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Toxin antitoxin systems (TAS) are widely distributed in bacterial chromosomes as
well as on mobile genetic elements. Without controversy, TAS play a key role in main-
taining genetic materials [1,2]. They are also involved in various physiological activities
in bacteria, including stress response, virulence, biofilm formation, antibiotic tolerance,
and bacteriophage propagation [3–6]. Some of the functions of TAS have some degree of
controversy; however, growing research in this area has shown the importance of TAS in
bacterial lifestyle [7–10].

In this special issue, we tried to compile findings on the identification and charac-
terisation of novel TAS, the biological functions of TAS, and the applications of TAS in
biotechnology and medicine. A manuscript by Choi et al. (contribution 2 in the special
issue) describes the identification, genetic and functional characterisation of the mazEF-type
TA in the pathogenic bacterium Agrobacterium tumefaciens.

Manuscript by Schirmer et al. [11] (contribution 1) demonstrated the evolutionary
diversification of Bartonella effector proteins (Beps) from a single ancestral FicTA toxin-
antitoxin module. It showed how FicA-like BiaA antitoxin can interfere with the effector
functions of Beps in Bartonella by forming a tight complex with Beps. Extensive analysis
using multiple tools demonstrated the remarkable functional and regulatory plasticity of
Beps that occur due to minor structural changes of the FIC fold.

It has been previously demonstrated that the expression of toxin tisB of tisB/istR-1
TA system is induced in response to SOS signal and the role of tisB/istR-1 TA system in
forming persister cells [12]. A manuscript by Edelmann et al. (contribution 4) demonstrated
that this SOS-dependent tisB toxin activation and persister cell formation is conditional
and depends on the DNA-damaging agents.

TAS have been used previously in several biotechnological approaches, including
constructing cloning vectors, stable expression vectors, and producing proteins [13,14].
In this issue, the authors in contribution 3, developed a novel method for the scarless
deletion of a gene of interest in bacteria by using Vibrio parahaemolyticus YoeB toxin as a
counter-selectable marker.

A very comprehensive review on type II TA systems [15] (contribution 5) compiled
experimentally demonstrated bonafide biological functions of type II TAS in bacteria,
including the role of TAS in the maintenance of genetic materials, bacterial virulence and
pathogenesis, biofilm formation, contribution to bacterial resistance to bacteriophages,
bacteriophage propagation in host bacteria, different stress responses and discussed the
application of TAS in biotechnology and medicine. Several limitations in the TA research
area have also been discussed in this review.

The increasing interest in TA research is now elucidated by continuously discovering
new TA systems with novel functions and their structure-function relationships. Still, more
research needs to understand the role of so many uncharacterised TAS. Many TA systems
or their close relatives have been identified in bacterial chromosomes and on different
mobile genetic elements, such as on plasmids. More research is needed to understand the
crosstalk between those TAS. TAS present on MGE can move to other bacterial species, but
it is not very well-known whether these TAS play the same functions in diverse bacterial
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species or are conserved to specific bacteria [16]. Several studies identified orphan toxin or
antitoxin genes in bacterial chromosomes and on different mobile genetic elements [17,18].
A question arises: what is the function of these lone toxins or antitoxins? It was demon-
strated that orphan antitoxin or antitoxin-like genes present in bacteriophage genomes
provide an advantage to bacteriophage infection by protecting phage DNA from bacterial
endonuclease-type toxins [19,20]. More research is needed to understand the function of
lone toxin or antitoxin, specifically when they are present on plasmids or phage genomes.
Orphan antitoxins may provide advantages to the mobile elements for their dissemination
by protecting them from the bacterial defence mechanism immediately after transfer to a
new host.
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