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Abstract: Amid the escalating challenges of antibiotic resistance, bacterial infections have emerged as
a global threat. Bacteriophages (phages), viral entities capable of selectively infecting bacteria, are
gaining momentum as promising alternatives to traditional antibiotics. Their distinctive attributes,
including host specificity, inherent self-amplification, and potential synergy with antibiotics, render
them compelling candidates. Phage engineering, a burgeoning discipline, involves the strategic
modification of bacteriophages to enhance their therapeutic potential and broaden their applications.
The integration of CRISPR-Cas systems facilitates precise genetic modifications, enabling phages to
serve as carriers of functional genes/proteins, thereby enhancing diagnostics, drug delivery, and
therapy. Phage engineering holds promise in transforming precision medicine, addressing antibiotic
resistance, and advancing diverse applications. Emphasizing the profound therapeutic potential of
phages, this review underscores their pivotal role in combatting bacterial diseases and highlights
their significance in the post-antibiotic era.
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1. Introduction

Bacteriophages are viruses that selectively target and infect bacteria and offer var-
ious advantages over conventional antibiotics, including host-specific infections, self-
amplification, coevolution, and adaptability [1,2]. Antibiotic resistance has recently emerged
as a pressing global concern and presents a formidable public health challenge [3,4]. An
alarming surge in bacterial resistance has rendered many once-effective antibiotics ineffec-
tive in combating bacterial infections [5]. Previously manageable infections, ranging from
common urinary and respiratory tract infections to severe conditions such as sepsis and
pneumonia, are becoming increasingly difficult to treat [6]. This has dire consequences for
patient outcomes, exacerbating morbidity, mortality, and healthcare expenditure [7].

Adding to this complexity is the limited availability of novel antibiotics [8]. The
development of novel antimicrobial agents has slowed owing to scientific, regulatory, and
economic hurdles [9,10]. Compared with other therapeutic areas, pharmaceutical compa-
nies encounter difficulties recovering their investments in antibiotics research and develop-
ment [11]. Consequently, the scarcity of new antibiotic compounds poses a challenge to
antibiotic resistance. Immediate and collaborative actions are imperative to safeguard the
efficacy of antibiotics and public health and to ensure the availability of effective treatments
for future generations.

The search for viable alternatives to traditional antibiotics has become paramount
because of the escalating threat of antibiotic resistance [12–14]. Bacteriophages, or phages,
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have emerged as promising candidates for addressing bacterial infections in the post-
antibiotic era [15–17]. In addition to their therapeutic potential, bacteriophages have
potential in the area of personalized medicine [18,19]. The isolation and tailoring of phages
that target specific bacterial strains permit personalized treatment approaches. The next
generation of phage therapies, involving genome engineering to customize phages accord-
ing to the distinct characteristics of the infecting bacteria, could enhance their efficacy and
contribute to more favorable patient outcomes [20,21]. Although using bacteriophages as
antibiotic alternatives presents numerous advantages, challenges remain [22,23]. Issues re-
lated to phage production, quality control, safety, regulatory frameworks, and the potential
for bacterial resistance necessitate ongoing research and development [24–26]. Addressing
these challenges is pivotal for securing and effectively implementing bacteriophage therapy.

In this review, we highlight the recent advances in phage therapy as an alternative
approach for treating bacterial diseases. Their specificity, self-replication, adaptability,
synergy with antibiotics, and the potential for personalized medicine make them appealing
options in the battle against antibiotic-resistant infections. Although further research and
regulatory frameworks are imperative, we will explore the potential of bacteriophages as
valuable tools in the post-antibiotic era.

2. Laboratory and Therapeutic Practices
2.1. Isolation and Characterization of Bacteriophages: Foundations for Therapeutic Applications

Isolation and characterization of bacteriophages are pivotal steps in laboratory research
and therapeutic endeavors. These processes provide indispensable insights into the host
specificity, morphology, genetics, life cycle, and antibacterial properties of phages [27–29].
This knowledge serves as a cornerstone for researchers and medical practitioners to under-
stand the potential of phages in combating bacterial infections and tailor their application
to precise and efficacious therapeutic interventions [30].

In both the laboratory and therapeutic contexts, the scrupulous isolation and thorough
characterization of phage strains serve as the fundamental groundwork for comprehending
their attributes and prospective roles in addressing bacterial infections. To date, numerous
phages have been isolated, each targeting prominent bacterial pathogens, such as Acineto-
bacter, Aeromonas, Erwinia, Mycobacterium, Pantoea, Pseudomonas, Salmonella, Staphylococcus,
Streptococcus, Vibrio, and Xanthomonas [31–41]. These phages span diverse sectors, including
agriculture, food safety, veterinary practice, and human medicine.

Lytic phages, also referred to as virulent phages, are a category of bacteriophages that
follow an obligatory lytic life cycle when infecting bacterial cells [42]. Within this cycle, the
phage undergoes rapid replication within the host bacterium, ultimately culminating in the lysis
(rupture) of the bacterial cell and the subsequent liberation of newly formed phage particles.
This distinctive behavior has propelled lytic phages to the forefront of phage therapy [43–45].

In contrast, lysogenic phages exhibit an alternative pattern, refraining from lysing
target bacteria [44]. Instead, they integrate genetic material into the bacterial genome to
establish dormancy within the host [45]. Consequently, lysogenic phages have historically
been excluded from therapeutic applications. Recent progress has revealed novel aspects
of lysogenic phages and their potential therapeutic applications [46,47].

Once undervalued, lysogenic phages have garnered renewed attention owing to
their unique characteristics and potential benefits in the therapeutic context [48,49]. Their
capacity to facilitate controlled phage release, mitigate the risk of resistance development,
enable gene transfer, and offer possibilities for gene therapy presents a compelling rationale
for exploring lysogenic phages as valuable tools in the battle against bacterial infections
and antibiotic resistance [50–52]. To fully utilize their therapeutic potential, further research
is imperative to elucidate their mechanisms of action.

The potential of lytic and lysogenic phages as substitutes for antibiotics in therapeutic
applications is widely acknowledged [53,54]. Although many studies postulate the thera-
peutic effect of phages, assessing the lytic potency of phages can be challenging, leading
researchers to employ rapid, but sometimes incomplete, methods for its evaluation. The
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mathematical evaluation of lytic efficacy, such as the phagescore and virulence index, pro-
vides a precise measure of lytic activity, facilitating effective comparisons between different
bacteriophages for specific applications and purposes [55,56]. This method aids in making
informed decisions regarding the selection and utilization of bacteriophages in various
research and therapeutic contexts. The use of such methods extends to various aspects
of phage research, including phage screening, assessing different phage strains, mutants,
infection conditions, host susceptibility, and even the formulation of phage cocktails [57,58].

These combined features offer a promising approach to addressing bacterial infections
and antibiotic resistance [59,60]. By strategically utilizing the unique strengths inherent
in both phage types, scientists and medical practitioners can formulate adaptable and
efficacious therapeutic approaches that capitalize on their distinct advantages. This strategic
integration is key to devising potent phage-based strategies to address the urgent challenges
posed by the post-antibiotic era [13,44,61]. An in-depth investigation and study of their
mechanisms and interactions is imperative to realize the complete therapeutic potential of
lytic and lysogenic phages as indispensable alternatives to antibiotics.

2.2. Phage Therapy in Plant Agriculture

The use of antibiotics in plant agriculture has generated concerns regarding the po-
tential emergence of antibiotic-resistant bacteria in the environment [62,63]. This raises
concerns about the possible horizontal gene transfer of antibiotic-resistant genes from
plant-associated bacteria to bacteria affecting human health [64,65]. Stringent regulations
have been implemented to mitigate unnecessary and excessive antibiotic use in agriculture,
permitting only a limited number of antibiotics to be used [66,67]. Consequently, alternative
strategies such as phage therapy are garnering attention as prospective approaches for
managing bacterial pathogens without exacerbating the antibiotic resistance crisis.

Within the framework of the One Health approach and the imposed restrictions on
antibiotic overuse, the concept of harnessing naturally occurring phages from the environ-
ment has emerged as a viable strategy to promote sustainable agricultural practices [68,69].
In horticulture, phages exhibit considerable potential as a promising avenue to effectively
manage bacterial outbreaks caused by pathogenic genera, such as Agrobacterium, Dickeya,
Erwnia, Pectobacterium, Ralstonia, Xanthomonas, and Xylella, without the need for the overuse
of antibiotics [28,41,70–73]. This approach is bolstered by the availability of commercially
accessible phages that specifically target these pathogens, substantiating the viability of
such strategies worldwide.

Ranjani et al. assessed the bacteriophage ϕXOF4 against Xanthomonas oryzae, the cause
of bacterial leaf blight (BLB) in rice [74]. The efficacy of ϕXOF4 was observed across a
wide range of hosts, effectively eradicating all pathogenic strains. Treatment with ϕXOF4
at a concentration of 1 × 108 PFU/mL reduced the incidence of BLB and halted bacterial
proliferation. Even at lower phage concentrations (1 × 107, 1 × 106, and 1 × 105 PFU/mL),
the disease was effectively controlled, with disease outbreak rates of 3.6%, 6.3%, and
15%, respectively. This study not only highlighted the stability of ϕXOF4, but also its
dynamic population growth. Over 7 days, the initial bacterial population expanded from
1.65 × 106 to 1 × 109 CFU/mL, whereas the phage population declined from 1 × 108 to
3 × 105 PFU/mL.

Phage cocktails have emerged as a highly recommended strategy for optimizing the
therapeutic potential of phages as biocontrol agents [75,76]. Phage cocktails encompass a
combination of multiple phages targeting diverse bacterial strains or species, resulting in a
broader spectrum of actions [77,78]. This approach enhances the probability of successfully
eradicating bacterial populations, particularly when a single phage may prove insufficient
owing to bacterial diversity or potential resistance. Carstens et al. isolated and characterized
29 phages that are virulent to Pectobacterium atrosepticum, a plant pathogenic bacterium
that causes blackleg disease and potato soft rot [79]. Six phages were chosen to construct
a phage cocktail based on their efficient propagation and genomic diversity, showing a
remarkable host range of 93% against various tested P. atrosepticum strains. The resulting
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phage cocktail demonstrated significant efficacy in reducing disease incidence and potato
soft rot severity by 61% and 64%, respectively, even under simulated storage conditions.

Several strategies involve the integration of antibiotics with phage cocktails to optimize
the biocontrol potential of phages [80–82]. Kim et al. investigated the synergistic efficacy of
a phage cocktail combined with kasugamycin, an aminoglycoside-class antibiotic used in
agriculture for fire blight control [83]. Notably, the individual phages within the cocktail
led to a reduction in E. amylovora cell count, ranging from 1.2 to 3.5 log CFU/mL, and
a remarkable synergy among the phage cocktail was observed, resulting in a reduction
of −3.7 log CFU/mL in vitro. Furthermore, the combined administration of a phage
cocktail and antibiotics (minimum inhibitory concentration; MIC, 1/2MIC, and 1/4MIC)
exerted a greater bactericidal effect than antibiotic-only treatment, indicating that antibiotic
usage could be lowered to only a quarter. Antibiotics target specific bacterial structures or
processes, hindering bacterial growth, while phages infect and rupture bacterial cells [84].
Combining antibiotics and phages creates a potent defense, challenging bacterial resistance
on multiple fronts. This synergy is particularly effective against antibiotic-resistant strains,
as phages can restore antibiotic effectiveness and enable lower antibiotic doses, reducing
side effects and resistance development [85]. The combined action of antibiotics and phages,
including phage-mediated weakening of bacterial cell walls, enhances their bactericidal
effect, making this combination therapy a promising approach to combatting bacterial
infections [86].

Numerous studies have explored the potential use of phages as biocontrol agents in the
field [87–89]. Retamales et al. examined the application of bacteriophages to manage walnut
blight caused by Xanthomonas arboricola pv. juglandis (X. juglandis) [90]. Three characterized
phages, f20-Xaj, f29-Xaj, and f30-Xaj, showed specific lytic activity against X. juglandis
strains from Chile and France. Notably, phage administration exhibited a dose-dependent
protective effect in field trials. High doses of bacteriophages (4 cubic centimeters (cc)/L)
demonstrated effectiveness comparable to that of Cu treatment in reducing leaf damage
and disease incidence. The presence of bacteriophages in walnut tissues significantly
decreased the bacterial load of X. juglandis, and high doses of bacteriophages (>3 cc/L)
positively affected walnut fruit production. In a separate study by Rombouts et al., a
six-phage cocktail was used to prevent bacterial blight caused by Pseudomonas syringae
pv. porri [91]. This cocktail comprised five phages (vB_PsyM_KIL1-5) and one mutant
phage (vB_PsyM_KIL3b) capable of infecting all 41 tested P. syringae pv. porri strains. Field
trials showed variable results depending on the cultivar of plant and field, with disease
protection (% disease incidence of phage treatment/% disease incidence of control) of
76–88% when infection was followed by phage treatment and 61–88% when the phage
spray was followed by infection.

Similarly, the disease-preventive efficacy of phages has been validated, demonstrating
comparability with the effects of antibiotics typically employed for each disease [92,93].
Several phages targeting E. amylovora resulted in an around 63% reduction in fire blight
disease incidence, which is a comparable result with antibiotic (streptomycin) treatment
in a 12-year-old Bartlett pear plant [92]. Recently, Nga et al. demonstrated the efficacy of
three phage cocktails under greenhouse and field conditions [93]. The results revealed
optimal disease control at phage concentrations of 107 and 108 PFU/mL. In field trials,
both individual Φ31 phage and the phage cocktail effectively mitigated disease symptoms,
reaching an efficacy comparable to the chemical bactericide oxolinic acid while significantly
enhancing crop yield.

Prominent considerations in practical studies have underscored the significance of
achieving persistence in the plant phyllosphere [94,95]. Research has been directed towards
understanding the longevity of phages, encompassing repeated administration of phage so-
lutions, devising strategies to shield phages from environmental stressors, and exploring in
situ phage propagation through non-pathogenic phage-propagating (carrier) strains [96,97].
Born et al. researched formulations capable of protecting phages from ultraviolet (UV)
radiation, a major environmental stress factor [95]. Various substances commonly found
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in the environment, such as beetroot and carrot juice, bovine milk casein, soy peptone,
astaxanthin, amino acids, and Tween 80, yield positive outcomes by enhancing the half-life
of phages against UV irradiation. Jo et al. developed a formulation incorporating Tween
80 and kaolin to shield phages from UV exposure, consequently bolstering their stability
against UV radiation and promoting their adhesion to plant leaves to extend their persis-
tence (Jo and Kim et al., in preparation). The concept of augmenting phage persistence
through the use of carrier strains in the phyllosphere holds the potential for significant
enhancement. Yet, the potential impact of carrier strains on disease incidence necessitates
careful evaluation [97].

2.3. Phage Therapy in Veterinary and Human Medicine

The One Health approach acknowledges the interrelatedness of human, animal,
and environmental health, underscoring their interdependence and close correlation [98].
Within this framework, the One Health perspective underscores the notable advantages
of phages as precision-targeting agents to combat bacterial infections [99]. In contrast to
antibiotics, which can exert a broad-spectrum effect on both detrimental and beneficial
bacteria, phages exhibit an exceptional degree of specificity [100]. Each phage has evolved
to recognize and infect distinct bacterial strains or species while preserving non-targeted
bacteria. This precision is of paramount importance for maintaining the equilibrium of
natural microbiota across humans, animals, and the environment [101,102].

Veterinary antibiotics have been used extensively in the livestock, poultry, and aqua-
culture industries for growth-promotion purposes [103,104]. The regulation of antibiotic
use plays a pivotal role in curtailing potential misuse, which is a critical concern within the
framework of One Health principles that encompass the comprehensive impact of antibiotic
usage on human, animal, and environmental health [105]. It is crucial to understand that
the widespread use of antibiotics promotes the spread of antibiotic resistance, underscoring
the urgency of seeking alternative solutions [106]. Adherence to these criteria has led to a
heightened interest in exploring alternative approaches for disease control, encompassing
strategies such as vaccination, pre-/probiotics, and herbal extracts [107–109].

Phages have emerged as prominent candidates owing to their adaptable utility in ther-
apeutic applications and vaccine development [110–112]. Numerous effective phages
targeting major antibiotic-resistant bacterial pathogens, such as Campylobacter, E. coli,
Salmonella, Pseudomonas, Klebsiella, Acinetobacter, Staphylococcus, and Vibrio, have been
documented [113–129]. In this section, we selected articles that exemplify the accomplish-
ments of phage therapy and its strategic implementation.

The increasing demand for organically grown fruits and vegetables underscores the
necessity for safe soil amendments and organic fertilizers [130]. Nevertheless, they may
contain harmful bacteria. Spreading them on the soil may contribute to the transfer of
these microorganisms into the environment. Despite growing awareness regarding the
potential hazards of pathogen contamination in crops, multiple foodborne diseases have
been linked to fresh produce outbreaks [131,132]. To mitigate this risk, effective biocontrol
methods employing bacteriophages were employed by several researchers. Grygorcewicz
et al. demonstrated the potency of lytic S. Enteritidis phage, sall_v01, in swine manure,
revealing a 99.6% and 99.98% reduction in bacterial count in the short (6 h) and long (14 h)
term, respectively [133]. Spencer et al. showed the sanitizing effect against S. Typhimurium
using a five-phage cocktail in dairy manure compost, observing a 99% and 99.9% reduction
in bacterial count in the short (4 h) and long (34 h) term, respectively [134]. Moreover,
the sanitizing application of antibiotics in food products is widely discouraged because
of their extended environmental persistence and broad-spectrum antimicrobial effects.
Bacteriophages provide precise and eco-friendly solutions for improving food safety [135].
Huang et al. demonstrated the potential of Salmonella phage LPSE1 to decontaminate in
various ready-to-eat foods such as milk, sausage, and lettuce [136]. Bacteriophage ECPS-6
was excellent in removing E. coli O157:H7 in milk [137]. The phage ECPS-6 was able to
reduce the E. coli O157:H7 both at room temperature (25 ◦C) and refrigerated condition



Microorganisms 2023, 11, 2311 6 of 20

(4 ◦C), leading to the reduction in the pathogen below the detection limit after 6 h with low
phage concentration (5 × 106 PFU/mL).

A notable investigation conducted by Hawkins et al. demonstrated the efficacy
and safety of phage therapy in clinical trials involving companion animals, specifically
dogs [119]. In this study, ten dogs afflicted with chronic P. aeruginosa otitis received a
single 0.2 mL dose of six bacteriophages (BC-BP-01 to BC-BP-06; each of approximately
1 × 105 PFU) administered directly into the external auditory canal using a sterile syringe.
After 48 h, there was a significant 67% reduction in P. aeruginosa counts. Moreover, certain
cases indicated the proliferation of multiple bacteriophage strains (5.9 × 107 PFU/swab).
Subsequently, an 18-month follow-up study was conducted, revealing sustained effective-
ness, as evidenced by the consistent resolution of chronic ear infections and improvements
in P. aeruginosa components that had been observed previously.

Notably, phage application may reduce antibiotic use by offering synergy through com-
bination therapy [86,138,139]. By disrupting biofilm structures, phages enhance antibiotic
penetration and increase bacterial susceptibility to their effects [140–142]. This collabora-
tive effect holds promise for enhancing the treatment outcomes in challenging infections.
Roszak et al. investigated bacteriophage–antibiotic combinations for combating biofilm
by dual-species (S. aureus and Candida albicans) [143]. Phages and ciprofloxacin achieved
a 90% reduction in mono-species biofilm-specific activity (BSA) and a 69% reduction in
dual-species BSA, outperforming individual treatments. Kaźmierczak et al. revealed the po-
tential of bacteriophages to outperform antibiotics, particularly against antibiotic-resistant
S. aureus strains [144]. Three phages, vB_SauM-A, vB_SauM-C, and vB_SauM-D, showed
effective antibiofilm eradication, reducing biofilm biomass and staphylococci count, which
outperformed antibiotics both in vitro and in vivo (moth larvae) assay. Carvalho et al.
observed the significance of developing formulations that shield phages from host immune
defenses when administered orally [113]. Phages introduced through the gastrointestinal
tract encounter various barriers, including exposure to gastric juice due to its potent acidity,
which can lead to phage inactivation. Carvalho et al. further observed the absence of
phages in fecal samples, indicating their susceptibility to low pH conditions. To counter
this challenge, they employed antacids (30% CaCO3) combined with a phage solution,
resulting in rapid bacterial inhibition starting 2 days after administration, leading to a
substantial 30-fold reduction in campylobacteriosis incidence. Another study by Thanki
et al. investigated the efficacy of phage therapy for mitigating Salmonella colonization in
piglets using two phages, SPFM10 and SPFM14 [114]. Administering piglets an antacid
solution (10% CaCO3) via oral gavage prior to daily feed introduction led to a significant
reduction of 1.976 CFU/g in fecal Salmonella counts by day 3.

The immune system is another crucial factor impeding the therapeutic potential of
phages [145–147]. Generally, phages are rapidly cleared (within a few days) from the circu-
latory system of animals [148–150]. Subsequent repeated administration for therapeutic effi-
cacy may provoke immune stimulation, leading to counteractive phage clearance [151,152].
To address this challenge, Merril et al. employed natural selection to evolve phages with an
extended circulation time [153]. Singla et al. employed liposome encapsulation to shield
phages from neutralization through phage-specific antibodies, leading to an increased pro-
tection effect in vivo [154,155]. Kim et al. extended phage survival in vivo by encapsulating
biocompatible substances, thereby mitigating the immune response to phages [156].

In advancing phage therapy, recent endeavors have been directed toward substanti-
ating the safety and efficacy of phages through meticulous clinical trials [157–159]. The
inaugural clinical trial, employing a phage cocktail identical to that used in the aforemen-
tioned canine otitis case, assumed the form of a Phase I/II assessment [157]. The primary
objective of this trial was to evaluate the safety and efficacy of Biophage-PA at a low con-
centration (1 × 105 PFU/mL). The trial included 24 patients with persistent ear infections
caused by antibiotic-resistant P. aeruginosa strains. Over a comprehensive 42-day follow-up
period, the findings showed a noteworthy reduction in P. aeruginosa counts within the
phage-treated group (23.9%) when juxtaposed against the placebo cohort (108.9%).
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Low titers of administered phages have emerged as a prominent factor contributing
to the setbacks observed in clinical trials. A study conducted by Jault et al. exemplified
this concern, as they aimed to address P. aeruginosa burn wound infections by utilizing
12 lytic phages (1 × 106 PFU/mL) in conjunction with standard care for burn wound
infections [158]. Regrettably, the trial was prematurely terminated owing to the inade-
quate efficacy of phage PP1131, which was potentially attributed to diminished phage
concentrations during storage. Furthermore, Leitner et al. documented unfavorable out-
comes in clinical trials involving male patients undergoing transurethral resection of the
prostate [159]. This study aimed to evaluate the efficacy of intravesical bacteriophage
therapy in managing urinary tract infections (UTIs). The success rates did not vary signifi-
cantly among the phage, placebo, and antibiotic groups. These findings were influenced by
several factors, including insufficient phage quantity in the pyophage group, which needs
investigating to better understand hurdles for therapeutic success.

Conversely, a clinical investigation conducted by Ooi et al. adopted a higher phage
concentration (3 × 109 PFU), which yielded favorable outcomes and a notable absence of
adverse effects within an experimental cohort subjected to an elevated phage dosage [160].
This observation indicates a positive therapeutic impact; nonetheless, meticulous evaluation
during subsequent phase II clinical trials is imperative prior to establishing a comprehensive
assessment.

Despite the promising therapeutic potential demonstrated in clinical trials, challenges
related to phage stability in vitro and in vivo, immunogenicity, and efficacy remain unad-
dressed. Continued research endeavors, bolstered by the application of phage engineering,
hold promise for enhancing therapeutic efficacy and stability [161]. This pursuit is vital for
fully harnessing the formidable potential of phage therapy in the battle against infectious
diseases, particularly for countering antibiotic-resistant superbacteria.

3. Biotechnological Approaches to Bacteriophage
3.1. Phage Engineering

Phage engineering, also known as phage modification or bioengineering, involves
the manipulation of phages to amplify their therapeutic capabilities or broaden their
utility [162,163]. This process employs diverse methods to alter phages, directing them to-
wards specific bacterial strains, enhancing their stability during storage and transportation,
bolstering their effectiveness, and facilitating the carriage of supplementary cargo, includ-
ing therapeutic genes. Phage engineering has significant potential for customizing phage
therapy, spanning applications from diagnostics to personalized medicine and bolstering
the potency of phages against multidrug-resistant bacteria [164].

Phage display is a versatile and extensively employed engineering method that in-
volves the genetic fusion of foreign peptides or proteins with the surface proteins of a
bacteriophage [165]. This fusion empowers the phage to exhibit these peptides or proteins
on its surface, enabling the selection of phages that specifically attach to designated targets
such as bacterial surface components or host cells. This robust technique facilitates the
screening and recognition of ligands or proteins with heightened affinity and specificity for
desired targets, proving invaluable for drug discovery, diagnostics, and therapy [166–168].
However, challenges emerge owing to the intricate nature of the generated libraries, which
could lead to gaps in target coverage [169]. The dimensions of the displayed peptides or
protein domains are limited by the packaging constraints of the phage, thereby curbing the
presentation of larger targets [170]. Furthermore, phage display requires labor-intensive
and time-consuming processes for library construction and screening [171].

Recent advancements in the CRISPR-Cas system have ushered in a transformative era
of bacteriophage engineering [172,173]. This system enables precise manipulation of phage
genomes by utilizing guide RNA to direct the Cas enzyme to cut DNA at specific sites,
allowing targeted genetic modifications, such as gene deletion, insertion, or alteration. This
approach enhances phage properties, expanding lytic activity, host range, and the capacity
to carry therapeutic cargo [174–177]. Moreover, it accommodates larger gene encoding
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because of increased genome packaging in comparison to smaller phages, such as M13,
which are often used in phage displays. This progress has broadened the flexibility of phage
displays and has supported the presentation of larger proteins or intricate gene constructs
on phage surfaces [178]. Additionally, traditional labor-intensive screening involving
radioactive isotopes or affinity tags for recombinant phages can be streamlined using guide
RNA designed to target non-engineered (wild-type) phage-specific sequences [179].

Nonetheless, a cautious approach is imperative in phage engineering, considering the
possible safety and regulatory implications. This approach ensures prudent and secure
utilization of engineered phages in therapeutic and agricultural contexts. As ongoing
research has expanded the boundaries of phage engineering, its capacity to transform
disease management and infection mitigation continues to capture the attention of the
biotechnology and medical industries.

3.2. Phages as Diagnostic Probes

Originally driven by the study of ligand–receptor interactions, phage display has
evolved into a versatile platform encompassing a range of diagnostic methodologies. This
technology has enabled the development of phage ELISA for antibody detection, biosen-
sors for rapid pathogen identification, and peptide arrays for comprehensive biomarker
screening [180]. The inherent signal amplification capacity of phages enhances their in situ
detection and facilitates the identification of disease-specific bacterial markers. Moreover,
phage-derived proteins hold promise for imaging and targeted drug delivery, thus ad-
vancing diagnostics and personalized medicine [181]. This adaptable tool fuels innovative
strategies for disease detection and the exploration of biomarkers. Once engineered, these
modified phages are useful in diverse diagnostic applications, offering sensitive and precise
detection of disease-related entities in clinical samples, ranging from minute targets such
as viruses to substantial entities such as cancer cells (Table 1) [182–186].

Anand et al. comprehensively outlined the application of phage displays for diagnos-
ing coronaviruses [187]. Phage engineering has facilitated novel target exploration through
epitope mapping, shedding light on interactions between coronaviruses, human cell re-
ceptors, and other molecules. Li et al. developed a method for detecting virus particles
at levels lower than the minimum infective dose, such as 105 copies/mL [188]. Similarly,
Soendergaard et al. identified an optimal peptide for ovarian cancer diagnosis, enabling
the direct application of radioactive indium (111In) labeling for conventional SPECT/CT
instrumentation [189]. The use of M13 phages as detection probes provides an additional
diagnostic avenue. Ferreira et al. employed an M13 phage display platform to visualize
colorectal cancer cells via specific MCT1 marker binding [190]. Lee et al. encoded a lung-
cancer-targeting peptide, Pep-1, on M13 phages, enabling non-invasive live in vivo imaging
with a near-infrared microscope [191]. Salles et al. ingeniously mimicked a Leishmania
infantum epitope using an M13 phage display, achieving 100% specificity and sensitivity
for diagnosing human visceral leishmaniasis [192].

Phages possess a significant advantage in terms of their intrinsic host specificity,
making them valuable tools for diagnosing and detecting specific bacterial hosts [193]. This
attribute has been utilized to rapidly detect challenging-to-culture microorganisms such as
Mycobacterium species [194,195]. Diverse approaches, including reporter proteins, phage
amplification, and capture-based protocols, have been developed to facilitate the detection
of pathogenic bacterial species [196,197].

Sarkis et al. devised recombinant bacteriophages by employing mycobacteriophage
L5 to carry the firefly luciferase gene [194]. The limit of detection (LOD) was 70 CFU
over 40 h. The use of temperate phages for reporter gene delivery has drawbacks, with
infectivity potentially being restricted by superinfection exclusion and a limited host range,
affecting platform versatility [193]. Riska et al. engineered the broad-host-range lytic phage
TM-4 for luciferase delivery [195]. However, host cell lysis diminished the detectable light
signal, reducing the sensitivity by 1000-fold. Conversely, Tanji et al. succeeded in rapidly
detecting E. coli, both culturable and viable but non-culturable (VBNC), using lytic reporter
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phages [198]. Mutating phage-mediated lysis enabled prompt E. coli detection using the
engineered phage T4e−/GFP, which discerned bacterial cells in both states within an hour.
Developing a phage-amplification-based diagnostic protocol holds promise for harnessing
structural GFP signals on phage surfaces.

Phage tail fibers can be used as diagnostic tools to harness the potent binding affinity
of phages to bacterial surfaces. Denyes et al. devised a sensitive diagnostic assay for rapid
Salmonella detection by utilizing a long-tail fiber (LTF) from bacteriophage S16 [199]. By
conjugating it with horseradish peroxidase, they established an enzyme-linked LTF assay that
achieved a sensitivity limit of detection (LOD) of 102 CFU·mL−1. Similarly, Filik et al. exploited
the tail fiber protein (TFP) of phage ϕYeO3-12 to detect Yersinia enterocolitica, which has a
long incubation period (up to 10 days) [200]. They successfully engineered a maltose-binding
protein-tagged TFP and employed an ELISA-based method, which yielded an LOD of 105 CFU.

Similarly, available studies have highlighted that the sensitivity and specificity of
phage-based methods exceed those of traditional approaches such as antibody-based
diagnosis. Moreover, the cost and time advantages of phage industrialization are similar to
those of eukaryotic cell-based antibody production. Exploring the potential of utilizing the
complete phage structure as a detection tool augmented through phage genome engineering
presents a promising route for maximizing innate host specificity.

Table 1. Application of phages for detection or diagnosis.

Category Target Platform Method Time

Phage display

SARS-CoV-2 M13 phage for specific
binding peptide screening

Fluorescent
immunosensors 2 min [188]

Foot-and-Mouth
Disease virus

M13 phage for specific
binding peptide screening ELISA 4 h [182]

Dengue 3 and 4 viruses M13 phage
ELISA,

Immunofluorescence
assay

2 h [183]

Avian Influenza virus
subtype H7N2 M13 phage ELISA 6H [184]

S. enterica Enteritidis M13 phage Lateral Flow Assay 15 min [185]
E. coli, S. aureus,

P. aeruginosa, M13 phage Raman spectroscopy 6 h [186]

L. infantum M13 phage ELISA 20 h [192]

Ovarian Cancer M13 phage for specific
binding peptide screening SPECT/CT N/A [189]

Colorectal Cancer M13 phage for specific
binding peptide screening Imaging N/A [190]

Lung Cancer T7 phage Protein Chip 3.5 h [191]

Reporter Phage
M. smegmatis Luciferase engineered

mycobacteriophage L5 Luminescence assay 40 h [194]

M. tuberculosis Luciferase engineered
mycobacteriophage TM-4 Luminescence assay Several minutes [195]

E. coli GFP engineered phage T4 Fluorescent Microscopy ~1 h [198]

Phage Tail Protein S. enterica Salmonell phage S16 long
tail fiber protein ELISA 2 h [200]

Y. enterocolitica
serotype O:3

Yersinia phage ϕYeO3-12
tail fiber protein Gp17 ELISA 3 h [200]

3.3. Phages as Carriers for Effective Genes/Proteins

Phage engineering confers phages with the ability to host and express functional proteins,
thus increasing their status as versatile biotechnological instruments [174]. Customizing phages
with specific proteins makes them flexible and robust agents that are well-equipped to tackle
multifaceted challenges across biomedical and biotechnological domains. The inherent ability
of phages to deliver DNA to bacterial hosts is a foundational trait that underscores their
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adaptability and efficacy in biotechnological applications. Based on this mechanism, several
studies have pioneered innovative strategies for therapeutic intervention (Table 2).

Edgar et al. introduced an exemplary genetic approach utilizing temperate phage
lambda to reinstate the drug sensitivity of drug-resistant pathogens residing on hospital
surfaces [201]. The researchers have effectively sensitized drug-resistant E. coli strains to
streptomycin and nalidixic acid by integrating engineered phage genomes carrying the
wild-type genes (rpsL or gyrA, respectively). This intervention led to a significant decrease
in the MIC of the respective antibiotics. The study highlights the potential of phages
as delivery vectors to augment the efficiency of gene complementation and enhance the
overall efficacy of the system.

A fascinating approach involves the utilization of modified phages carrying a natural
bacterial defense mechanism, the CRISPR-Cas module, which can act as a “countermeasure”
by specifically targeting antibiotic resistance genes [202]. Yosef et al. integrated the CRISPR-
Cas system into the genome of the temperate phage lambda to specifically target antibiotic
resistance genes, particularly ß-lactamases, such as ndm and ctx. The engineered CRISPR-
Cas system demonstrated the ability to effectively identify and eliminate antibiotic-resistant
plasmids in bacterial populations. This innovative strategy not only linked antibiotic
sensitization and defense against lytic phages, but also showcased targeted prevention of
horizontal gene transfer. By incorporating protospacers into lytic phages that match the
target sites of the transferred CRISPR-Cas system, Yosef et al. achieved dual targeting of
antibiotic-resistant genes and phages. This approach resulted in protection against specific
lytic phages, selective hindrance of plasmid transformation, and the subsequent loss of
antibiotic-resistant plasmids within phage-infected bacteria.

In a simplified manner, the investigation undertaken by Selle et al. involved the
manipulation of Clostridioides difficile phage φCD24-2 [203]. Specifically, this bacteriophage
was subjected to genetic engineering, resulting in the incorporation of a spacer sequence
with the precise intent of targeting a pivotal virulence factor regulator, RNase Y. This
strategic modification induced irreparable damage to the bacterial genome, which was
facilitated by the utilization of the host’s intrinsic CRISPR-Cas system. Concurrently, the
strategic excision of the lysogeny module of the phage amplifies its therapeutic efficacy.
However, careful modification when handling the lysogenic module is needed. This
augmentation led to the demise of bacterial cells through a dual-faceted approach: first,
the CRISPR-Cas system, with its precise targeting of the bacterial chromosome, induced
irreversible genomic impairment; second, the orchestrated expression of phage holin and
endolysin culminated in cellular lysis. The potential of this development to effectively
target multiple genes poses a substantial and formidable challenge for bacterial pathogens.

Following phage infiltration of the host cell, a seizure of the host cell machinery
transpires, instigating the replication of the phage’s genetic material and the assembly of
fresh phage particles [204]. Concurrently, the transcriptional machinery of the host cells
is inhibited. To demonstrate an effective approach, Lu et al. orchestrated engineering
endeavors to leverage this phenomenon [205]. Through the conveyance of lexA3 via the
filamentous phage M13 (φlexA3), they orchestrated an increase in the expression of the SOS
response repressor in E. coli. This strategic intervention led to the pronounced suppression
of the SOS network within E. coli. This orchestrated modulation notably intensified the
effectiveness of quinolone antibiotics in both controlled laboratory settings and living
organisms, ultimately yielding augmented survival rates in infected mice. Impressively,
φlexA3 showcased remarkable capabilities for augmenting antibiotic potency across diverse
antibiotics, including quinolones, aminoglycosides, and β-lactams. Beyond their primary
role in enhancing antibiotic activity, the engineered phages fulfilled a supplementary
function as robust adjuvants, enhancing the antibiotic-induced eradication of bacteria while
concurrently diminishing the presence of antibiotic-resistant persister cells. Additionally,
their efficacy against biofilm-associated bacteria was notably improved. Lu et al. further
investigated the targeting of diverse gene networks, including, but not limited to, soxR,
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csrA, and ompF, with engineered phages, resulting in heightened antibiotic sensitivity and
reduced biofilm formation.

Pei et al. meticulously aimed to tackle the intricate issues stemming from bacterial
growth within biofilms, which contribute to unyielding biofouling in industrial operations
and the persistence of infections within clinical domains [206]. Their efforts were centered
on the genetic engineering of a T7 bacteriophage, endowing it with the capability to ex-
press the quorum-quenching enzyme AiiA. This enzyme can degrade acyl homoserine
lactones (AHLs), which serve as critical components in bacterial intercellular communi-
cation, termed quorum sensing, a pivotal mechanism for biofilm formation. The tailored
T7aiiA phage proved remarkably effective for AHL degradation across a spectrum of
bacteria, concurrently inhibiting biofilm formation in mixed-species biofilms containing P.
aeruginosa and E. coli. By lysing host bacteria and deploying quorum-quenching enzymes,
these phages have demonstrated a versatile and all-encompassing strategy for confronting
diverse bacterial populations within biofilm communities. This innovative avenue has sig-
nificant potential for countering the multifaceted challenges associated with biofilm-related
issues across various scenarios and environments.

Another study by Lu et al. conducted an innovative investigation that harnessed the
synergistic potential of potent proteins and phage-mediated lysis for biofilm removal [207].
Their approach involved genetic modification of the lytic phage T7 to express the biofilm-
degrading enzyme DspB during infection. This strategic maneuver yielded a remarkable
reduction of approximately 99.997% in the bacterial cell count within the biofilm state,
demonstrating an efficacy enhancement of nearly two orders of magnitude compared with
non-enzymatic phage treatments. This significant improvement can be attributed to the
successful integration of the DspB enzyme into the T7 phage, allowing for the precise and
targeted eradication of biofilms. The study proposed the concept of generating libraries
of enzymatically active phages to complement ongoing initiatives in searching for novel
biofilm-degrading bacteriophages within the environmental milieu.

Lastly, cutting-edge platform technologies, such as SpyPhage, which involve the
addition of tags to capsid proteins, offer the potential to further broaden the range of
adaptable applications [208].

Table 2. Engineered bacteriophages carrying effector proteins.

Phage Lifecycle Target Bacteria Carrying Gene Potency

Lambda Temperate E. coli
Antibiotic susceptible wild-type gene

(rpsL for streptomycin/gyrA for
nalixidic acid)

Sensitize the antibiotics by
complementing the antibiotic

susceptible wild-type gene
[201]

Lambda Temperate E. coli
CRISPR-associated genes (cas3, cse1,
cse2, cas7, cas5, and cas6e) and spacer
targetting ß-lactamases (ndm and ctx)

Sensitize the antibiotics by
destroying antibiotic resistance

conferring plasmids
[202]

φCD24-2 Temperate C. difficile Spacer sequence targeting
bacterial chromosome

Dual-faceted potency: CRISPR-Cas
induced irreversible genomic
impairment and phage lysis

module mediated cellular lysis

[203]

M13 Chronic E. coli SOS response repressor, lexA3 Augmenting antibiotic potency by
suppression of SOS response [205]

T7 Lytic E. coli Quorum-quenching enzyme, AiiA

Biofilm degradation by degrading
acyl homoserine lactones and

bactericidal effect of inherent lytic
potency of T7

[206]

T7 Lytic E. coli Biofilm detachment enzyme, DspB

Biofilm detachment by hydrolysis
of N-acetyl-D-glucosamines found
in the biofilm matrices using DspB
and bactericidal effect of inherent

lytic potency of T7

[207]

K1F Lytic E. coli SpyTag Provide versatility by tagging a
variety of materials [208]
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4. Future Perspectives

The prospective landscape of phage therapy has immense potential, especially
considering the strides made in phage engineering. This transformative approach
empowers researchers to finely craft phages with enhanced attributes, including refined
host specificity, bolstered stability, and amplified therapeutic potential. Especially, the
production of engineered phages can be strengthened by the use of cell-free phage
synthesis technology [209,210].

As envisioned by Pirnay, the trajectory of phage therapy points towards a realm of
precision medicine akin to the current paradigm of cancer treatment [19]. This precision-
engineered trajectory unveils avenues for the development of more potent and precisely
targeted phage-based therapies, including the innovative realm of immunotherapy for
combating bacterial infections, including those stemming from antibiotic-resistant strains.
Moreover, the continuous deepening of our understanding of phage biology and genetic
manipulation has led to further breakthroughs in phage therapy, making it a versatile and
indispensable tool in the ongoing battle against infectious maladies.

In the field of phage research, a plethora of phages have been meticulously isolated
and characterized, revealing noteworthy attributes, such as RNA-based genomic material,
expansive genome sizes exceeding 200 kb, and the intriguing presence of a nucleus-like
compartment safeguarding the phage genome from CRISPR nucleases [211–213]. Amidst
this rich diversity, a noteworthy proportion of phage genes, termed the “dark matter”, or
“ORFans” remain shrouded in mystery, their functions yet to be deciphered [214,215].

Determining these uncharted phage genes offers a captivating avenue for further explo-
ration. Unveiling their roles holds promise for unearthing novel insights into phage biology
and expanding the array of phage-driven tools for a myriad of applications, spanning
disease diagnostics, therapeutics, and biotechnology. Continuous investigation, bolstered
by phage engineering, is pivotal in order to fully harness their potential contributions to
phage biology, the intricate interplay between phages, bacteria, and eukaryotic organisms,
and a wide spectrum of biotechnological endeavors.

In summary, beyond the challenge of antibiotic-resistant superbacteria, a constellation
of other intricate issues concerning bacteria, including immune evasion and the persistence
of chronic infections via persister cells or VBNC states, are emerging as substantial concerns
reminiscent of those faced in cancer research. In alignment with pioneering studies that
have harnessed engineered phages as transformative breakthroughs, addressing these
multifaceted conundrums requires innovative strategies. This pursuit encompasses the
ongoing exploration of phage therapy as a versatile and potent tool in the ongoing quest to
combat diverse bacterial threats.
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55. Konopacki, M.; Grygorcewicz, B.; Dołęgowska, B.; Kordas, M.; Rakoczy, R. PhageScore: A Simple Method for Comparative

Evaluation of Bacteriophages Lytic Activity. Biochem. Eng. J. 2020, 161, 107652. [CrossRef]
56. Storms, Z.J.; Teel, M.R.; Mercurio, K.; Sauvageau, D. The Virulence Index: A Metric for Quantitative Analysis of Phage Virulence.

Phage 2020, 1, 27–36. [CrossRef]
57. Glonti, T.; Pirnay, J.-P. In Vitro Techniques and Measurements of Phage Characteristics That are Important for Phage Therapy

Success. Viruses 2022, 14, 1490. [CrossRef]
58. Gelman, D.; Yerushalmy, O.; Alkalay-Oren, S.; Rakov, C.; Ben-Porat, S.; Khalifa, L.; Adler, K.; Abdalrhman, M.; Coppenhagen-

Glazer, S.; Aslam, S. Clinical Phage Microbiology: A Suggested Framework and Recommendations for the In-Vitro Matching
Steps of Phage Therapy. Lancet Microbe 2021, 2, e555–e563. [CrossRef]

59. Gordillo Altamirano, F.L.; Barr, J.J. Phage Therapy in the Postantibiotic Era. Clin. Microbiol. Rev. 2019, 32, e00066-18. [CrossRef]
[PubMed]
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