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Abstract: Recent advances in metagenomic analyses have made it easier to analyze microbiota.
The microbiota, a symbiotic community of microorganisms including bacteria, archaea, fungi, and
viruses within a specific environment in tissues such as the digestive tract and skin, has a complex
relationship with the host. Recent studies have revealed that microbiota composition and balance
particularly affect the health of the host and the onset of disease. Influences such as diet, food
preferences, and sanitation play crucial roles in microbiota composition. The oral cavity is where the
digestive tract directly communicates with the outside. Stable temperature and humidity provide
optimal growth environments for many bacteria. However, the oral cavity is a unique environment
that is susceptible to pH changes, salinity, food nutrients, and external pathogens. Recent studies
have emphasized the importance of the oral microbiota, as changes in bacterial composition and
balance could contribute to the development of systemic diseases. This review focuses on saliva, IgA,
and fermented foods because they play critical roles in maintaining the oral bacterial environment by
regulating its composition and balance. More attention should be paid to the oral microbiota and its
regulatory factors in oral and systemic health.
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1. Introduction: The Complex Relationship between the Microbiota and Health

The microbiota is a cluster of microorganisms, including bacteria, archaea, fungi, and
viruses, that live symbiotically with hosts, such as humans and mice, within a specific
environment [1]. The microbiota in the digestive tract, such as the small intestine and
colon, are well-known as representative examples. Metagenomic analyses based on the
recent development in next-generation sequencing technology have revealed that the
microbiota adapts to various environments and forms unique microbial communities in
host tissues, such as those of humans [2] and other animals, including some new examples
of wild gibbons [3], calves [4], and seagulls [5]. Interestingly, humans co-evolve with the
microbiota [6–8]. This co-evolution is an interdependence in which the microbiota provides
many of the biological functions that humans need to survive, while humans provide a
habitat for the microbiota. The microbiota performs crucial functions in the human body,
such as digestion and absorption of nutrients, regulation of the immune system, protection
of the intestinal wall, and production of neurotransmitters [9]. On the one hand, the human
body (particularly the intestine) provides a stable habitat and nutrients for the microbiota.
Thus, humans and their microbiota depend on each other to live together and adapt,
survive, and thrive through each other’s presence. This relationship involves traits that
individuals retain throughout their lives and are passed on from generation to generation.
Genetic characteristics are maintained to some extent through the transmission of the
microbiota from parent to offspring, and they can adjust and change through interactions
with the environment [10].
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As a matter of public health, many studies have shown that the balance of bacteria that
make up the microbiota is closely related to the host’s immune system [11]. Interactions
between the immune system and the microbiota affect human health and disease. Changes
in the gut microbiota are thought to be involved in inflammatory bowel diseases (IBDs),
especially Crohn’s disease (CD) and ulcerative colitis (UC). A healthy gut microbiota in-
teracts with the host immune system to maintain homeostasis. However, in patients with
IBD, changes in the composition of the gut microbiota (dysbiosis) induce an inflammatory
response and contribute to disease persistence and progression. For instance, Ni et al.
demonstrated that the gut microbiota of patients with CD differs from that of healthy indi-
viduals. Particularly, the gut microbiota of patients is less diverse and contains an excess
of specific pathogenic bacteria [12]. The immune system and the gut microbiota interact
closely and play a critical role in immunoregulation. For example, microbiota alterations
may play a role in immune-related diseases such as rheumatoid arthritis, type 1 diabetes,
multiple sclerosis (MS), and systemic lupus erythematosus (SLE). Belkaid and Hand dis-
cussed the influence of the gut microbiota on the host’s immune system and inflammation
in detail. They pointed out that the microbiota affects the development and function of T
cells, which could potentially lead to the onset of immune diseases [13]. The gut microbiota
also affects the development of allergies. The gut microbiota of infants changes rapidly dur-
ing the first year of life, and its composition during this critical period can influence the risk
of allergy development. Stokholm et al. demonstrated that a high diversity of gut bacteria
during infancy is associated with a reduced risk of developing asthma later in life [14]. In
addition, there was a recent review of the respiratory microbiota and asthma in immune dis-
eases [15]. Through these studies, it is clear that the composition of the microbiota is deeply
involved in the health of the host and the onset of diseases. Therefore, understanding and
manipulating the microbiota could open new avenues for preventing and treating various
immune-related diseases. Recently, researchers have applied the results of microbiota
analyses to human treatments. The application of the microbiota in treatment is a recent
attempt to improve human health by leveraging its potential capabilities. This application
enhances or modulates the gut microbiota. Probiotics, for one application, are living mi-
croorganisms that confer health benefits. Species of Lactobacillus and Bifidobacterium are the
most commonly used probiotics. These microorganisms are used to improve conditions
such as irritable bowel syndrome and gut microbiota imbalances. However, the results vary
among individuals owing to the different responses per person and interactions among
microbes [16]. Fecal transplantation is a technique for rebuilding a patient’s gut microbiota
using feces from a healthy donor. This method is primarily used in cases of Clostridium
difficile infections and IBD, where conventional treatments are ineffective. Its efficacy and
safety were demonstrated in the initial clinical trials of fecal transplants [17–19]. In addition,
prebiotics [20] and postbiotics [21] could be helpful in terms of the gut microbiota and host
health promotion. Prebiotics are non-digestible food ingredients that facilitate the growth
and activity of beneficial bacteria in the gut. Some dietary fibers and oligosaccharides, such
as galactooligosaccharides and fructooligosaccharides, are the most common prebiotics.
They promote the growth of certain healthy gut bacteria and improve health. Postbiotics
are bioactive microbiota-derived components, such as metabolic products and cell wall
components of microbes. They suppress the growth of pathogenic bacteria and enhance the
intestinal barrier function. Because of this evidence, analyses of the relationship between
the microbiota and disease onset will further accelerate.

Thus, the accumulation of these studies will lead to further advances in disease preven-
tion and treatment strategies. However, when considering the effects of the microbiota on
host health, recent studies, especially those on the intestinal tract [22,23], have shown that
the composition of the microbiota changes intensely depending on various factors, such as
dietary habits, food preferences, and the sanitary conditions of the living environment. For
example, David et al. [24] demonstrated that plant- and animal-based diets cause signifi-
cant shifts in gut microbiota composition. Animal-based diets increased Bilophila, which
is a bile-tolerant microorganism. These changes were observed just days after the dietary
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changes were made. Thus, the gut microbiota can change rapidly depending on the type of
diet. De Filippis et al. [25] compared the gut microbiota of omnivores and vegetarians and
showed that each group had a dominant microbial population. Furthermore, in addition
to diet, hygiene status also affects the gut microbiota. Antibiotic use can temporarily or
permanently alter the gut microbiota [26]. Overuse of antibiotics could potentially eradicate
specific bacterial populations and lead to an increase in the number of resistant bacteria.
Therefore, a molecular understanding of these factors is crucial for artificially controlling
the composition of the microbiota for therapeutic and preventive purposes.

The digestive tracts of mammals are typically inhabited by bacterial flora. The oral
cavity opens directly to the outside as an entrance, and the properties of the microbiota
tend to be different from those of the intestinal tract. In addition, temporary changes in
pH and salt concentration in the oral cavity due to food nutrients and alcohol intake, as
well as exposure to external pathogens, have the potential to frequently change the oral
environment. The oral cavity contains such situations and forms a specific environment
compared to other digestive tracts, such as the gut, which are relatively stable. Periodontal
disease and dental caries are well-known pathological oral conditions that exist as problems
unique to the oral cavity. Recent studies have revealed a relationship between these oral
environments and the oral microbiota. We describe them later. As described in the next
section, the microbiota fluctuates due to various factors, such as nutrients and specific
diseases, and strongly affects the oral environment [27,28]. Recent studies have revealed
that the oral microbiota is involved in the development of diseases in other organs of the
body [29]. This review focuses primarily on bacteria within the oral microbiota in the oral
cavity. We have also organized and outlined the factors that cause environmental changes
and their roles in host defense.

2. Overview of Factors Affecting the Oral Microbiota
2.1. Functional Importance of the Intestinal and Oral Microbiota and Their Impact on Health

The mucous membranes of the digestive tract are in contact with the external environ-
ment. The epithelium of the digestive tract, which forms the border, occupies the largest
surface area of the body and is constantly exposed to various stimuli. Thus, various external
stimuli that may alter the growth and adaptation of individual bacteria could directly and
profoundly affect the microbiota. Numerous studies have reported that various bacteria live
in the oral cavity and gastrointestinal tract to form the microbiota. For example, 100 trillion
bacteria inhabit the gut [30]. The commensal bacteria that constitute the microbiota of
representative human sites and their associated characteristics are as follows. The human
colon has the richest microbiota, primarily composed of bacteria from the Bacteroidetes
and Firmicutes phyla. These bacteria help extract energy from food, regulate the immune
system, and maintain gut health [31,32]. The small intestine’s microbiota has fewer types
and numbers than the colon, including Lactobacillus [31,33]. The oral microbiota is highly
diverse, with around 700 types of bacteria, and the main species include Streptococcus,
Neisseria, Veillonella, Prevotella, and Haemophilus [34–37]. The respiratory microbiota pri-
marily consists of bacteria such as Prevotella, Veillonella, and Streptococcus [34,38,39]. The
skin microbiota varies depending on the skin site, but primarily includes Cutibacterium,
Staphylococcus, and Corynebacterium [40–42]. An imbalance in the microbiota (also called
dysbiosis) can contribute to the development of chronic diseases. As for dysbiosis, its
relevance to the disease is emerging in the nervous system, as evidenced by decreased gut
microbiota diversity in a rat model of depression [43].

Additionally, gut microbes are closely related to host health, especially from the view-
point of nutrition, which supports host activity. One example is the supply of “vitamins”
to hosts. Vitamins are essential nutrients that humans cannot produce by themselves, or
even if they can, in small amounts. Therefore, humans must obtain vitamins from external
sources, such as dietary nutrients. Gut microbes that reside in the colon are also sources
of vitamins and play a vital role in their production and metabolism. In particular, the
synthesis of B-group vitamins (such as thiamine, riboflavin, niacin, pantothenate, pyridox-
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ine, biotin, folate, and cobalamin) and menaquinone (vitamin K2) by the gut microbiota
is essential for humans [44,45]. Regarding B-group vitamins, the production of each vita-
min varies at the species and strain levels, whereas menaquinone is produced by bacteria
such as Bacteroides species [46]. Thus, humans establish a symbiotic relationship with the
gut microbes. While these microbes obtain the nutrients they need for survival from the
food humans consume, humans, in turn, benefit from these gut microbes. As shown in
this example, although bacteria can benefit human health, researchers have found that
differences in the balance and diversity of individual bacteria constituting the microbiota
influence diseases. For example, researchers have reported changes in the gut microbiota
composition of patients with IBD, broadly divided into two types, CD and UC, compared
to healthy individuals [47].

In addition to diseases related to the gut, researchers have found that changes in the
composition of the gut microbiota are related to systemic diseases. An example is the con-
nection between gut microbes and obesity. Studies have demonstrated that transplanting
bacteria from the feces of obese mice into normal mice induces obesity (an increase in
body fat) [48]. A cohort study in Ghana involving HIV-infected individuals and sex- and
age-matched HIV-uninfected counterparts revealed that the diversity in the gut microbiota
in HIV-infected individuals was significantly lower than that in uninfected individuals [49].
From the perspectives gained from these examples, constructing a microbiota composition
in which beneficial bacteria predominate and maintaining the balance of gut microbes
is crucial for promoting the host’s health. The microbiota shaping the oral environment
can also affect the gut environment. One study indicated that oral commensal bacteria
could colonize the gut and potentially contribute to the onset of IBD [50]. From another
perspective on the oral microbiota and health, a recent report investigating the influence
of the maternal oral microbiota on the formation of the oral microbiota in healthy infants
suggested that infants may be colonized with an oral microbiota different from that of their
mothers at birth. Further research is needed to determine how establishing an early oral
microbiota influences health over time [51].

2.2. The Role of Saliva in Regulating the Oral Microbiota

The oral cavity provides an optimal growth environment for many bacteria because
of the stable maintenance of an appropriate temperature and humidity [52]. Therefore,
a diverse range of bacteria is present in the oral cavity. Consequently, the human oral
environment forms a complex system that affects health status and oral hygiene. The
relationship between periodontal disease or dental caries and the oral microbiota has
been investigated considering these issues. Recent research has confirmed that the oral
microbiota plays a considerable role in the onset of periodontal disease and dental caries.
Periodontal disease, including gingivitis and periodontitis, is a chronic inflammatory
disease caused by dysbiosis of the oral microbiota. From the viewpoint of oral hygiene and
immune response, it has been reported that IL-6, an inflammatory cytokine in the saliva,
could be a marker for estimating inflammation in the gingiva and oral cavity [53]. In a
healthy state, the oral microbiota consists of a variety of bacterial species that coexist in
balance. However, when this balance is disrupted, harmful bacteria, such as Porphyromonas
gingivalis, Tannerella forsythia, and Treponema denticola, can proliferate, leading to the onset
of periodontal disease. These bacteria invade the gum tissue, causing inflammation, and
potentially leading to tooth loss [54]. Dental caries (tooth decay) is also related to the oral
microbiota. One of the key culprits of dental caries is Streptococcus mutans (S. mutans).
This bacterium ferments dietary sugars to produce lactic acid, which can demineralize
tooth enamel and lead to caries [55]. A review by Gomez and Nelson illustrated the
shaping process of the early oral microbiota, the complex nature of caries-related microbial
communities, including S. mutans, and the environmental factors contributing to microbial
imbalance (dysbiosis) that could lead to the disease [55]. From a dental perspective,
D’Ambrosio et al. pointed out that removable and fixed dental prostheses on teeth and
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implants can make the oral environment more complex by predisposing patients to bacterial
plaque formation on their surfaces [56].

Saliva is a component of the oral environment and is involved in the development
of periodontal disease and dental caries. If the amount and components of saliva are not
appropriate, the balance of the oral microbiota will be disrupted, and the risk of developing
oral diseases, such as dental caries and periodontal disease, will increase. For instance,
when saliva secretion decreases, the cleansing function of the oral cavity is reduced, and
food residues become more susceptible to decomposition by bacteria. Consequently, acidic
substances are produced, which increase the risk of caries. In addition, an imbalance in
salivary composition can lead to a relative increase in the number of pathogenic bacteria
associated with periodontal disease.

Saliva, secreted from the salivary glands, provides the “moisture” essential for bacterial
growth. However, saliva secreted into the oral cavity includes antimicrobial components:
agglutinins, which bind to oral bacteria such as S. mutans and promote phagocytosis by
causing bacterial aggregation [57]; lysozymes, which cause cell lysis by breaking down the
cell walls [58]; lactoferrin, which suppresses biofilm formation by stimulating twitching, a
specialized form of surface motility, by iron chelation [59]; and peroxidase, which exhibits
antimicrobial activity by inhibiting the bacteria’s glycolytic system [58]. In addition, saliva
contains secretory IgA (sIgA), which impedes bacterial binding to the mucosa [58], and the
secreted mucins MUC5B and MUC7, which aggregate bacteria and prevent their attach-
ment to the oral mucosa [58]. Saliva containing these components maintains homeostasis
between the oral mucosa and a vast number of oral bacteria, including S. mutans. Stress,
aging [60], Sjögren’s syndrome [61], and the destructive side effects of radiation therapy
for head and neck cancer [62] can disrupt the functionality of the salivary glands. Salivary
gland hypofunction reduces saliva secretion into the oral cavity, resulting in considerable
changes in the oral microbiota [63]. Changes in the oral microbiota can result not only
in deterioration of oral health, such as dental caries, periodontal disease [64,65], and in-
flammation of the oral mucosa, but also in association with various systemic diseases, as
reported in recent years. There are reports on disease states involving oral bacteria, such as
diabetes [66], the role of Fusobacterium nucleatum in causing poor prognosis in colorectal
cancer patients [67], the identification of Fusobacterium nucleatum strains in colorectal cancer
tissue originating from the oral cavity [68], the uncovering of periodontal disease as a risk
factor for cardiovascular diseases [69], the decrease in Prevotella histicola and Prevotella oulo-
rum in the oral cavity of patients with rheumatoid arthritis [70], and cognitive decline [71].
Although no direct causative bacteria have been identified, researchers have implicated
the involvement of the oral microbiota in oral squamous cell carcinoma [72]. Oral bacteria
have been detected in various tissues throughout the body, which suggests a relationship
between oral bacteria and disease onset. However, data concerning the changes in the oral
microbiota associated with these diseases remain insufficient. In the future, accumulat-
ing data will create a database of changes in the oral microbiota of patients with various
diseases and healthy individuals. Oral microbiota analysis can lead to the non-invasive
prevention and early detection of various diseases [73].

2.3. The Role of IgA in Regulating the Oral Microbiota

In infectious diseases, the mouth is the primary entry route for pathogens. Therefore,
besides antimicrobial substances supplied by saliva, the oral cavity contains various sub-
stances that orchestrate biological defense, such as β-defensin [74], mucous components
like mucins (especially MUC1) [75], their sugar chains [76], and sIgA [77]. These substances
protect the body against pathogens. sIgA, recognized as the predominant immunoglobulin
in the mucosal immune system, is extensively present in the mucosa of the digestive,
respiratory, and vaginal tracts and in secretory fluids such as tear fluid, saliva, and breast
milk [78]. sIgA arises from the maturation of IgA produced by antibody-secreting cells
(ASCs) differentiated from B cells. The intestinal tract is one of the secretion sites for large
amounts of sIgA by the ASCs predominantly found in its lamina propria [79]. sIgA is a
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dimer formed by the joining of two IgA molecules via a polypeptide called the joining
chain (J chain) produced by ASCs. In the intestine, dimeric IgA binds to a secretory com-
ponent derived from the polymeric IgR, which is expressed on the basement membrane
of intestinal epithelial cells. It is then taken up by epithelial cells and secreted into the
apical side.

In humans, there are two IgA genes: IgA1 and IgA2. The sIgA predominantly secreted
into the intestinal mucosa is IgA2. In the oral cavity, the oral mucosa and salivary glands
supply sIgA through a mechanism similar to that in the intestinal tract [80,81]. As for the
component of IgA in human saliva, IgA1 is predominant [79]. The chemokine CCL28 plays
a substantial role in regulating the chemotaxis of IgA-ASCs in the colon. A study on CCL28-
deficient mice showed an abnormal distribution and reduction in IgA-ASCs in the lamina
propria of the colon and decreased IgA production capacity, resulting in aggravated dextran
sulfate sodium (DSS)-induced colitis and an increased frequency of bacterial infiltration into
the lamina propria of the colon compared to wild-type mice [82]. These results indirectly
indicated that IgA is an essential bioprotective factor in the mucous membrane.

Notably, sIgA produced by the oral mucosa and salivary glands binds to viruses
and resident bacteria that invade the oral cavity, thereby blocking their adherence to
the oral mucosa [83]. Recent reports indicate that sIgA can bind not only to viruses
and bacteria that have been previously encountered but also to those that have not yet
caused infection [84]. Consequently, oral sIgA might play an essential role in defending
against infections caused by novel pathogens such as the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV2). Furthermore, in addition to the previously mentioned function
of sIgA in aggregating bacteria and preventing their binding to the oral mucosa, a new
concept from several reports has indicated that sIgA can form a part of the mucus layer
covering the oral mucosa by binding to mucin in the saliva secreted into the oral cavity
and the transmembrane mucin MUC1 expressed on the surface of oral mucosal epithelial
cells. This suggests that sIgA binds to oral bacteria, such as Streptococcus mitis, Streptococcus
oralis, and S. mutans, which have epitopes recognized by sIgA, selectively recruiting these
specific bacteria to the mucus layer on the mucosal surfaces of the oral cavity. Thus, it is also
possible that sIgA functions as a reservoir for oral bacteria and influences the formation of
the oral microbiota [85].

2.4. The Role of Fermented Foods in Regulating the Oral Microbiota

Meals serve as a source of nutrition for oral bacteria, and the nutrients consumed
can influence the selection of bacteria that can survive in the oral cavity [86]. In contrast,
research has suggested that oral bacteria may affect the dietary preferences of their human
hosts by adjusting the thresholds for sweet, sour, salty, and bitter tastes [87]. Concerning
this point, there has already been a review paper on the possibility that the intestinal
microbiota influences human eating behavior [88]. The authors noted that microbes can
cause discomfort, which alters eating behavior. Experts widely acknowledge that specific
nutrients and gut bacteria play critical roles in maintaining human health [89,90] and
precipitating the onset of intestinal diseases [91]. Well-recognized examples for a long time
are that fermented foods and Lactobacilli can increase the proportion of beneficial bacteria,
thus improving the gut microbiota [92]. In addition, bacterial groups such as Lactobacillus
and Bifidobacterium, which act as beneficial bacteria in the gut, contribute to the prevention
of diseases such as hypercholesterolemia [93], IBD [94], colon cancer [95], cardiovascular
disease [96], and liver disorders [97]. Moreover, Lactobacilli also influence the oral microbiota
in addition to the gut microbiota. Reports have indicated that Lactobacilli inhibit the
proliferation of S. mutans, a bacterium that causes dental caries [98]. Furthermore, our
recent analyses have revealed that Yomo gyutto, fermented Japanese mugwort (Artemisia
princeps), a food ingredient, affected saliva production and altered the composition of
the oral microbiota of mice [99]. This ingredient may also affect the microbiota in the
gut in some way, extending its influence beyond the oral environment. Therefore, it is
conceivable that Lactobacilli and various fermented foods contribute to disease prevention
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and health promotion by altering the oral microbiota. Many studies, including ours,
have indeed reported that fermented foods modulate the microbiota of various tissues
throughout the body, as in the examples mentioned above. Thus, we focused on the oral
cavity and intestinal tract, which are the actively studied mammalian tissues in research
on the microbiota, and summarized helpful information based on recent state-of-the-art
research (Table 1).

Table 1. The beneficial roles of fermented foods.

Tissue Fermented Food Influences PMID Reference
No.

Gut Kombucha, Yogurt, Kefir, Buttermilk,
Kvass, Kimchi, and Sauerkraut

Diversification of the gut microbiota,
reduction of the inflammation marker 34256014 [100]

Gut Pyrus ussuriensis Maxim
Reduction in body weight and obesity-related
biomarkers in obese rat model, diversification

of the gut microbiota
36058150 [101]

Gut Fermented milk Regulation of the gut microbiota,
prolongation of sleep time 31927503 [102]

Gut Fermented milk
Alteration of the gut microbiota,

improvement of autism spectrum in the male
model mice of the autism spectrum disorder

36505260 [103]

Gut Fermented milk Improvement of the gut microbiota,
alleviating constipation in mice 37194317 [104]

Gut Fermented Laminaria japonica Regulation of the gut microbiota, prevention
of hyperlipidemia 34231612 [105]

Gut Kimchi
Alteration of the gut microbiota,
improvement in obesity-induced

neuroinflammation in obese mice model
35840231 [106]

Gut Fermented Angelica sinensis
Regulation of the gut microbiota, prevention

of liver aging via alleviating of oxidative
stress in aging mice model

36477974 [107]

Gut Fermented defatted soybean
Regulation of the gut microbiota,

improvement of memory impairment in
Alzheimer’s disease mice model

30152045 [108]

Gut Fermented soybean
Alteration of the gut microbiota, enhanced

effects of donepezil against cognitive
impairment and colitis in mice

34579150 [109]

Oral
cavity

Fermented Japanese mugwort
(Yomo gyutto)

Diversification of the oral microbiota,
increment in saliva 36398739 [99]

Oral
cavity Probiotic fermented milk (Batavito)

Reduction in the total number of oral
microorganisms, reduction in mineral loss in

bovine enamel
25627884 [110]

Oral
cavity Fermented milk

Reduction in the total number of
microorganisms, especially Streptococcus

mutans, in saliva
28803012 [111]

Oral
cavity Probiotic petit-suisse cheese

Reduction in Agreggatibacter
actinomycetemcomitans and Porphyromonas

gingivalis in saliva
30716917 [112]

Oral
cavity Probiotic yogurt Regulation in the oral microbiota 35066918 [113]
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Table 1. Cont.

Tissue Fermented Food Influences PMID Reference
No.

Oral
cavity Probiotic yogurt Alteration of the oral microbiota 33783590 [114]

Oral
cavity Probiotic yogurt Reduction of Streptococcus mutans in saliva 31821997 [115]

Oral
cavity Italian Grana Padano (GP) cheese

Reduction in the overall amount of
acidophilic bacteria, reduction of the

Streptococcus mutans/
Streptococcus sanguinis ratio

35810305 [116]

Oral
cavity

and gut
Fermented milk

Alteration in the oral and gut microbiota,
improvement of periodontitis as well as

gut inflammation
33685682 [117]

Kombucha, yogurt, kefir, buttermilk, kvass, kimchi, sauerkraut [100], and Pyrus us-
suriensis Maxim [101] increased the diversity of the gut microbiota, leading to the reduction
in inflammatory biomarkers. Fermented milk, fermented Laminaria japonica, kimchi, fer-
mented Angelica sinensis, and fermented defatted soybean each improved or prevented
the following conditions via alteration of the gut microbiota in human and disease rodent
models: insomnia [102], autism spectrum [103], constipation [104], hyperlipidemia [105],
obesity-induced neuroinflammation [106], aging [107], memory impairment [108], and
cognitive impairment and colitis [109]. Fermented Japanese mugwort (Yomo gyutto) is
as mentioned above [99]. Probiotic fermented milk (Batavito) [110], fermented milk [111],
probiotic petit-suisse cheese [112], probiotic yogurt [113–115], and Italian Grana Padano
(GP) cheese [116] regulated the oral microbiota or reduced the number of oral microorgan-
isms, resulting in the prevention or improvement of periodontal disease and dental caries.
Furthermore, fermented milk altered both the oral and gut microbiota and suppressed
inflammation [117].

3. Future Prospects: The Oral Microbiota Will Hold Promise as a Potential Biomarker
for Cancers

The recent spread of coronavirus disease 2019 (COVID-19), an infectious disease
caused by SARS-CoV-2, has increased public interest in research on “gut bacteria” and
“immunological capacity” regarding the ability to defend against infection. Therefore,
fermented foods with high value-added functional components are anticipated to become
unique entities that attract increasing attention. In addition, it has become clear that the
composition and diversity of the microbiota tend to decrease with aging [118]. Therefore,
fermented foods and other foods that alter the variation in the oral microbiota might
help prevent age-related changes. Further research on these issues regarding aging will
contribute to the solution. Furthermore, in recent years, there have been many reports
on the relationship between oral bacteria and various forms of cancer, such as pancreatic
cancer associated with periodontitis caused by oral anaerobic bacteria [119], colorectal
cancer associated with Porphyromonas gingivalis (regarding cancer initiation, progression,
and prognosis) [120], and so on. From such perspectives, oral bacteria can be considered
risk factors for diseases, including cancer, or as biomarkers and prognostic factors. Cancer
is one of the most prevalent diseases in the world. Therefore, in this review, we focus on
cancer and extract the findings of characteristic microbes from analyses of the microbiota
in the oral cavity and tongue coatings of patients with cancer based on relatively recent
publications. Table 2 summarizes the oral microbiota applications as reference examples
that are candidates for the diagnosis and prevention of cancer.
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Table 2. The candidates of biomarkers in cancers.

Kind of cancer Microorganism Feature PMID Reference
No.

Oral cancer Porphyromonas gingivalis and Fusobacterium
nucleatum Increase in oral cancer 31370775 [36]

Oral cancer Pseudomonas, Capnocytophaga, and
Mycoplasma

Increase within the oral cavity
where oral cancer is present 36678424 [121]

Oral cancer and
oropharyngeal

cancers

Rothia, Haemophilus, Corynebacterium,
Paludibacter, Porphyromonas, Oribacterium,

and Capnocytophaga

Increase within the oral cavity
where oral and oropharyngeal

cancers are present
30123780 [122]

Oral squamous
cell carcinoma

Prevotella, Capnocytophaga, and
Fusobacterium

Increase within the oral cavity
where oral squamous cell

carcinoma is present
35433507 [123]

Oral squamous
cell carcinoma

Firmicutes, Fusobacteria, Fusobacteriales,
Fusobacteriaceae, and Fusobacterium

Increase within the oral cavity
where oral squamous cell

carcinoma is present
36699672 [124]

Oral squamous
cell carcinoma

Bacillus, Enterococcus, Parvimonas,
Peptostreptococcus, and Slackia

Increase within the oral cavity
where oral squamous cell

carcinoma is present
29184122 [125]

Oral squamous
cell carcinoma

Fusobacterium, Treponema, Streptococcus,
Peptostreptococcus, Carnobacterium, Tannerella,

Parvimonas, and Filifactor

Increase within the oral cavity
where oral squamous cell

carcinoma is present
32753953 [126]

Oral squamous
cell carcinoma Prevotella

Increase within the oral cavity
where oral squamous cell

carcinoma is present
33155101 [127]

Oral squamous
cell carcinoma Capnocytophaga, Haemophilus, and Neisseria

Increase within the oral cavity
where oral squamous cell

carcinoma is present
34712209 [128]

Oral squamous
cell carcinoma

Actinobacteria, Fusobacterium, Moraxella,
Bacillus, and Veillonella

Increase within the oral cavity
where oral squamous cell

carcinoma is present
34485181 [129]

Oral squamous
cell carcinoma

Prevotella melaninogenica, Fusobacterium,
Veillonella parvula, Porphyromonas

endodontalis, Prevotella Pallens, Dialister,
Streptococcus anginosus, Prevotella nigrescens,

Campylobacter ureolyticus, Prevotella
nanceiensis, and Peptostreptococcus anaerobius

Increase within the oral cavity
where oral squamous cell

carcinoma is present
32783067 [130]

Oral squamous
cell carcinoma

Candida, Malassezia, Saccharomyces,
Aspergillus, and Cyberlindnera

Increase within the oral cavity
where oral squamous cell

carcinoma is present
34712619 [131]

Pancreatic
ductal carcinoma

Firmicutes and Prevotella
Increase within the oral cavity of

patients with pancreatic
ductal carcinoma

35398347 [132]

Streptococcus salivarius, Streptococcus
thermophilus, and Streptococcus australis

Decrease within the oral cavity of
patients with pancreatic

ductal carcinoma

Pancreatic cancer
Fusobacterium periodonticum Increase within the oral cavity of

patients with pancreatic cancer
33204698 [133]

Neisseria mucosa Decrease within the oral cavity of
patients with pancreatic cancer
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Table 2. Cont.

Kind of cancer Microorganism Feature PMID Reference
No.

Pancreatic cancer

Porphyromonas gingivalis and
Aggregatibacter actinomycetemcomitans

Increase in the risk of
pancreatic cancer

27742762 [134]
Phylum Fusobacteria and its

genus Leptotrichia
Decrease in the risk of

pancreatic cancer

Colorectal cancer Desulfovibrio desulfuricans Increase within the oral cavity of
patients with colorectal cancer 34268367 [135]

Colorectal cancer Eubacterium, Bifidobacterium,
and Fusobacterium

Increase within the oral cavity of
patients with colorectal cancer 36612188 [136]

Colorectal cancer Fusobacterium, Treponema,
and Porphyromonas

Increase within the oral cavity of
patients with colorectal cancer 33052235 [137]

Esophageal
squamous

cell carcinoma
Porphyromonas gingivalis

Increase within the oral cavity of
patients with esophageal
squamous cell carcinoma

33201403 [138]

Esophageal
squamous

cell carcinoma

Bosea, Solobacterium, Gemella,
and Peptostreptococcus

Increase within the oral cavity of
patients with esophageal
squamous cell carcinoma

34604107 [139]

Esophageal
cancer

Firmicutes, Negativicutes, Selenomonadales,
Prevotellaceae, Prevotella, and Veillonellaceae

Increase within the oral cavity of
patients with esophageal cancer

33194789 [140]
Proteobacteria, Betaproteobacteria, Neisseriales,

Neisseriaceae, and Neisseria
Decrease within the oral cavity of
patients with esophageal cancer

Gastric cancer Campylobacter concisus
Increase in the gastric cancer risk
due to the high abundance within

the tongue coating
30478535 [141]

Gastric cancer

Streptococcus
Increase in the gastric cancer risk

due to the higher abundance
within the tongue coating 30410609 [142]

Neisseria, Prevotella, Prevotella7,
and Porphyromonas

Decrease in the gastric cancer risk
due to the higher abundance

within the tongue coating

Gastric cancer
and

colorectal cancer

Streptococcus, Gemella, Escherichia-Shigella,
and Fusobacterium

Increase within the oral cavity of
patients with gastric and

colorectal cancers
35663463 [143]

Haemophilus, Neisseria, Faecalibacterium,
and Romboutsia

Decrease within the oral cavity of
patients with gastric and

colorectal cancers

Hepatocellular
carcinoma Streptococcus

Increase within the oral cavity of
patients with

hepatocellular carcinoma
37089022 [144]

Breast cancer Clostridia Increase within the oral cavity of
patients with breast cancer

37127667 [145]
Colorectal cancer Fusobacterium periodonticum Increase within the oral cavity of

patients with colorectal cancer

Lymph node
metastasis

Prevotella, Stomatobaculum, Bifidobacterium,
Peptostreptococcaceae, Shuttleworthia,

and Finegoldia

Increase within the oral cavity of
patients with lymph node

metastasis in oral squamous
cell carcinoma

34848792 [146]

Head and neck
squamous
cell cancer

Corynebacterium and Kingella Decrease in the risk of head and
neck squamous cell cancer 29327043 [147]
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In the oral cavity, where oral cancers such as oral squamous cell carcinoma were
present, varieties of bacterial groups [121–129], specific bacteria [36,130], and fungi [131]
increased within the oral microbiota. Therefore, they can serve as potential biomarkers.
Firmicutes, Prevotella [132], and Fusobacterium periodonticum [133] increased in the oral cavity
of patients with pancreatic cancer. In contrast, Streptococcus salivarius, Streptococcus ther-
mophilus, Streptococcus australis [132] and Neisseria mucosa [133] decreased. In addition to
these oral microbiota changes, regarding the risk of pancreatic cancer, while the presence of
Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans increased the risk, the
presence of phylum Fusobacteria and its genus Leptotrichia decreased the risk [134]. In the
oral cavity of patients with colorectal cancer, Desulfovibrio desulfuricans [135], Eubacterium,
Bifidobacterium, and Fusobacterium [136], Fusobacterium, Treponema, and Porphyromonas [137]
increased. Besides, in the oral cavity of patients with esophageal squamous cell carcinoma,
Porphyromonas gingivalis [138], Bosea, Solobacterium, Gemella, and Peptostreptococcus [139],
Firmicutes, Negativicutes, Selenomonadales, Prevotellaceae, Prevotella, and Veillonellaceae [140] in-
creased. In contrast, Proteobacteria, Betaproteobacteria, Neisseriales, Neisseriaceae, and Neisseria
decreased [140]. Furthermore, Campylobacter concisus [141] and Streptococcus [142] increased
the risk of gastric cancer. However, Neisseria, Prevotella, Prevotella7, and Porphyromonas
decreased risk [142]. Streptococcus indeed increased in the oral cavity of patients with
gastric cancer, in addition to Gemella, Escherichia-Shigella, and Fusobacterium [143]. Simi-
larly, Neisseria and others (Haemophilus, Faecalibacterium, and Romboutsia) decreased [143].
Regarding the oral cavity of patients with other cancers, Streptococcus in hepatocellular
carcinoma [144], Clostridia in breast cancer [145], Fusobacterium periodonticum in colorectal
cancer [145], Prevotella, Stomatobaculum, Bifidobacterium, Peptostreptococcaceae, Shuttlewor-
thia, and Finegoldia in lymph node metastasis [146] increased. However, the presence of
Corynebacterium and Kingella in the oral microbiota decreased the risk of head and neck
squamous cell cancer [147].

From an overview of these reports, the genus Fusobacterium and the genus Prevotella
increased in many cases. According to the Human Oral Microbiome Database (HOMD)
(https://www.homd.org/ (accessed on 24 August 2023)) [148–150], the percentage abun-
dance of the genus Fusobacterium is abundant in the subgingival plaque and palatine tonsils.
Besides, the percentage abundance of the genus Prevotella is abundant in the saliva, throat,
palatine tonsils, and tongue dorsum. Meanwhile, in terms of percentage abundance in
the oral cavity, including saliva, both genera of bacteria are substantially present at each
site of the oral cavity. However, as shown in Table 2, multiple reports have confirmed that
increased levels of these bacterial genera within the oral cavity are associated with certain
cancers. Accordingly, further clarification of the detailed mechanisms, such as the relation-
ship between changes in the number and composition ratio of bacterial species contained
in each genus and the degree of cancer malignancy, is necessary. In contrast, the genus
Neisseria was generally decreased in the oral cavity of patients with cancer. Therefore, these
are characteristic findings of changes in the oral microbiota and might be candidates for
diagnosing various cancers. In conclusion, it is desirable to advance our understanding of
the maintenance and promotion of health, prevention of systemic diseases, and therapeutic
targets associated with the oral microbiota. Moreover, it is necessary to increase awareness
of the importance of the oral environment, including the oral microbiota, and to improve
oral care.
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