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Abstract: Infective endocarditis due to Kingella kingae is a rare but serious invasive infection that
occurs mostly in children. Recent advances in nucleic acid amplification testing as well as in cardiac
imaging have enabled more accurate diagnosis. A good understanding of the epidemiology and
virulence factors remains crucial to guide the therapeutic approach. Here, we synthesize the current
state of knowledge on epidemiological features, pathophysiological insights, complications, and
therapy regarding Kingella kingae endocarditis in children and adults. Finally, throughout this
comprehensive review, knowledge gaps and areas for future research are also identified.
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1. Introduction

Kingella kingae (K. kingae) is a facultative anaerobic, β-hemolytic, encapsulated organ-
ism belonging to the Neisseriaceae family of Gram-negative bacteria that yields positive
oxidase and negative catalase reactions [1–3]. Since the early 1990s, advances in culture
and molecular diagnostic methods have significantly improved K. kingae detection, leading
to its recognition as an important cause of invasive infection in children [4–6]. Epidemio-
logical studies have shown that K. kingae belongs to the commensal flora of the oropharynx
of healthy children aged 6 months to 4 years and is carried by 10–12% of children aged
12 to 24 months [5–7]. While most children with K. kingae pharyngeal carriage remain
asymptomatic, the reported annual incidence of invasive infections reaches 9.4 cases per
100,000 children [8]. Although K. kingae is widely recognized as a frequent cause of pedi-
atric osteoarticular infections and bacteremia, it has also been associated with pneumonia,
meningitis, peritonitis, and infective endocarditis (IE) [4,9,10]. Infective endocarditis is a
major clinical challenge associated with high mortality and morbidity [11,12]. In adults,
the estimated incidence of IE is 13.8/100,000 subjects per year [11,13]. In the pediatric pop-
ulation, the reported incidence is lower, ranging from 0.45 to 0.84/100,000 subjects per year,
but with an upward trend being observed in recent years [12,14–18]. K. kingae is a rare cause
of IE typically affecting children and is associated with a high rate of complications [19,20].

In this article, we sought to review the current state of knowledge on the physiopatho-
logical, epidemiological, and clinical features of IE due to K. kingae, as well as discuss
diagnostic issues and treatment strategies.
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2. Pathogenicity

Invasive infections including IE require several pathophysiological steps. First, K.
kingae must colonize the host’s oropharynx, and therefore adhere to the respiratory epithe-
lium. Afterward, a breach in the epithelial barrier is required to allow the organism to enter
the bloodstream where dissemination to distant sites can take place. Several pathogenic
characteristics of K. kingae such as pili, exotoxin, polysaccharide capsule, and galactan
exopolysaccharide seem to be essential for the bacteria to survive in the intravascular
compartment as well as in various body sites such as endocardium [21], and these are
detailed hereafter.

Adherence and motility are mainly mediated by the type 4 pili (T4P) and a trimeric
autotransporter named Kingella Nhha homolog (Knh). The T4P are filamentous surface
fibers that are of paramount importance for various virulence factors such as surface
twitching motility, adherence to human cells, and competence for transformation, that
enables the uptake of exogenous DNA [6,21,22]. The PilA1 gene encodes for the major pilin
subunit and is therefore needed for T4P genesis [22]. Furthermore, the level of piliation
has been shown to vary among various K. kingella strains and also within a single strain
subculture as well [22]. The piliated strains exhibit a high level of adherence to the epithelial
and synovial cells. Interestingly, bacteria isolated from patients with IE are non-piliated,
while the strains associated with bacteriemia without a focal infection exhibit T4P. This
suggests that piliation is not required to invade endocardium [6,22]. Moreover, adherence
is significantly enhanced by Knh, which has been shown to exhibit a stronger adhesive
effect than T4P when considered separately and under shear stress [21–23]. In addition to
adherence, T4P filaments are also capable of retraction, an ability necessary for twitching
motility and natural competence. Two cytoplasmic enzymes (PilT and PilU) remove PilA1
subunits from the base of the filaments, enabling T4P dynamic retraction [23].

Once the respiratory epithelium is colonized, translocation across the epithelium is
mediated, among other factors, by the RTX toxin, which belongs to the family of pore-
forming exotoxins [21]. The RTX toxin is encoded by the rtx gene found in all strains of K.
kingae, as well as in Kingella negevensis species [24]. Additionally to rtx, four other genes
(rtxB, rtxC, rtxD, and tolC) are required for production, activation, and exocytosis of the RTX
toxin and are located on two loci that are thought to have been acquired through horizontal
transfer from other bacterial species [25,26]. RTX toxin is synthetized in a non-toxic form
that needs further acyltransferase-mediated activation by the RtxC protein [27,28]. After
activation, RTX toxin is secreted through an outer membrane protein encoded by rtxB, rtxD,
and tolC [29]. Its cytotoxic effect is then mediated through insertion and pore formation
into cell membranes, leading to cell death [21]. Data issued from a rat model have provided
important insight on RTX toxin’s role during invasive infection. The inoculation of a K.
kingae strain isolated from a child with septic arthritis led to a dramatic decrease in white
blood cell count, multiple organ failure, and death. Meanwhile, animals inoculated with an
RTX toxin-deficient mutant of the same strain did not show any sign of disease [30].

Moreover, RTX toxin can also be secreted via outer membrane vesicles. These are small,
spherical structures, derived from the bacterial membrane, which allow Gram-negative
bacteria to release various toxins and proteins [6,21]. These vesicles are typically phagocy-
tosed by many eukaryote cells distant from the bacteria, promoting a cytotoxic effect and
an increased inflammatory response, thus potentializing RTX toxin’s virulence [31].

Protection from phagocytosis, as well as neutrophils and complement-mediated killing,
is typically provided by a polysaccharide capsule in many human pathogens [6]. In fact,
K. kingae’s lipid-anchored polysaccharide capsule has been visualized using thin-section
transmission electron microscopy after being stained with cationic ferritin [23]. The genetic
basis of K. kingae encapsulation has been widely studied; findings suggest that capsule genes
may be scattered throughout the genome [32]. An ABC-transporter-type operon called
ctrABCD, which shares a homologous locus in Neisseria meningitidis genome, is required for
capsule export and surface presentation [23]. Furthermore, two other genes, LipA and LipB,
are essential for capsular surface localization [32]. Similarly, homologs of these genes found
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in Escherichia coli and Neisseria meningitidis were shown to mediate the linking between
the lipid membrane and the polysaccharide capsule [33]. Finally, the capsule synthase,
encoded by the csaA gene, is necessary to generate the [3)-β-GalpNAc-(1→5)-β-Kdop(2→]
polysaccharide capsule (type A) [32]. Further investigation revealed that four distinct
synthases encoded by four genetic loci (csa, csb, csc, and csd) define the capsule type (A,
B, C, and D, respectively) [34]. The different types are characterized according to their
molecular structure as follows: [6)-α-GlcpNAc-(1→5)-β-(8-OAc)Kdop-(2→] for type B,
[3)-β-Ribf -(1→2)-β-Ribf-(1→2)-β-Ribf -(1→4)-β-Kdop-(2→] for type C, and [P-(O→3)[β-
Galp-(1→4)]-β-GlcpNAc-(1→3)-α-GlcpNAc-1-] for type D [33,34]. Interestingly, these four
types seem to be key components of virulence factors among K. kingae strains [33]. In a
French cohort, type C and D capsules were mainly encountered in strains colonizing the
oropharynx of healthy children, while types A and B appeared to have a higher pathogenic
profile [35]. Nevertheless, these observations were made mainly on osteoarticular infections,
and further studies are needed to better characterize their role in the pathogenicity of
endocarditis. As described above, adherence is a critical determinant for colonization of
the respiratory epithelium; an interplay between T4P, Knh, and the polysaccharide capsule
is mandatory for full-level adherence [23,36]. First, T4P interacts with the host respiratory
epithelium cell. Through PilT-mediated retraction, the bacteria are then pulled toward the
host cell membrane, physically displacing the polysaccharide capsule and exposing Knh to
the respiratory epithelium [23]. This process therefore enables Knh-mediated high-affinity
adherence without the necessity of genetic capsule downregulation [23]. Furthermore,
it has been proven that the polysaccharide capsule was of paramount importance in
evading the host immune response. Data from a rat model highlighted the critical role
of K. kingae polysaccharides in preventing opsonin (IgG, IgM, C4b, and C3b) deposition
and complement-mediated killing, thus improving intravascular survival and enhancing
virulence [37]. Moreover, an in vitro study recently showed that K. kingae’s polysaccharide
capsule is able to prevent neutrophil activation and binding, as well as the production of
reactive oxygen species [38].

In addition to the lipid-anchored polysaccharides, K. kingae also exhibits the ability of
galactan exopolysaccharide secretion, which is involved in biofilm establishment, growth,
and architectural remodeling [6]. This expolysaccharide is a polymer of galactofuranose
that is present in two recognized structures in K. kingae, based on the link connecting the
galactofuranose residues [39]. Interestingly, data from in vivo studies have shown that the
galactan exopolysaccharide shares an overlapping effect with the polysaccharide capsule
in terms of resistance to opsonization [37]. Additionally, the galactan exopolysaccharide
exhibits a distinct function from polysaccharides when it comes to neutrophil evasion, such
as reducing neutrophil phagocytosis and sensitivity to antimicrobial peptides [38].

Several genotyping studies using various molecular methods have sought to describe
the global genetic diversity of K. kingae species and to determine which strains are responsi-
ble for invasive infections. Multilocus sequence typing, pulsed-field gel electrophoresis,
as well as single-gene typing methods targeting the rtxA or the por genes have identified
40 sequence types, 18 rtxA alleles, and 12 por alleles [40–43]. Furthermore, one specific
sequence type, named ST-24, seemed to be significantly associated with cases of IE [40].
More recently, an analysis performed by a more rapid and cost-effective molecular typing
tool targeting the DNA uptake sequence revealed that only five sequence-type complexes
accounted for the majority of K. kingella strains found worldwide. Moreover, this study
confirmed that most IE cases were due to ST-24 [43]. Finally, a recent study analyzed the
whole genomes of 125 international K. kingae strains isolated in healthy carriers and patients
with invasive infections. While the study failed to identify single genes able to discriminate
between colonizers and invasive organisms, significant differences in the distribution of
multiple genes were found among them. Interestingly, a gene encoding the iron-regulated
protein FrpC was absent in all strains associated with IE, suggesting a potential role in
endocarditis pathogenicity [44]. However, data on the relationship between serotypes
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and the severity of endocarditis remain scarce, and further studies are needed to better
understand the specificities of endocarditis.

3. Infective Endocarditis
3.1. Epidemiology and Clinical Features

While K. kingae asymptomatic carriage and osteoarticular infections are well known,
data on IE epidemiology remain scarce. Colonization of an infant’s oropharynx typically
begins around 6 months, which probably corresponds to the decline in maternal antibodies
and the onset of daycare attendance [2,45,46]. The colonization rate peaks in children aged
12–24 months, with a reported prevalence ranging from 9 to 23% depending on study
populations, and decreases afterwards [7,47–49]. A single subject is generally subsequently
colonized by several different strains, each lasting weeks to months, thus indicating that a
strain-specific immune response is triggered by carriage without the need for invasive in-
fections [2,47]. Moreover, it is important to keep in mind that less than 1% of asymptomatic
pediatric carriers will develop an invasive infection [7].

Most invasive infections due to K. kingae are osteoarticular and caused by a breach
through the respiratory epithelium, allowing the bacteria to invade the bloodstream. There-
fore, the incidence of K. kingae invasive infections increases during autumn and winter,
mirroring respiratory viral infections such as rhinovirus and enterovirus (hand foot mouth),
as well as HSV gingivostomatitis [6,50]. The annual incidence of invasive infection was
estimated at 9.4 per 100,000 children <4 years old in a study conducted in southern Is-
rael [6]. This incidence is very likely underestimated, as it is based on insensitive culture
detection methods as discussed below. Among 143 children with culture-proven K. kingae
invasive disease, the highest number of infections was reported between the ages of 6 and
17 months [6]. K. kingae belongs to the HACEK group (Haemophilus species, Aggregatibacter
species, Cardiobacterium hominis, Eikenella corrodens, and Kingella species) responsible for
3–5% of all IE cases [6], with the majority of these reported in children and infants [1]. We
reviewed the literature and identified 32 articles describing 45 children diagnosed with K.
kingae IE [8,19,51–76]. While osteoarticular infections mostly occur in children <4 years,
22% (10/45) of IE occurred in children >4 years. Fifty one percent of cases (23/45) had
a history of congenital heart disease or rheumatic valvular disease. A native valve was
affected in 96% (43/45) and a prosthetic one in only 4%. Most infections were left-sided
IE, with the mitral valve being the most frequently affected. In contrast to other invasive
infections caused by K. kingae, children with IE typically exhibit high fever, elevated white
blood cell counts, and inflammatory biomarkers such as C-reactive protein, as well as an
elevated erythrocyte sedimentation rate. Furthermore, a high rate of complications was
reported (67%, 30/45), such as valvular perforation/severe regurgitation (13), heart fail-
ure/cardiogenic shock (2), thromboembolic events (7), meningitis/brain abscess (9), stroke
(13), and death (4). Table 1 describes the characteristics of IE cases caused by K. kingae.

In the adult population, data are scarce. We identified less than 20 patients with
K. kingae IE reported in the literature (Table 1) [77–82]. The median age was 56 years
(IQR 41–63) and 39% of the patients were male. Around 20% (4/18) of these patients
had a history of immunosuppression. Fever and elevated inflammatory biomarkers were
present in all the patients. While, similarly to the pediatric cases, all the infections reported
involved the aortic valve or the mitral valve, around 44% (8/18) of the infections involved
a prosthetic valve. We identified fewer complications than in the pediatric population (28%,
5/18), including heart failure/cardiogenic shock (4), stroke (1), and death (1).

Of note, the incidence of K. kingae IE may well be underestimated; many cases could
have been classified as culture-negative endocarditis, as discussed below.
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Table 1. Characteristics of infective endocarditis cases caused by Kingella kingae.

Children (n = 45) Adults (n = 18)

Sex, n (%)
Female 13 (29) 6 (33)
Male 20 (44) 7 (39)
Unknown 12 (27) 5 (28)

Age, median (IQR) 19 months (14–48) 56 years (41–63)

Previous heart disease, n (%) 23 (51) 8 (44)
Congenital heart disease 21 (47) 5 (28)
Rheumatic heart disease 2 (4) 3 (17)
None 22 (49) 3 (17)
Unknown 2 (4) 7 (39)

Endocarditis localization, n (%)
Mitral valve 26 (58) 7 (39)
Aortic valve 4 (9) 7 (39)
Tricuspid valve 1 (2) 0 (0)
Pulmonary valve 1 (2) 0 (0)
Other 2 (4) 0 (0)
Unknown 11 (25) 6 (33)

Type of valve, n (%)
Native 43 (96) 4 (22)
Prosthetic 1 (2) 8 (44)
Unknown 1 (2) 6 (33)

Complications, n (%)
Valvular perforation/severe regurgitation 13 (29) 0 (0)
Paravalvular abscess/pseudoaneurysm 2 (4) 1 (6)
Heart failure/cardiogenic shock 2 (4) 4 (22)
Pulmonary embolism 1 (2) 0 (0)
Systemic embolism (other than cerebral) 6 (13) 0 (0)
Meningitis/brain abscess 9 (20) 0 (0)
Stroke 13 (29) 1 (6)
Death 4 (9) 1 (6)
None 7 (16) 6 (33)
Unknown 9 (20) 5 (27)

3.2. Diagnosis

Infective endocarditis is usually suspected in the presence of fever without source
and positive blood culture in children or adults with one or more risk factors (i.e., valvular
disease, congenital heart disease, implantable electronic devices, central venous catheter,
and immunosuppression). The modified Duke criteria rely on the detection of four phe-
nomena that are involved in IE pathophysiology, namely bacteremia, valvular involvement,
immunologic, and embolic processes. Therefore, the use of these criteria in the diagnostic
process of IE is recommended in adults and children [11,12,83]. In addition, the recently
updated European guidelines for the management of infective endocarditis in adults
proposed further improvements to these criteria to overcome some of their limitations
(Supplementary Material Table S1) [11].

The identification of K. kingae from two separate blood cultures is a major criterion
for IE diagnosis [11]. Yet, as mentioned above, organisms belonging to the HACEK group,
including K. kingae, are fastidious Gram-negative bacilli that grow slowly and therefore are
difficult to identify using traditional cultures on solid media [2]. A study published in the
early 1990s showed that the inoculation of blood and joint fluid into BACTEC 460 aerobic
blood culture bottles improved the identification of K. kingae by diluting detrimental
components [84]. However, the identification of K. kingae remained suboptimal, with
many cases of IE considered as culture-negative [2,11]. Around 10 years later, studies on
nucleic acid amplification methods found significantly enhanced K. kingae detection rates
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in bone and joint infections as well as in IE [2]. The initial approach relied on a broad
range polymerase chain reaction (PCR) targeting the gene coding for 16S ribosomal RNA
This enabled the detection of DNA from various fastidious bacteria, including K. kingae
in 23% of cases with culture-negative infections [85]. Throughout the years, this method
has gradually been replaced by K. kingae-specific real-time PCR tests targeting the rtx
gene, the chaperoin 60 gene, and the malate dehydrogenase gene [86,87]. These methods
showed improved sensitivity compared to 16S PCR. However, targeting the rtx locus does
not allow us to distinguish between K. kingae and Kingella negevensis, thus the approach
lacks specificity. Furthermore, primers from the chaperoin 60 gene-based PCR assays
showed suboptimal sensitivity. Targeting the malate dehydrogenase gene has achieved
very high specificity and sensitivity and should therefore be the preferred method, enabling
a detection rate four times higher than that of blood culture. [87]. Finally, it is strongly
recommended that tissue or prosthetic material obtained during surgery for endocarditis
undergoes cultures and broad-range PCR, especially in the case of culture-negative IE. As
the bacterial load in the blood is significantly lower than on affected tissues, the sensitivity
of PCR and cultures on endocardium or prosthetic devices is enhanced [11].

Evidence of endocardial involvement is the other major diagnostic criterion. Therefore,
cardiac imaging is one cornerstone of IE diagnosis, even though it is not specific to K. kingae.
Echocardiography is the first-line imaging technique when evaluating IE on a native or pros-
thetic valve. Transthoracic echocardiography (TTE) is widely accessible, cost-effective, and
requires no sedation. However, despite a specificity of 94% in detecting vegetation on native
or prosthetic valves, its sensitivity of around 60% is mediocre in adult studies [88]. There-
fore, transesophageal echocardiography (TEE) is mandatory in all adults with suspected
IE [11]. Conversely, TTE alone may be sufficient for the visualization of vegetations in
children weighting <60 kg with satisfactory acoustic windows, in most cases [12]. Echocar-
diography findings encompass vegetation’s characteristics and size, valvular regurgitation
or stenosis, perivalvular abscesses, and leaflet perforation or intracardiac fistula [11,88]
(Figure 1). A normal TTE or TEE cannot rule out the diagnosis of endocarditis. In the case
of negative or inconclusive examination and high clinical suspicion, repeating TTE and/or
TEE is recommended within 5–7 days [89]. Moreover, echocardiographic reassessment is
also indicated after IE diagnosis confirmation when a new complication is suspected, or
before switching to oral antibiotic therapy [11,90]. Cardiac computed tomography (CT)
might be helpful in the detection of perivalvular complications (Figure 2). A meta-analysis
published in 2021 found that cardiac CT performed better than TEE for detecting prosthetic
valve IE (specificity 94%, sensitivity 78%), as well as periannular affections (specificity 93%,
sensitivity 88%) [91]. Another study published similar results for paravalvular abscesses
and pseudoaneurysms [92]. Moreover, as opposed to CT, the role of cardiac magnetic
resonance imaging (MRI) is limited to identifying valvular and paravalvular lesions due
to lower spatial resolution. However, MRI displays an excellent sensitivity for detecting
neurological lesions [11]. Cerebral MRI therefore remains a crucial examination when
evaluating the extent of embolic phenomena in patients with IE, especially when mitral
or aortic valves are involved [93]. In fact, up to 80% of those patients may show signs
of subclinical embolization on brain MRI, which could help in navigating the complex
decision about surgical intervention in IE [94]. Finally, the place that nuclear imaging
holds in IE diagnosis is growing. 18F-fluorodeoxyglucose-positron emission tomography
(18F-FDG-PET) CT provides functional information based on the increased glucose uptake
and glycolysis of metabolically active cells. In adults with a native valve, the specificity
of 18F-FDG-PET CT is very high (around 98%) for valvular and paravalvular endocarditis,
but its sensitivity is mediocre (30%) [95]. For prosthetic valve endocarditis, the estimated
sensitivity increases at 86% with an unchanged specificity, making 18F-FDG-PET CT the
examination of choice in the case of inconclusive TTE/TEE [11,96]. Furthermore, in children
and young adults with congenital heart disease, 18F-FDG-PET CT has been reported to be
accurate in detecting and localizing IE either before or after cardiac surgery (Figure 3) [97].
It was previously recommended to perform 18F-FDG-PET CT at least 3 months after cardiac
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surgery to avoid misinterpretation of “normal” FDG uptake, especially after prosthetic
valve implantation [11,12]. Yet, recent data support the notion that analysis of FDG up-
take patterns could be sufficient to differentiate postoperative inflammatory changes from
infection, even after recent valve surgery, thus questioning the recommended 3-month
period [98].
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Figure 3. 18F-fluorodeoxyglucose positron emission tomography of a 19-month-old boy with infective
endocarditis of a Sano conduit between the right ventricle and the pulmonary artery (white arrow).

3.3. Treatment

The recommendations for antimicrobial therapy for IE are similar for children and
adults. First, if the patient is not critically ill, antibiotic administration may reasonably
be delayed for ≥48 h while additional blood cultures are obtained [11,12]. After the
identification of K. kingae, the recommended antibiotic therapy is a 4-week course for native
valve endocarditis and a 6-week course for prosthetic valve endocarditis [11,83]. Most
societies recommend ceftriaxone or another third-generation cephalosporin as a first-line
therapy, given the fact that some strains produce beta-lactamases [11,12,83]. Ten percent of
the K. kingae colonizing strains found in asymptomatic subjects and less than two percent
of invasive strains produce beta-lactamase. It is therefore mandatory to test any isolated
K. kingae for beta-lactamase production [99]. If the identified strain does not produce beta-
lactamases, ampicillin can be used as an alternative. However, the opinions of societies
differ on whether gentamicin should be associated to ampicillin or not [83], and if so,
whether it should be for the first two weeks [11] or for the whole course [12]. Even though
the evidence is limited, ciprofloxacin is also proposed as an alternative [11,83].

Furthermore, K. kingae is resistant to glycopeptides and clindamycin. This is a serious
consideration when patients with K. kingae endocarditis are empirically administered
vancomycin to cover potential methicillin-resistant Staphylococcus aureus, before cultures or
nucleic amplification results are ready [100]. Finally, K. kingae is almost always susceptible
to aminoglycosides, macrolides, tetracycline, and co-trimoxazole [100].

Infective endocarditis is sometimes associated with complications that can only be
addressed by cardiac surgery. Currently, recommendations for the surgical management
of pediatric IE are mostly based on adult studies. The principal reasons for surgery in the
setting of an acute IE are heart failure/severe valve dysfunction, uncontrolled infection,
and septic embolic phenomena, especially to the central nervous system [11,12]. Several
algorithms are proposed for particular cases, such as IE in a patient with congenital heart
disease, prosthetic valve endocarditis, as well as IE due to specific organisms, but those
are beyond the scope of this article [11]. Regarding K. kingae, there is no consensus on
the optimal timing for surgery. K. kingae IE is associated with a high risk of neurological
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complications, mostly stroke and bleeding. Lenoir et al. reported their experience with
two children treated for K. kingae endocarditis. In patients with neurological complications,
they recommend delaying cardiac surgery in order to reduce the risk of secondary cerebral
hemorrhage or infarction following cardiopulmonary bypass, and to facilitate valve repair
when endocarditis is no longer active [75]. Furthermore, early surgery, especially when
dealing with a large vegetation on the left side, can improve neurological prognosis and
allow retention of the native valve [64]. It is indeed of paramount importance to aim for
valve preservation without foreign material implantation and to minimize the risk for
subsequent surgery, especially in children [64,75]. Further studies are needed to determine
the best surgical management timings and strategies.

4. Conclusions

Infective endocarditis due to K. kingae is a rare though critical invasive infection that
occurs mostly in children. Recent advances in nucleic acid amplification testing have
enabled more accurate and rapid diagnosis. Many cases that would have otherwise been
classified as culture-negative endocarditis are likely to be identified as K. kingae IE, which
will probably enrich the data available on this infection. Finally, while the antibiotic
susceptibility of K. kingae, as well as its antimicrobial treatment are well known, more data
are needed to better define the role and timing of surgical procedures and predict outcomes
in children and adults.
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