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Abstract: Fungal keratitis represents a potentially sight-threatening infection associated with poor
prognosis, as well as financial burden. Novel diagnostic methods include polymerase-chain-reaction
(PCR)-based approaches, metagenomic deep sequences, in vivo confocal microscopy, and antifungal
susceptibility testing. The ideal therapeutic approaches and outcomes have been widely discussed
in recent times, with early therapy being of the utmost importance for the preservation of visual
acuity, minimizing corneal damage and reducing the scar size. However, combination therapy can be
more efficacious compared to monotherapy. Understanding the pathogenesis, early diagnosis, and
prevention strategies can be of great importance. In this narrative, we discuss the recent progress that
may aid our understanding of the diagnosis, treatment, and prevention of mycotic keratitis.
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1. Introduction

Fungal keratitis is a severe corneal infection characterized by the invasion by fungal
organisms of the corneal tissue. The condition primarily affects individuals with com-
promised corneal integrity, often due to trauma, corneal abrasions, or the use of contact
lenses. Among 105 known pathogenic mycotic species of keratitis, Aspergillus, Fusarium,
and Candida are the most common and are accountable for 70% of the keratitis-causing
fungal species [1].

Mycotic keratitis stands as a leading cause of ocular morbidity worldwide, with a
higher incidence in tropical and subtropical regions [2,3]. A 2001 survey by the World
Health Organization revealed that corneal blindness ranks as the second-leading cause of
blindness, following cataracts [1]. Particularly in developing countries, ocular trauma and
corneal ulceration are known as critical factors leading to corneal blindness.

Clinical manifestations of fungal keratitis include intense ocular pain, conjunctival
hyperemia, photophobia, blurred vision, and epiphora. The infection may progress to the
formation of corneal ulcers, leading to necrosis and potential scarring. Timely and accurate
diagnosis is essential for appropriate management, typically involving a comprehensive
eye examination, corneal scrapings for microbiological analysis, and the identification of
the specific fungal pathogen [4].

The treatment of fungal keratitis involves a multifaceted approach aimed at eradicat-
ing the fungal infection, minimizing corneal damage, and preserving visual function. The
choice of treatment depends on factors such as the severity of the infection, the specific
fungal pathogen involved, and the response to initial therapeutic measures. Topical anti-
fungal medications such as natamycin and voriconazole are frequently used. Voriconazole,
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in particular, has shown efficacy against a broad spectrum of fungi and is often considered
a first-line treatment [5]. Amphotericin B is another potent antifungal agent which may be
used topically. However, its use is sometimes limited by concerns about corneal toxicity. In
severe cases, or when the infection is not adequately controlled with topical medications
alone, systemic antifungal therapy may be considered. Oral voriconazole or itraconazole is
commonly prescribed, especially when there is a risk of systemic dissemination. In cases of
advanced or refractory infections, surgical interventions such as corneal debridement or, in
extreme cases, therapeutic penetrating keratoplasty (PK) may be necessary to control the
spread of the infection and salvage visual function [4,6].

Fungal keratitis often requires a collaborative effort between ophthalmologists, infec-
tious disease specialists, and microbiologists. Regular follow-up visits are essential to assess
the effectiveness of treatment and address any complications promptly. Early diagnosis,
aggressive treatment, and close monitoring are critical components in achieving optimal
therapeutic outcomes and preventing potential complications such as corneal scarring and
visual impairment [7].

Preventative measures focus on meticulous eye care, particularly for contact lens
wearers. Adherence to proper hygiene practices, regular lens cleaning, and avoiding
overnight wear can mitigate the risk of fungal keratitis. Additionally, prompt attention to
corneal injuries and the avoidance of environmental factors that may predispose individuals
to fungal infections contribute to preventive efforts. Despite advancements in diagnostic
and therapeutic modalities, the management of fungal keratitis remains intricate, requiring
a multidisciplinary approach for optimal outcomes [2].

2. Fungal Diversity in Keratitis

Fungi represent a vast and diverse kingdom with various ecological roles and impacts
on human health [8,9]. Fusarium, a genus of filamentous fungi, encompasses species that
can impact human health both directly and indirectly. While primarily recognized for
causing plant diseases, some Fusarium species pose a threat to human health, particularly
in individuals with weakened immune systems. Fusarium can cause serious infections in
humans, including ocular, skin, and nail infections, and more critically, invasive diseases
such as bloodstream infections, especially in immunocompromised individuals or those
undergoing invasive medical procedures. Moreover, certain Fusarium species produce
mycotoxins, such as fumonisins and trichothecenes, which can contaminate food crops.
Ingestion of these mycotoxins has been associated with various health issues, making
Fusarium a concern in both clinical and agricultural contexts [10].

Aspergillus, a diverse type of fungus, includes species that commonly interact with
humans. Aspergillus fumigatus, in particular, is a leading cause of invasive aspergillosis,
a serious respiratory infection affecting immunocompromised individuals. Aspergillosis
can manifest as lung infections, allergic reactions, or invasive diseases with high mortality
rates [11]. Beyond its clinical significance, Aspergillus species contribute to human activ-
ities positively and negatively. Some species, like Aspergillus oryzae, are crucial in food
fermentation processes, while others, such as Aspergillus flavus, produce aflatoxins that
contaminate crops and pose health risks. Aflatoxins are potent carcinogens, and their
presence in food, especially in regions with inadequate storage conditions, raises concerns
for human health [12].

Candida, a type of yeast-like fungi, is intimately associated with the human body as part
of its natural microbial community. Candida albicans, the most prevalent species, typically
resides in the gastrointestinal and genitourinary tracts. Under normal conditions, Candida
is a commensal organism. However, factors like antibiotic use, immunosuppression, or
hormonal changes can disrupt the balance, leading to Candida overgrowth and causing
candidiasis [13].

Apart from Fusarium, Candida, and Aspergillus, other types of fungi can also contribute
to fungal keratitis. Certain molds and yeasts, such as Alternaria, Curvularia, and Bipolaris,
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have been implicated in fungal keratitis cases. These fungi are often found in environmental
sources, including soil and plant materials [14].

3. Diagnosis of Fungal Keratitis

Filamentous fungal keratitis typically manifests in young men involved in agricultural
or outdoor activities. The fungi responsible for these infections do not breach an intact
epithelium spontaneously; rather, invasion commonly occurs as a secondary consequence
of trauma. Trauma stands out as the primary predisposing factor, affecting 40–60% of
patients [15,16]. Other identified risk factors are prior ocular surgery, ocular surface disease,
previous use of corticosteroids (topical or systemic), and contact lens usage [17–19]. Notably,
a study on mycotic keratitis demonstrated the following: antifungal therapy or surgical
intervention led to no response in patients with previous ocular surgery, a partial response
in those with ocular trauma, a notable response in individuals with ocular surface disease,
a universal response in contact lens users, and varied responses in patients with a history
of corticosteroid use [5].

Filamentous fungal keratitis is predominantly caused by species like Fusarium, As-
pergillus, Curvularia, and other phaeohyphomycetes. Environmental factors such as hu-
midity, rainfall, and wind seem to influence the occurrence of filamentous fungal keratitis,
contributing to seasonal variations in fungal isolation frequency and the specific fungal
species identified [19,20].

Keratitis resulting from infection with Candida albicans and other related fungi is often
associated with one or more ocular conditions, such as inadequate tear secretion or impaired
eyelid closure, as well as systemic factors like diabetes mellitus or immunosuppression,
which can predispose individuals to such infections. Additionally, this type of mycotic
keratitis may develop in the presence of a pre-existing epithelial defect, either due to
herpes keratitis or caused by abrasions resulting from contaminated contact lenses. The
interplay of these local and systemic factors contributes to the susceptibility and occurrence
of Candida-related keratitis [15].

The laboratory diagnosis of fungal keratitis has an important significance in facilitating
appropriate and effective treatment. It has a role in conducting antifungal susceptibility
testing to determine the responsiveness of patients to both traditional and newer antifungal
agents. Typically, specimens for microbiological evaluation are obtained through corneal
scrapings, while cases with deeper infiltrates or those resistant to standard procedures
may necessitate corneal biopsy or suture biopsy. Traditional diagnostic approaches for
fungal keratitis involve staining of the smear and culturing of corneal scrapings. However,
contemporary molecular diagnostic methods, such as polymerase chain reaction (PCR),
are nowadays valued due to their precision and rapidity. Additionally, real-time in vivo
confocal microscopy (IVCM) corneal imaging is emerging as a valuable tool for early
detection by identifying fungal hyphae in cases of fungal keratitis [2,4]. A brief summary
of diagnostic methods is shown in Table 1 [2,10,21–25].

Table 1. Brief description of traditional and novel diagnostic methods.

Diagnostic Method Definition Advantages Disadvantages Year of
Implementation

Microscopic exam
[1,2,10]

Direct visualization of
fungal elements in

corneal scrapings using
different staining

methods

Rapid results, low cost Limited sensitivity,
expertise required 19th century

Culture [2,21,22]
Growth of fungal

organisms on specific
culture media

Definitive identification
of fungal species

Slow turnaround time,
requirement for

specialized laboratory
facilities

20th century
(Sabouraud/agar

introduced)
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Table 1. Cont.

Diagnostic Method Definition Advantages Disadvantages Year of
Implementation

Polymerase chain
reaction (PCR) [2]

Amplification of fungal
DNA in a sample to

identify species

High sensitivity and
specificity, rapid results

Technical complexity,
need for

trained personnel
1983 (for PCR)

In vivo confocal
microscopy (IVCM) [2]

Real-time imaging of
corneal structures and

fungal hyphae

Non-invasive, high
resolution, early

detection of
fungal elements

Equipment cost,
limited availability,
operator expertise

required

1980s

Antifungal
susceptibility testing

(AFST) [1,25]

Tests the sensitivity of
fungal isolates to

various antifungal
drugs

Guides treatment
decisions, tailored

therapy

Time-consuming,
resource-intensive 1970s

Metagenomic deep
sequencing (MDS)

[23,24]

Comprehensive
genomic analysis of all

genetic material in
a sample

Identifies diverse
pathogens, including

fungi

High cost, complexity
in data interpretation 2000s

Matrix-assisted laser
desorption ionization

time-of-flight mass
spectrometry

(MALDI-TOF MS) [2]

Identification of
microorganisms

through mass
spectrometry

Rapid identification of
microorganisms, high

accuracy

Equipment cost and
maintenance, limited

database coverage
1990s

3.1. Microscopic Examination

The conventional diagnostic approach for keratitis involves the microscopic examina-
tion of corneal scraping specimens to detect fungal elements. Various stains are used for this
purpose, including Gram, 10% potassium hydroxide (KOH) wet mount, calcofluor white,
lactophenol cotton blue, Giemsa, acridine orange, and Periodic Acid Schiff (PAS) stains [16].
The identification of fungal hyphae using KOH is widely utilized for provisional diagnoses
in many regions due to its cost effectiveness, straightforward procedure, ready availability,
and ability to yield rapid results, facilitating a rapid start to antifungal therapy. The sensi-
tivity and specificity of preparations involving KOH have been reported in the specialized
literature as between 60% and 99.3% [26,27], and between 70% and 99.1% [17,20].

The effectiveness of staining methods varies depending on factors such as the specific
stain employed, the skill of the medical doctor, and the nature and amount of the sample.
When conventional techniques like corneal smear staining and culture yield no identifiable
organisms, when the disease continues to progress in spite of maximum treatment, or when
corneal involvement is too profound for scraping, resorting to a corneal biopsy becomes
imperative. The use of specialized stains can improve the visibility of fungal hyphae and
yeast. Several studies suggest that corneal biopsy specimens may exhibit greater sensitivity
compared to scraping samples, possibly attributed to factors like deep stromal engagement
by certain fungi or the restricted amount of corneal material obtained through scraping [28].

The microscopic examination of corneal scrapings in fungal keratitis aids in rapid
and cost-effective presumptive diagnosis and leads to the direct visualization of fungal
structures. Therefore, this method has often been used for the prompt initiation of targeted
antifungal therapy, which can be crucial in preventing progression. Moreover, in developing
countries, microscopic examination can be the only available diagnostic tool.

3.2. Culture Growth

While time-consuming, this method is indispensable for species identification and
effective treatment. Additionally, it enables antifungal susceptibility testing to determine
sensitivity to both traditional and newer antifungal agents. Culturing is considered the gold
standard in fungal keratitis diagnosis due to its high specificity. Commonly employed cul-
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ture media include Sabouraud’s dextrose/potato dextrose/blood/chocolate/thioglycolate
agar. Despite its reliability, culture results may take over a week to exhibit results, poten-
tially delaying the diagnosis. The corneal material has to be spread out as thinly as possible
on the slides in order to facilitate visualization of the fungal hyphae or yeast cells. Other
limitations include low sensitivity rates, the necessity for an experienced microbiologist
for result interpretation, and the challenge of distinguishing between species that exhibit
morphologically similar growth. These considerations show the need for a comprehen-
sive approach that incorporates various diagnostic methods to overcome the limitations
associated with culture alone [26,29].

The failure of traditional methods like clinical evaluation, corneal scrapings, and
initial culture can result in suboptimal management, leading to failure in healing and
visual impairment. A novel approach involves the endorsement of repeat cultures as a
diagnostic and prognostic tool after initiating the treatment. A secondary analysis of data
from the mycotic ulcer treatment trial (MUTT)-1 (milder, smaller ulcers) [22] and MUTT-2
(severe ulcers) [30] demonstrated that positive repeat cultures performed six days after
treatment initiation were linked to impairment of visual acuity at the three-month mark,
larger scar dimensions, and an elevated incidence of perforation and/or the requirement
for therapeutic PK. Consequently, a repeat culture at day six serves as a crucial prognostic
indicator, signaling the need for close monitoring, potential adjustments to the treatment,
and consideration of early surgical interventions like PK or lamellar procedures such as
therapeutic deep anterior lamellar keratoplasty (DALK) in positive cases [6,31]. These
repeat cultures play an important role in evaluating the effectiveness of both conventional
and newer antifungal agents. Consequently, sixth-day cultures are now recommended as a
crucial prognostic tool, and ongoing research in this direction is likely to further establish
their significance [32].

While culture is considered the gold standard for the diagnosis of mycotic keratitis,
its main disadvantage is that it may take several days to weeks to receive a result and,
therefore, it can withhold prompt treatment, which is crucial in fungal keratitis.

3.3. In Vivo Confocal Microscopy

IVCM represents an innovative and noninvasive technique used for analyzing the
cornea, using a series of pinhole apertures to create optical sections. This technology
shows each corneal layer, similar to in vitro histochemical techniques. Fungal keratitis,
characterized by nonspecific clinical features, poor yields on scraping specimens, variable
sensitivity of culture results, and the extended time required for culture growth, often
leads to delayed diagnoses and suboptimal treatment outcomes. IVCM addresses these
challenges and offers the additional benefit of being noninvasive [21]. In addition to
diagnosis, IVCM may also be used to monitor the response of fungal keratitis to treatment.
After 1 month of antifungal therapy to a patient with infection with Alternaria alternata,
IVCM demonstrated a significant reduction in inflammatory cells and showed the presence
of hyper-reflective scar-like tissue and the absence of branching hyphal infiltrates in the
affected cornea [2].

Studies on IVCM in infectious keratitis have demonstrated promising results. Kanavi
used tandem scanning–IVCM and reported high sensitivity and specificity percentages
for mycotic keratitis (94% and 78%, respectively) [33]. In a study by Chidambaram et al.,
a laser-scanning confocal microscope achieved a sensitivity of 85.7% and a specificity of
81.4% in detecting fungal filaments [34]. A few advantages include being a noninvasive
technique and the early identification of fungi, as well as the monitoring and guidance of
treatment. IVCM also has limitations, including being a contact procedure, requiring a
cooperative patient in the symptomatic stage, higher expenses, and restricted availability,
and the incapacity to identify organisms at the species level currently limits its application
as a primary diagnostic approach.

IVCM is a noninvasive technology that leads to the direct observation of fungal
elements, such as hyphae and spores, and aids in the diagnosis, management, and follow-
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up of cases with mycotic keratitis. Although very promising, it still has its disadvantages,
such as the need for an expert operator and patient cooperation.

3.4. Antifungal Susceptibility Testing

As antifungal resistance increases and new antifungal agents are introduced, antifun-
gal susceptibility testing (AFST) and minimum inhibitory concentration (MIC) determina-
tion play a crucial part in the effective treatment of mycotic keratitis. The primary objective
of AFST is to provide important information for clinicians regarding the susceptibility
before and during treatment, or a resistance phenotype related to a particular combination
of organism and antifungal agent. While the treatment of choice for various types of fungi
can be empirically assumed based on proper pathogen identification, susceptibility testing
becomes particularly useful when invasive mycotic infections are present, when developed
drug resistance is suspected, or in patients unresponsive to treatment [2].

Two globally acknowledged committees, the Clinical and Laboratory Standards Insti-
tute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST),
have established phenotypic assays for in vitro AFST based on the broth dilution method
for Aspergillus and Candida species [35–37]. The MIC is the lowest concentration of an
antimycotic agent that inhibits the visible growth of a microorganism after a defined period
of incubation. It is a key parameter in AFST, providing information about the effectiveness
of an agent against a specific fungi. CLSI has provided protocols on MIC values for yeasts,
while EUCAST has set MIC values for various antifungal agents against specific Aspergillus
and Candida species. However, comprehensive information regarding MIC breakpoints for
other species is still needed.

AFST, performed in clinical microbiology laboratories to assist in selecting the appro-
priate treatment, has demonstrated a connection between susceptibility and the response to
treatment [38,39]. In a recent study that determined the MICs of natamycin and voricona-
zole on isolates from mycotic keratitis, Lalitha et al. demonstrated that natamycin had
greater breakpoint values against all specimens except for Fusarium spp., while voricona-
zole had the lowest breakpoint value targeting Aspergillus species. They also showed that
the greater the MIC breakpoint value, the greater the odds of developing corneal perfo-
ration [40]. Saha et al. assessed AFST using the disk diffusion method. They observed
that Aspergillus spp. and Fusarium sp. exhibited higher sensitivity to voriconazole than
natamycin, while amphotericin B showed effectiveness against yeasts [40]. Patil showed
variable MIC against Candida with a range from 1–2 µg/mL for C. albicans [41], while
Salvosa reported that MIC can be as high as 150 µg/mL for C. parasilopsis [42].

AFST plays a pivotal role in guiding the effective management of fungal infections
and is integral to optimizing patient outcomes. Utilizing AFST allows clinicians to identify
the most appropriate antifungal therapy tailored to the specific susceptibility profile of the
infecting strain.

3.5. Molecular Diagnostic Techniques
3.5.1. Molecular Diagnostic Techniques Applied to Isolates Derived from Cultures

Molecular diagnostic techniques have revolutionized the rapid diagnosis of fungal
keratitis, using PCR-based approaches. They play an important role in enhancing the
accuracy and efficiency of identifying cultured organisms in cases of fungal keratitis. PCR
is a commonly employed molecular method that amplifies specific DNA sequences, al-
lowing for the rapid and sensitive detection of fungal pathogens. PCR-based assays, such
as species-specific PCR and multiplex PCR, enable the differentiation of various fungal
species and strains directly from cultured samples. DNA sequencing is another powerful
technique, providing detailed information about the genetic makeup of the isolated organ-
isms. Sequencing methods, including Sanger sequencing and next-generation sequencing
(NGS), facilitate the identification of fungi at the species level, even in cases of complex
and mixed infections [43]. Additionally, real-time quantitative PCR (qPCR) allows for the
quantification of fungal DNA, aiding in assessing the severity of the infection [44]. These
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molecular techniques not only streamline the identification process but also contribute
to a deeper understanding of the genetic diversity and epidemiology of fungal keratitis,
guiding clinicians in tailoring appropriate antifungal treatments.

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-
TOF MS) is a method used for identifying pathogens within minutes [45]. Initially intended
for bacterial organisms, it is now thought to be a tool for identifying fungal isolates, partic-
ularly yeasts and some genera of filamentous fungi [46]. A study found that this technique,
used to detect the etiological spectrum of infectious keratitis, accurately identified patho-
logical microorganisms in 51%, including 100% of culture-positive cases, except for 2%
with polymicrobial growth [47]. These innovative modalities aid in identifying the exact
species involved in the infection and facilitating appropriate treatment.

The internal transcribed spacer (ITS) region is currently believed to be a sequence with
great potential for identifying the widest possible range of fungal species, and is nowadays
used as a universal DNA barcode for fungal groups [48].

3.5.2. Molecular Diagnostic Techniques Directly Applied to Clinical Samples

Metagenomic deep sequencing (MDS) is nowadays known as a promising approach
for better diagnostic sensitivity and accuracy [23]. DNA-sequence-based methods are used
for the more rapid species identification of an organism [49]. Lalitha et al. reported their
experience with MDS in 46 corneal ulcer cases, evaluating the specificity and sensitivity
of traditional methods and DNA and RNA sequencing using latent class analysis (LCA).
The sensitivity of MDS was found to be 74%, outperforming KOH/Gram stains (70%) and
cultures (52%). On LCA, RNA sequencing demonstrated 100% sensitivity and specificity
for bacterial keratitis and 100% sensitivity and 97% specificity for fungal cases [24]. As
it is not yet FDA approved, genotyping is performed only in selective cases, but it holds
promise in distinguishing a causative pathogen from colonization or contamination [50].

Custom tear proteomic approaches might have an essential role in the future treatment
of fungal corneal disease [51]. Genomic approaches, mainly built on distinguishing ampli-
cons of ribosomal RNA genes, are nowadays adopted in clinical practices. The metagenomic
approach utilizes 16S rRNA genes to track dynamic transformations in conjunctival flora in
mycotic keratitis [52,53]. Diagnostics based on 18S rRNA target enrichment sequencing
show potential for diagnosing fungal corneal infections [54].

The PCR technique has the highest positive detection rate overall in cases with culture-
or smear-negative results. Molecular characterization can distinguish various species of
fungi and can recognize rarer species of fungi, which may pose a problem during diagnosis
using only traditional methods. Various molecular methods are used for diagnosing and
identifying causative agents in fungal keratitis, including traditional, nested, real-time,
multiplex, and conventional PCR followed by enzymatic digestion, sequencing, single-
strand conformation polymorphism (SSCP), next-generation sequencing combined with
computational analysis dot hybridization, and high-resolution melting analysis [55–59]. A
study had shown an important association between culture-proven fungal keratitis and
multiplex PCR, reporting 94.1% diagnosis for Fusarium, 63.6% for Aspergillus fumigatus, and
lastly, 100% for Aspergillus flavus [55]. The significance of precise fungal detection using
molecular diagnostic methods, such as PCR, for optimal management and an improved
therapeutic effect has been emphasized [60]. PCR cannot be used to monitor the response
of the patient with fungal keratitis to antimycotic therapy because it is cannot differentiate
viable from nonviable fungi [23].

The rapidity and accuracy of PCR diagnostic methods advocate for their application
in the diagnosis of mycotic keratitis. Although not affordable in many clinical centers
in developing countries, they should become part of the diagnosis algorithm alongside
microscopic evaluation and cultures. MALDI-TOF MS is a novel diagnostic method, which
may be reliable and easy to use. It exhibits both high sensitivity and specificity, but has yet
to identify and distinguish related fungal species. MDS is a new technique for the diagnosis
of fungal keratitis that is able to identify any organism in a single assay.



Microorganisms 2024, 12, 161 8 of 17

4. Treatment Approaches

Antifungal agents used in ophthalmology are administered topically, orally, or lo-
cally, such as intra-cameral and intra-corneal injections. These agents belong to various
drug classes, including polyenes (e.g., amphotericin B and natamycin), triazoles (itracona-
zole, voriconazole, fluconazole, posaconazole), azoles or imidazoles (e.g., ketoconazole,
clotrimazole, econazole, tinidazole and miconazole), and echinocandins (micafungin and
caspofungin) [61]. Fungal keratitis usually responds over an extended period of weeks to
antifungal therapy, and signs of improvement in an ulcer include a decrease in pain and
also in the size of the infiltrate, disappearance of the satellite lesions, rounding out of the
feathery margins of the corneal ulcer, and hyperplastic masses in the region of healing
fungal lesions. A few advantages and disadvantages to known antifungal therapies are
provided in Table 2 [2,62–64].

Table 2. Antifungal agents in fungal keratitis.

Treatment Indication Administration Route Benefits Disadvantages

Natamycin
[22,62]

Wide spectrum of
activity (Fusarium spp.,

Aspergillus spp.,
and others)

Topical

Commercially available,
better clinical and

microbiological outcomes,
lower rate of corneal
perforation (MUTT1)

Poor ocular
penetration, long

treatment and
increased expenses,
effective only when

applied topically

Amphotericin B
[2,62]

Candida spp., Aspergillus
spp., and Cryptococcus

Topical, intravenous,
intrastromal,
intravitreal

Penetrates the deep corneal
stroma after topical
application, good

bioavailability after
topical use

Many side effects
(systemic and

subconjunctival
administration), poor

ocular penetration after
systemic use, not

commercially available

Voriconazole
[2,62,63]

Aspergillus spp., Candida
spp., Fusarium spp., and

Cryptococcus spp.

Topical, oral,
intrastromal,
intracameral,
intravitreal

Alternative drug for
recalcitrant cases, adjunctive in

severe fungal keratitis, most
common intrastromal

antifungal agent, oral treatment
has high bioavailability and

can penetrate several parts of
the eye

Poorer outcomes for
treatment of Fusarium

(MUTT-1)

Miconazole [6,62] Scedosporium
apiospermum

Topical,
subconjunctival,

intravenous

Topical and subconjunctival
administration generally

well tolerated

Systemic
administration can lead

to toxicity

Itraconazole [65] Candida spp.,
Aspergillus spp. Topical, oral Nanosized carriers lead to

better absorption
Side effects, poor

ocular bioavailability

Posaconazole
[66,67]

Aspergillus spp.,
Fusarium spp.

Candida spp., and
rare fungi

Topical, oral
Low maximum inhibitory

concentration (MIC) values,
minor side effects

Ketoconazole
[62,68]

Candida spp. and
other molds Topical

Well absorbed and good
tissue distribution after

oral administration
Hepatotoxic side effects

Luliconazole
[64,69]

Fusarium spp. and other
common fungi

Topical, nanoemulsion
formulation (not yet

included in
clinical trials)

Broad spectrum of activity,
lower MIC

Higher MIC against
Candida spp.

Echinocandins
[2,49,70]

Candida spp., Aspergillus
spp., less effective on

Fusarium spp.
Topical, oral Reduced toxic side effects

Usually used for
systemic fungal

infections
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4.1. Topical and Systemic Therapy

Polyenes and azoles are essential in the topical treatment of corneal mycotic infections.
Natamycin, the only FDA-approved antifungal formulation for ocular fungal infections, is
commonly used. The treatment duration for fungal keratitis is often prolonged, with cases
requiring weeks to months for complete resolution. Natamycin 5% drops are commonly
used for filamentous fungi, while amphotericin B 0.15% is used for yeast-like fungi [6].
Recently developed azoles, such as voriconazole, are more and more utilized due to
their broad spectrum and improved ocular penetration profile. Reports show that fungal
infections can be resolved with topical treatment in 7.6% of patients, while the other 92.4%
require surgical intervention [9].

Systemic antifungal agents, including ketoconazole, itraconazole, fluconazole, and
voriconazole, are used to overcome the limitations of intermittent dosing with topical
medications. The role of oral antifungal therapy in managing keratomycosis remains incon-
clusive. The MUTT-2 trial, evaluating the effectiveness of oral treatment with voriconazole
as additional therapy to topical treatment in severe mycotic keratitis, did not find additional
benefits [71]. However, a sub-analysis from the MUTT-2 trial suggested a potential ad-
vantage of adding oral voriconazole to culture-positive Fusarium keratitis, with a reduced
rate of perforation, decreased need for PK, reduced scar size, and improved visual acuity
at three months [72]. Systemic antifungals are indicated as an adjunctive treatment in
specific cases, such as ulcers > 5 mm in size, involvement of >50% stromal depth, recal-
citrant infections, bilateral infections, those associated with scleritis, limbal involvement
or endophthalmitis, pediatric cases, post-keratoplasty infections, and cases of impending
perforation/perforated ulcers [49,73]. The inconclusive role of oral antifungals in fungal
keratitis calls for more randomized control trials in this area for a clearer understanding.

4.2. Targeted Drug Delivery

Targeted drug delivery using antifungal agents is a strategic approach that involves
the precise delivery of medications to the cornea through intrastromal and intracameral
injection, optimizing therapeutic effects while minimizing systemic exposure. Localized
approaches, such as topical application, can effectively target superficial fungal infections,
delivering high concentrations of antifungal agents directly to the affected area while
minimizing systemic side effects. Invasive fungal infections may require systemic delivery
via intravenous routes. The advantages of targeted drug delivery include enhanced efficacy
at the infection site, reduced systemic toxicity, and improved patient compliance. However,
challenges such as developing effective drug carriers, ensuring sustained release, and address-
ing potential barriers to drug delivery must be overcome. Voriconazole (50–100 µg/0.1 mL)
and amphotericin B (5–7.5 µg/0.1 mL) are usually used for this method [2].

Resistant keratitis [74], mycotic keratitis complicated with endophthalmitis [75], post-
PK and post-photorefractive keratectomy fungal keratitis [76] are indications for this
method, using intrastromal, intracameral, and intravitreal injections. Amphotericin B
has been the most common drug used in the past; however, due to its higher incidence
of ocular and systemic complications, such as corneal toxicity and kidney disease, it is
increasingly being replaced by the safer choice, voriconazole [74]. Voriconazole is a second-
generation azole with better bioavailability against common fungi, such as Fusarium spp.
and Aspergillus spp., and has shown favorable outcomes in multiple case series when added
to the standard treatment regimen [77,78].

A randomized control study by Narayana et al., evaluating the effectiveness of adding
intrastromal voriconazole 1% to a therapeutic protocol for moderate-to-severe mycotic
keratitis, highlighted no noticeable advantage in culture positivity (at the three/seven-
day mark), scar dimension, visual impairment (3-month mark), or lower rate of corneal
perforation when compared with topical natamycin 5% monotherapy [79]. Additional
randomized studies are still needed to verify the optimal regimen in terms of the doses, the
intervals of time between them, and the approximate number of injections. Several studies
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have compared the efficacy of the previously mentioned drugs, with various results, and
they failed to describe a model-systematized treatment for fungal keratitis (Table 3).

Table 3. Recent studies on antifungal agents and their clinical responses and outcomes.

Study Route of Administration Material Results

Voriconazole 1% vs. natamycin
5% [80] Topical 120 patients No significant difference (VA, scar

size, or complications)

Voriconazole 1% vs. natamycin
5% [81] Topical 30 patients

All patients with natamycin
healed; 14/15 patients with

voriconazole healed

Voriconazole 1% vs. amphotericin
B 0.3% vs. fluconazole 0.2% [82] Topical 44 rabbits (animal studies)

No significant difference in
healing, low toxicity

for voriconazole

Voriconazole vs. amphotericin B
(several dosages) [83] Topical Colony counts Amphotericin led to lower

colony counts

Voriconazole (50 µg/0.1 mL) vs.
amphotericin B (5 µg/0.1 mL) vs.

natamycin (10 µg/0.1 mL) [84]
Intrastromal 60 patients

No significant difference
(VA)—natamycin showed faster
healing; amphotericin B had a

higher rate of deep
vascularization after healing

Voriconazole 1% vs. natamycin
5% [85] Topical 323 patients

Natamycin was associated with
significantly better clinical and

microbiological outcomes

Econazole 2% vs. natamycin 5%
[86] Topical 112 patients No significant difference

Itraconazole 1% vs. natamycin 5%
[87] Topical 100 patients Natamycin was associated with a

better clinical response

Natamycin 5% vs. amphotericin B
0.15% vs. voriconazole 1% vs. and

fluconazole 0.2% [88]
Topical Colony counts

Amphotericin B and natamycin
had equal effectiveness and

full inhibition

Micafungin 150 µg vs. natamycin
5% [89] Topical 18 rabbits (animal studies) No significant difference (scar

size, infiltrate)

4.3. Nanoparticles

Nanotechnology has been explored in the field of ophthalmology, particularly in the
development of novel drug delivery systems (NDDS) and gene delivery. Various types
of nanoparticles, such as nanosuspensions, liposomes, nanofibers, and nanotubes, are
being investigated for delivering antifungal agents. The aim is to achieve enhanced ocular
penetration, retention, and improved bioavailability. Sushma et al. have synthesized and
characterized ethosomes (IAEs) encapsulating a dye, indocyanine green, and an antifungal
drug represented by amphotericin B, in order to achieve combinational photothermal
therapy for fungal keratitis. This nano-formulation exhibited a synergistic and sustained
antifungal effect, giving way to more in-depth studies [90]. Kumar et al. have developed
nanostructured lipid carriers loaded with itraconazole and shown that this system can be
an effective approach, with adequate activity against fungi and less local side effects [91].
While several in vitro and in vivo experimental studies have highlighted promising re-
sults using this treatment method, further controlled studies are necessary for its use on
humans [65–93].

4.4. Therapeutic Contact Lenses

A therapeutic contact lens represents an ideal drug delivery system for the continu-
ous provision of medication to the affected cornea, simultaneously limiting nonspecific
absorption and drug loss through tears. One of the benefits of these inserts is having a
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higher precorneal residence time, which provides the means to release the drug material at
a preprogrammed rate and leads to higher bioavailability and prolonged drug activity. The
post-lens tear film, formed behind the contact lens, has reduced tear mixing and exchange;
therefore, drugs released from the contact lens into this tear film will have a prolonged
contact time with the cornea [91]. Although some studies in this field have shown promise,
there is currently no FDA-approved therapeutic contact lens for mycotic keratitis [94].

4.5. Photodynamic Therapy

Photodynamic therapy (PDT) is a treatment method that utilizes a photosensitizing
agent, which, when activated by specific wavelengths of light, produces reactive oxygen
species. These reactive oxygen species can cause cellular damage, leading to the destruction
of targeted cells. In the context of corneal infections, including Acanthamoeba and fungal
keratitis, PDT has been considered as an alternative treatment modality [95]. Photosen-
sitizing agents, such as methylene blue or rose bengal, are applied to the corneal lesion.
Subsequent exposure to light, typically using a laser of a specific wavelength, activates
the photosensitizer, generating reactive oxygen species that can selectively damage fungal
cells. More important, PDT can destroy fungi nonselectively. PDT-associated genotoxic
or mutagenic effects on fungal or human cells have so far not been observed [90]. The
application of PDT for fungal keratitis aims to achieve localized and targeted antifungal
effects while minimizing damage to healthy tissue. It is often considered in cases where
conventional antifungal therapies may be insufficient or in situations where surgical in-
tervention is challenging. PDT offers advantages such as negligible drug resistance, high
spatiotemporal control, and fewer side effects.

The PDT regimen for corneal infections resembles the treatment used in keratoconus
cases, involving the use of photosensitizers and UV-A light. Experimental studies com-
paring different photosensitizers have shown promising results. For example, a study has
compared rose bengal with riboflavin PDT and has indicated that rose bengal PDT with
green light showed greater effectiveness in vitro against common fungi, such as Fusarium
solani, Aspergillus fumigatus, and Candida albicans [96]. Other novel treatments studies con-
firm that the UPR (fungal unfolded protein response) is essential for Aspergillus fumigatus
to establish infection in the cornea, and its inhibition with the Ire1 inhibitor, 4µ8C, can
significantly reduce fungal growth in mice [97]. Even though antimicrobial PDT has shown
potential in treating several therapy-refractory diseases in vitro and in animal studies, there
are no large-sized clinical studies currently available.

4.6. Corneal Crosslinking

Corneal collagen crosslinking (PACK-CXL) is a well-established procedure commonly
used for managing ectatic corneal disorders, as well as conditions like bullous keratopathy.
The procedure uses the ultraviolet-A irradiation of the cornea that has been primed with
the photosensitizer riboflavin (vitamin B2). This process leads to the formation of reactive
oxygen species and singlet oxygen, ultimately increasing the corneal biomechanical stability
by forming covalent bonds between stromal collagen fibrils [98]. The CXL method can be
involved in three main mechanisms in the pathophysiology of fungal keratitis: antimicrobial
activity, anti-inflammatory action, and a higher resistance of the cornea to enzymatic
degradation [96].

Several experimental studies have indicated that corneal collagen crosslinking can
be an effective adjunctive treatment for fungal keratitis, especially when combined with
antifungal agents early in the disease course [99,100]. A few studies have shown that
extending the duration of irradiation and elevating the concentration of riboflavin may
enhance the effectiveness of this method [99,101]. While some case reports and studies
have shown it to be a useful adjunctive therapy, the Cross-Linking Assisted Infection
Reduction Trial (CLAIR trial), a randomized controlled study, concluded that corneal
collagen crosslinking has no added advantage and may lead to higher vision impairment
compared to standard treatment in mycotic keratitis [102–104].
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4.7. Surgical Approach

Surgical treatment plays a crucial role in the management of fungal keratitis, with
approximately 50% of cases requiring therapeutic PK to control the infection [71]. The
incidence of PK in fungal keratitis varies depending on factors such as the geographical
prevalence of fungal infections, local healthcare practices, and the efficacy of early anti-
fungal interventions. In a recent study, 50% of the cases with mycotic keratitis needed
PK [40].

The common indications for PK in fungal keratitis include perforated ulcers, impend-
ing perforations, and cases that do not respond to conservative management. The necessity
for PK in fungal keratitis varies between 15% and 55%, underscoring the fact that sole
reliance on medical treatment may not invariably lead to success [105,106]. A secondary
analysis of data from the MUTT-2 trial identified several risk predictors that may indicate
further need of a PK—infiltrate dimensions and depth, and hypopyon in the anterior
chamber—predictors that could indicate the need for PK in fungal keratitis [107]. For
example, the presence of hypopyon increased the odds, and an increase in infiltrate size
indicated a higher likelihood of requiring PK.

PK poses several significant complications, such as graft rejection, microbial/fungal
infection, or secondary glaucoma. The rate of re-infection post keratoplasty is of utmost
concern in mycotic keratitis, between 6% and 16% [94,100,104].

Additionally, the delayed use of steroid drops post keratoplasty, often due to the fear of
re-infection, can lead to increased inflammation, graft decompensation, and vascularization,
contributing to poorer surgical outcomes. Overall, surgical intervention, particularly PK,
remains an important aspect of the comprehensive management of fungal keratitis, but
challenges in terms of donor availability and postoperative care need to be addressed for
better outcomes [94]. Cyanoacrylate tissue adhesive and bandage contact lens may also be
used in the management of microperforation or impending perforation.

5. Conclusions

Fungal keratitis is common in warm and humid regions, with more than 100 fungal
species that can cause sight-threatening keratitis. The etiopathogenesis involves morpho-
logical changes, trauma, adhesion, virulence factors, and immune response. In several
cases, the traditional diagnostic approaches, such as smears and cultures, have failed to
provide reliable diagnosis, leading to refractory fungal keratitis and poor prognosis. In
contrast to conventional diagnostic methods, new methods based on molecular biology,
such as PCR, DNA and RNA sequencing, and IVCM, can improve the diagnosis of fungal
keratitis and optimize the treatment to obtain a better visual acuity and a smaller scar.
There have also been improvements in treatment, with several different approaches to
mycotic keratitis attempted, especially in refractory cases. Newer antifungal agents and
combination treatment, in comparison to monotherapy, have been shown to be more effec-
tive in the management of mycotic keratitis. With the progress that has been made in the
pathogenesis and diagnosis of fungal keratitis, more treatment strategies will undoubtedly
be developed to reduce the socioeconomic burden related to fungal keratitis.
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