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Abstract: Fourier transform infrared spectroscopy (FTIRS) is a diagnostic technique historically used
in the microbiological field for the characterization of bacterial strains in relation to the specific
composition of their lipid, protein, and polysaccharide components. For each bacterial strain, it is
possible to obtain a unique absorption spectrum that represents the fingerprint obtained based on
the components of the outer cell membrane. In this study, FTIRS was applied for the first time as
an experimental diagnostic tool for the discrimination of two pathogenic species belonging to the
Bacillus cereus group, Bacillus anthracis and Bacillus cereus sensu stricto; these are two closely related
species that are not so easy to differentiate using classical microbiological methods, representing an
innovative technology in the field of animal health.
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1. Introduction

Bacillus cereus sensu lato is a group of Gram-positive, rod-shaped and spore-forming
aerobic bacteria that have close phylogenetic relationships and are therefore genetically
very similar. Currently, this group includes several species, but despite being extremely
similar and related, only some have an important impact on human and animal health.
Bacillus anthracis is the causative agent of anthrax, a serious infectious disease that primarily
involves herbivorous animals since they are most frequently exposed to the pathogen in
the environment [1].

In fact, B. anthracis survives for decades in a spore-forming form on soil contaminated
by the abandoned or buried carcasses of antecedently dead animals. Humans generally
acquire anthrax via contact with infected animals or from occupational or nutritional
exposure to contaminated animal products such as meat or skin [2]. In the diagnostic
field, the identification of B. anthracis is based on phenotypic and genotypic characteristics.
The strains of this species are non-hemolytic on Columbia blood agar, susceptible to
penicillin and lysed by the gamma phage [2,3]. The virulence of B. anthracis is determined
by two virulence plasmids, pXO1 and pXO2, that can be targeted by specific PCRs. The
plasmid pXO1 encodes for three proteins: protective antigen (PA), lethal factor (LF) and
edema factor (EF). Protective antigen binds to cellular receptors and mediates the entry of
the other two into the cytoplasm of the host cell. Lethal factor is a protease that cleaves
and inactivates all the protein kinases in the cytoplasm, leading to cell apoptosis and
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its response to different forms of cellular stress. Edema factor is a calmodulin (CaM)-
dependent adenylate cyclase that causes the loss of chloride ions and water from the cell,
resulting in extracellular edema [4]. Plasmid pXO2 harbors the genes that encode for
the production of a polyglutamate capsule, which allows the pathogen to evade the host
immune response by protecting itself from phagocytosis [4].

Anthrax in animals has an extremely rapid course with a fatal outcome that is charac-
terized by sudden death due to acute or hyperacute septicemia and blood leakage from
natural openings [5]. In humans, it is predominantly an occupational disease that develops
following direct contact with infected animals or their products. Human anthrax can mani-
fest itself in four clinical forms depending on the route via which the pathogen penetrates:
cutaneous (the most frequent and non-fatal), gastrointestinal, inhalation and injectional
(found in heroin addicts using drugs contaminated with Bacillus anthracis spores) [5].

Bacillus cereus sensu stricto (s.s.) is an opportunistic pathogen able of causing a
foodborne disease due to its ability to form endospores that are resistant to high cooking
temperatures and its capacity to produce toxins in a wide variety of foods. The symptoms
of gastrointestinal infections caused by B. cereus include diarrhea and vomiting, generally
acute and mild. B. cereus can also lead to some severe non-gastrointestinal infections, such
as endophthalmitis, bacteremia, septicemia, meningitis, and pneumonia [6–8].

B. anthracis and Bacillus cereus s.s. have a peculiar biological feature that allows them
to alternate between a vegetative phase and a long metabolic dormancy phase as a spore,
during which they do not replicate over long periods. Due to this slow evolution, these
microorganisms are genetically and phenotypically highly homogeneous. Therefore, in
order to characterize them, it is necessary to resort to increasingly sophisticated biomolecu-
lar methods.

In recent decades, the improvements obtained in whole-genome sequencing (WGS)
technologies and the development of increasingly sophisticated bioinformatics tools have
revolutionized the investigation of inter- and intra-species diversity, also for the Bacillus
cereus group. Although extremely effective, these techniques require long times, highly
qualified personnel and have high costs. In recent years, the differentiation of these
two species has also been performed by modern and faster approaches such as mass
spectrometry MALDI-TOF, with very promising results [9].

Fourier transform infrared (FTIR) spectroscopy is a technique that, starting from the
1980s, has been used to study and characterize various types of microorganisms (bacteria,
yeast, fungi, microalgae, viruses) [10] based on strain-specific absorbance patterns in the
infrared spectrum [11]. Through this method, it is possible to characterize microorganisms
in relation to the specific composition of their lipid, protein and polysaccharide compo-
nents [12]. Indeed, for each bacterial strain, it is possible to obtain a unique absorption
spectrum that represents the fingerprint obtained on the basis of the biomolecular com-
ponents of the cell. Notably, the IR Biotyper® (IRBT) system (Bruker Daltonics, Bremen,
Germany) based on FTIRS technology was launched in 2017 as a promising system in the
field of microbial strain typing. Multiple successful applications have been reported [13]
in the field of food, veterinary and water microbiology [14–16], as well as in hospital
hygiene [17–21] and probiotic production [22,23].

In this study, we evaluated the power of IRBT to discriminate B. anthracis and Bacillus
cereus s.s., the pathogenic bacteria belonging to the Bacillus cereus group, in typing different
strains of B. anthracis previously identified through the classical methods of molecular
epidemiology in order to detect any differences in their biomolecular (carbohydrates,
proteins, lipids) composition; this could be useful for the identification.

2. Materials and Methods
2.1. Bacterial Isolates

In this study, a total of n = 52 strains of B. cereus s. s. isolated from food and n = 104 strains
of B. anthracis collected at the Anthrax Reference Institute of Italy were tested. Regarding the
B. anthracis strains, 3 vaccine strains (Carbosap, Sterne 34F2 and Pasteur type I), 77 bacterial
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strains isolated during anthrax outbreaks that occurred in Italy from 1989 to 2020, and
25 strains isolated from environmental samples from Albania (n.4), Bangladesh (n.11), Nepal
(n. 3), Portugal (n.5) and Zambia (n.2) were included.

2.2. IR Biotyper

For IRBT analysis, isolates were grown on Tryptone Soy Agar (Liofilchem, Roseto
degli Abruzzi, Italy) and incubated overnight at 37 ◦C. A 10 µL loopful of bacterial culture
was collected and resuspended in 100 µL of distilled sterile water and incubated at 98 ◦C
for 30 min (to inactivate vegetative and spore-forming forms). Subsequently, 50 µL was
taken and added to 50 µL of 70% (vol/vol) ethanol in the Eppendorf tubes provided in
the IR Biotyper kit (Bruker Daltonics, Bremen, Germany), which contain metal cylinders;
this was vortexed to obtain a homogeneous suspension. Then, 15 µL of the bacterial
suspension was spotted onto the IRBT silicon sample plate in three replicates and dried
at room temperature. For each sample, three biological replicates (independent bacterial
cultures on different days) were analyzed. For each run, quality control was performed
with the Infrared Test Standards (IRTS 1 and 2) provided in the IR Biotyper kit (Bruker
Daltonics, Bremen, Germany).

Spectra were acquired in transmission mode in the spectral range of 4000–500 cm−1

(mid-IR) using an IR Biotyper spectrometer (Bruker Optics-Daltonics, Bremen, Germany)
and OPUS software v7.5 (Bruker Daltonics, Bremen, Germany). The IR Biotyper software
(V 4.0) (Bruker Daltonics, Bremen, Germany) was used to process and analyze the acquired
spectra. After acquisition, the spectra were vector-normalized using the Savitzky—Golay
algorithm, and the second derivative over 9 datapoints was calculated. An exploratory
data analysis was performed using PCA (principal components analysis) and LDA (linear
discriminant analysis). Preliminary checks were carried out to determine which wavenum-
bers provide the greatest discriminatory power in the differentiation of B. anthracis from B.
cereus s.s., as well as to discriminate the B. anthracis vaccine strains from the pathogenic
field ones. As LDA is a supervised method, it requires the assignment of a group identifier
to define the classes to be differentiated and should be checked for overfitting. An LDA
model was built using 50% of the strains (randomly selected) for its training, assigning the
species as a group identifier. The robustness of the model was checked using the remaining
strains, which were not assigned a group identifier. For the vaccine strains, as they are
single isolates, the spectra were split between a training and testing set.

Furthermore, machine learning was evaluated to develop and test a classifier for the
delineation of the five classes included in this study (B. anthracis field strains, B. anthracis
Carbosap, B. anthracis Sterne 34F2, B. anthracis Pasteur type I, and Bacillus cereus s.s.). Artificial
neural network (ANN) and support vector machine (SVM) algorithms were investigated. The
training and testing sets were the same as those described above for the LDA model.

3. Results

The region of the IR spectrum that proved to be the best for the discrimination of B.
anthracis/B. cereus isolates was found to be the region 1300–700 cm−1, corresponding to the
absorption wavenumbers of polysaccharides and fingerprint (Figures S1 and S2).

An exploratory data analysis performed with PCA/LDA showed that B. anthracis and
the Bacillus cereus s.s. form two well-separated clusters (Figure 1). It should be noted that
information about the species is not part of the supervised model (the group identifier is
the isolate).

The LDA model proved to be very robust and showed a very good separation between
B. anthracis and B. cereus s.s. The test spectra (represented by crosses) were correctly
clustered in the group to which they belong (Figure 2).

Further, the B. anthracis vaccine strains were found to be distinguishable from the field
strains (Figure 3).

The LDA model also proved to be very robust regarding the separation between the B.
anthracis vaccine strains, B. anthracis field strains and B. cereus s.s. (Figure 4).
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symbols) and B. cereus s.s. (red symbols), and the isolate for the B. anthracis vaccine strains (yellow,
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dataset). Crosses represent the test spectra, which were not used to build the model. The ellipses
correspond to the 95 CI.

Both machine learning algorithms that were investigated (ANN and linear SVM) showed
a very good performance, with SVM being slightly superior (100% vs. 99%)—Figure 5.
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cereus s.s.

4. Discussion

Developing extremely sensitive, rapid, and effective protocols for typing microorgan-
isms and reconstructing the epidemiology of an outbreak could be important for reducing
the time and cost of analysis that traditional methods require.

The efficacy of FTIRS in identifying bacteria in comparison with DNA-based tech-
niques has been largely demonstrated [21,24]. Although WGS remains the most powerful
approach used to characterize strains accurately [25,26], it requires time and highly quali-
fied personnel. In contrast, FTIRS was developed as an easy, fast, and cost-effective method
able to type different microorganisms belonging to the same species, with the main objective
being to carry out the outbreak investigation in real time.

To the best of our knowledge, the present study was the first to evaluate the ability
of IRBT to typify B. anthracis and Bacillus cereus s.s., in order to provide relevant feedback
on the usefulness of this new diagnostic tool. From the preliminary results of this study,
IRBT showed the ability to successfully differentiate B. anthracis from Bacillus cereus s.s.
Furthermore, the three vaccine strains are clearly separated from each other, as well as from
the field pathogenic strains of B. anthracis in the multidimensional spectral space. This is
presumably related to the fact that the changes in the molecular structures exhibited by the
vaccine strains compared to the pathogenic strains are detectable via FTIR.

The application of an artificial intelligence algorithm classifier for the discrimination of
B. cereus, B. anthracis field strains and B. anthracis vaccine strains to be created; this could be
implemented in routine analysis for a quick and prompt identification of unknown strains.

The next goal will be to explore the potential application of IRBT in the clustering
analysis of pathogenic strains of B. anthracis to verify the overlap with the results obtained
with MLVA and WGS. Furthermore, the possible application of this method in the discrim-
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ination of B. anthracis from other closely related species belonging to the Bacillus cereus
group will be studied.

In conclusion, the advantages of IRBT include its ease of use, its fast response time
with a relatively high discriminating power, and its low operating costs in comparison to
molecular typing methods. For these reasons, IRBT could represent a good solution for the
surveillance and typing of microorganisms, including B. anthracis, in addition to the most
used genetic methods such as WGS.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms12010183/s1, Figure S1. Second derivatives of infrared
spectra of all isolates in the wavenumber range from 4000 to 500 cm−1; Figure S2. Second derivatives
of infrared spectra in the wavenumber range 1300–700 cm−1.
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