four sampling dates: August, May, November,
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