
Citation: Oppedisano, F.; De Fazio,

R.; Gugliandolo, E.; Crupi, R.; Palma,

E.; Abbas Raza, S.H.; Tilocca, B.;

Merola, C.; Piras, C.; Britti, D.

Mediterranean Plants with

Antimicrobial Activity against

Staphylococcus aureus, a

Meta-Analysis for Green Veterinary

Pharmacology Applications.

Microorganisms 2023, 11, 2264.

https://doi.org/10.3390/

microorganisms11092264

Academic Editor: Natália

Cruz-Martins

Received: 4 August 2023

Revised: 6 September 2023

Accepted: 7 September 2023

Published: 9 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Mediterranean Plants with Antimicrobial Activity against
Staphylococcus aureus, a Meta-Analysis for Green Veterinary
Pharmacology Applications
Francesca Oppedisano 1,† , Rosario De Fazio 2,†, Enrico Gugliandolo 3 , Rosalia Crupi 3 , Ernesto Palma 1 ,
Sayed Haidar Abbas Raza 4 , Bruno Tilocca 2 , Carmine Merola 5, Cristian Piras 2,6,*,‡

and Domenico Britti 2,6,‡

1 Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia
University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy;
foppedisano@unicz.it (F.O.); palma@unicz.it (E.P.)

2 Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore
Venuta” Viale Europa, 88100 Catanzaro, Italy; rosario.defazio@studenti.unicz.it (R.D.F.); tilocca@unicz.it (B.T.);
britti@unicz.it (D.B.)

3 Department of Veterinary Science, University of Messina, 98166 Messina, Italy; egugliandolo@unime.it (E.G.);
rcrupi@unime.it (R.C.)

4 Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research
Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University,
Guangzhou 510642, China; haiderraza110@scau.edu.cn

5 Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo,
Via Balzarini 1, 64100 Teramo, Italy; cmerola@unite.it

6 CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa,
88100 Catanzaro, Italy

* Correspondence: c.piras@unicz.it
† These authors contributed equally (first author).
‡ These authors contributed equally (last author).

Abstract: Antimicrobial resistance (AMR) has emerged as a global health crisis, necessitating the
search for innovative strategies to combat infectious diseases. The unique biodiversity of Italian flora
offers a treasure trove of plant species and their associated phytochemicals, which hold immense
potential as a solution to address AMR. By investigating the antimicrobial properties of Italian
flora and their phytochemical constituents, this study aims to shed light on the potential of phyto-
complexes as a valuable resource for developing novel or supportive antimicrobial agents useful for
animal production.

Keywords: Mediterranean plants; antimicrobial plant extracts; essential oil; Staphylococcus aureus

1. Introduction

Antimicrobial resistance has become a pressing global challenge, rendering conven-
tional antibiotics less effective and diminishing our ability to combat infectious diseases.
The urgency to counter this crisis has led to a growing interest in alternative sources, includ-
ing plant-derived compounds. Italian flora, with its wealth of botanical species, represents
an untapped source of diverse phytochemicals that may possess potent antimicrobial
properties [1].

The Italian flora exhibits remarkable heterogeneity due to the country’s diverse ge-
ography, climate, and historical influences. Italy is home to a wide range of ecosystems,
including the Alpine region in the north, the Apennine Mountains that run through the
center of the country, coastal areas, wetlands, and Mediterranean islands. This diverse
landscape contributes to the rich and varied plant life found throughout Italy [2].
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The central regions are dominated by the Apennine Mountains, which harbor a unique
array of flora. The Apennines support a mix of deciduous and evergreen forests, including
oak, beech, chestnut, and pine. The Mediterranean influence becomes more pronounced
in the central and southern parts of the country, with characteristic maquis shrubland,
macchia, and coastal vegetation. Plants such as rosemary (Rosmarinus officinalis), lavender
(Lavandula spp.), myrtle (Myrtus communis), and various aromatic herbs thrive in these
Mediterranean ecosystems [3].

Coastal regions of Italy boast their own distinct flora, shaped by the proximity to the
sea and the specific microclimates along the shoreline. Coastal dunes and wetlands are
home to salt-tolerant plants, such as sea lavender (Limonium spp.), sea holly (Eryngium
spp.), and various species of halophytes adapted to saline conditions. The wetlands of the
Po Delta, Venice Lagoon, and other marshy areas support a diverse range of aquatic and
semi-aquatic plants, including reeds, cattails, and water lilies [4].

The islands of Sicily and Sardinia, located in the Mediterranean Sea, have their own
unique flora due to their isolation and climatic conditions. These islands exhibit a blend of
Mediterranean and North African influences, resulting in a diverse mix of plant species.
Iconic plants like the Sicilian fir (Abies nebrodensis), dwarf palm (Chamaerops humilis), and
Sardinian broom (Genista corsica) can be found in these regions [5].

Phyto-complexes derived from Italian flora offer a complex mixture of bioactive com-
pounds, including alkaloids, flavonoids, terpenes, and phenolics. These phytochemicals
have evolved as part of plants’ defense mechanisms against microbial infections and envi-
ronmental stresses, providing a wide array of chemical structures and mechanisms of action.
By harnessing the antimicrobial potential of these phyto-complexes, it may be possible to
address the challenge of antimicrobial resistance through novel therapeutic interventions.

Such investigations have revealed promising outcomes, demonstrating the ability of
phytochemicals derived from Italian plants to inhibit the growth of various pathogenic
microorganisms, including multidrug-resistant strains. These bioactive compounds can
target essential microbial processes, disrupt cellular structures, and interfere with virulence
factors, thus reducing the risk of resistance development [1].

Various intervention methods can be employed to prevent the spread and dangers
associated with antimicrobial resistance. Certainly, the first valuable approach is tied to the
research for early diagnosis through several methods, such as immunoproteomics or high
throughput mass spectrometry techniques [6–9]. Other approaches involve isolating and re-
moving animals exhibiting recurring resistance patterns in their microbiomes. Alternatively,
a strategy involves implementing Green Veterinary Pharmacology (GVP) practices [1,10,11],
utilizing crops and plants that produce antibacterial molecules. The Italian territory, with
its abundant biodiversity of native plants boasting diverse nutraceutical functions, of-
fers a promising resource for this purpose [12]. Some of this knowledge is rooted in the
ancient traditions of rural areas and could be reassessed through scientific methods to
validate any potential antimicrobial activity [13]. Another portion of this knowledge is
already documented in scientific literature and requires systematic review. Assessing the
efficacy of these plants or their extracts against microbes that jeopardize animal production
efficiency could serve as a viable alternative to conventional antimicrobial therapeutic
approaches. Furthermore, it may aid in curbing the emergence of additional antibiotic
resistance phenomena.

This manuscript aims to delve into the vast repertoire of Italian flora and its potential
as a solution to antimicrobial resistance. By reviewing the existing literature on the antimi-
crobial properties of plant species and their phytochemical constituents, we seek to identify
key plant species and compounds that show the highest MIC values against S. aureus. This
was performed via a systematic literature review and a meta-analysis of the MIC values
recorded in the analyzed literature.
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2. Materials and Methods

The bibliographic searches were performed following the list of plants detected by
Piras et al. [1]. The work described by the authors provided a ready-to-use comprehensive
list of plants to be further tested against the indicated list of pathogens and to provide
new alternative strategies against bacterial pathogens to be employed in Green Veterinary
Pharmacology applications.

The list of plant extracts active against the most relevant pathogens for animal hus-
bandry and animal infections was published in 2022 [1]. The list of plants growing in
Italian territory was organized in a pathogen-driven way and included Gram+ and Gram-
bacteria. Moreover, 39 plants were reported to be active against S. aureus, posing the query
about which ones have the lowest MICs. Herein, in order to understand which ones may
be suitable for a GVP approach, a new systematic review approach was used to register the
MIC values so far annotated in the literature. The new searches were performed with no
time nor geographic restriction in order to gather the most complete dataset.

From methodological point of view, all the detected and annotated plants as in the
following Table 1 (adapted from Piras et al. [1]) and recorded as active against S. aureus
were searched, using their scientific name and “Staphylococcus aureus” (e.g., Cinnamomum
camphora and Staphylococcus aureus), again in PubMed, web of science and Scopus. All the
entries were saved in separate files for each search. All the files (three for each plant) were
uploaded on Rayyan (https://www.rayyan.ai/, accessed on 19 January 2023) and afterward
exported as a single file in the .ris format. This step was performed in order to merge all
the search results in a single file. The obtained file was afterward uploaded on Mendeley
desktop (version 1.19.8) for the manual check and the duplicates removal. The obtained
filtered file was exported and afterward uploaded in Rayyan (https://www.rayyan.ai/,
accessed on 19 January 2023) for the keywords search and for the screening of the relevant
manuscripts to be enrolled in the meta-analysis.

Table 1. List of plants growing in Italy producing extracts active against S. aureus [1].

Pathogen Number of Active Plants Plant Names and Reference

Staphylococcus aureus 39

Cinnamomum [14]; Cinnamomum camphora (L.) [15]; Cistus
monspeliensis L. [16]; Cistus salviifolius L. [16]; Cytinus

hypocistis (L.) L. [17]; Limonium morisianum Arrigoni [18];
Myrtus communis L. [19]; Origanum vulgare L. [20]; Pistacia

lentiscus L. [21]; Pistacia terebinthus L. [22]; Rosmarinus
officinalis L. [23]; Salvia officinalis L. [24]; Thymus herba-barona
Loise L. [25]; Thymus vulgaris L. [26]; Inula crithmoides [27];

Caralluma europaea [28]; Crocus sativus [29]; Helichrysum
araxinum [30]; Schinus molle (L.) [31]; Cannabis sativa [32];

Centaurium erythraea [33]; Citrus medica L., Citrus bergamia,
and Citrus medica [34]; Laurus nobilis [35]; Rubus ulmifolius

[36]; Malus domestica var. Annurca [37]; Teucrium genus
(Germander) [38]; Daucus carota subsp. maximus (Desf.) [39];
Cytinus [40]; T. vulgaris, Satureja montana and Coriandrum

sativum [41]; Garlic (Allium sativum L.) [42]; Thymus vulgaris
L. [43]; Rapa Catozza Napoletana (Brassica rapa L. var. rapa

DC.) [44]; Calycotome villosa (Poiret) [45]; Juniperus spp. [46];
Hyssopus officinalis [47]

The keywords for the research on Rayyan were “MIC”, “MICs”, and “plant scien-
tific name” (Genre species). This method allowed, for each plant, the detection of the
scientific manuscripts where the words “MIC” and “MICs” were mentioned in the ti-
tle/keywords/abstract, and, presumably, the MIC was studied/evaluated. After this
selection process, every record was manually evaluated for MIC detection. In case the
MIC value against S. aureus was clearly indicated, the study was included. This process
was done individually by three different independent reviewers; the results were vali-

https://www.rayyan.ai/
https://www.rayyan.ai/
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dated by cross-validating 15 randomly chosen recorded values by another referee. The
MIC values for each plant, recorded in each independent study, were annotated in an
Excel file along with the manuscript title. The mean and SD were calculated within the
same spreadsheet, and obtained results were further analyzed with OpenMeta[Analyst]
(http://www.cebm.brown.edu/openmeta/, accessed on 19 January 2023) for the creation
of the Forest plots.

3. Results

All the plants annotated in the previously published review were individually searched
against S. aureus in three different databases (see methods section). The search produced
4303 entries; reviews and other article types were excluded using Ryyan, resulting in 3369
entries. All other duplicates were removed, with Mendeley yielding 2301 records whose
abstracts were manually screened by three independent reviewers for the MICs detection.
The workflow regarding records inclusion and filtering is shown in the following Figure 1.
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Table 2. The list of annotated MICs, along with the DOI and the title of the manuscripts is
visible in the Table S1 (Excel file, Supplementary Materials).

Table 2. List of the number of records detected for each plant and filtered for inclusion and MICs annotation.

Plant Total Records for Each Plant Records Included

Cinnamomum camphora 23 8
Cistus monspeliensis 7 4

Cistus salviifolius 6 2
Cytinus hypocistis 3 1
Myrtus communis 69 14
Origanum vulgare 159 38
Pistacia lentiscus 32 4

Pistacia terebinthus 7 2
Rosmarinus officinalis 220 75

Salvia officinalis 102 9
Laurus nobilis 60 13

Satureja montana 15 8
Coriandrum sativum 11 7

Garlic (Allium sativum L.) 263 21
Thymus vulgaris L. 196 48

Crocus sativus 26 7
Schinus molle 28 8

Cannabis sativa 53 14
Centaurium erythraea 8 5

Citrus medica L. 12 5
Citrus bergamia 13 1

The quantitative MICs evaluation produced the results shown in Figure 2. Extracts
of plants such as Coriandrum sativum, Crocus sativus, and Schinus molle showed high MIC
values up to mean values as high as 200 mg/mL.

Microorganisms 2023, 11, 2264 5 of 18 
 

 

Table 2. The list of annotated MICs, along with the DOI and the title of the manuscripts is 
visible in the Table S1 (Excel file, Supplementary Materials). 

Table 2. List of the number of records detected for each plant and filtered for inclusion and MICs 
annotation. 

Plant Total Records for Each Plant Records Included 
Cinnamomum camphora 23 8 

Cistus monspeliensis 7 4 
Cistus salviifolius 6 2 
Cytinus hypocistis 3 1 
Myrtus communis 69 14 
Origanum vulgare 159 38 
Pistacia lentiscus 32 4 

Pistacia terebinthus 7 2 
Rosmarinus officinalis 220 75 

Salvia officinalis 102 9 
Laurus nobilis 60 13 

Satureja montana 15 8 
Coriandrum sativum 11 7 

Garlic (Allium sativum L.) 263 21 
Thymus vulgaris L. 196 48 

Crocus sativus 26 7 
Schinus molle 28 8 

Cannabis sativa 53 14 
Centaurium erythraea 8 5 

Citrus medica L. 12 5 
Citrus bergamia 13 1 

The quantitative MICs evaluation produced the results shown in Figure 2. Extracts 
of plants such as Coriandrum sativum, Crocus sativus, and Schinus molle showed high MIC 
values up to mean values as high as 200 mg/mL. 

 
Figure 2. Forest plot showing the representation of the average recorded MICs for each plant extract 
included in this study. The power (that is related to the number of studies considered) is indicated 
by the weight (size) of the box. 

Figure 2. Forest plot showing the representation of the average recorded MICs for each plant extract
included in this study. The power (that is related to the number of studies considered) is indicated by
the weight (size) of the box.

For a better visualization, the plants reporting the highest MICs were removed from
the forest plot and, as visible in Figure 3, the most effective plant extracts were Salvia
officinalis, Cistus monspeliensis, Cistus salviifolius, Origanum vulgare, and Myrtus communis
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with recorded average MICs against S.aures of, respectively, 0.46 (±0.56) mg/mL, 0.72
(±0.78) mg/mL, 0.83 (±1.03) mg/mL, 1.02 (±3.28), and 0.74 (±1.32).
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4. Discussion

S. aureus is a significant human pathogen as well as a pathogen that is the causative
agent of animal illnesses/conditions [48]. This bacterium causes mastitis in dairy cattle,
an udder infection that causes major economic losses worldwide [49]. Antibiotic therapy
is routinely used by veterinarians to treat infections, which increases the possibility of
antibiotic resistance over time [50]. Intramammary dosing of a penicillin–novobiocin
combination used to treat mastitis has been linked to increasing antimicrobial resistance,
especially to ampicillin [51]. Other investigations conducted in different countries found
that resistance to ampicillin ranged between 5.2% and 77.3% for bovine S. aureus strains,
between 0% and 44.2% for gentamicin, and between 3% and 60% for tetracycline. In this
regard, novel strategies to minimize resistance development are being developed [52].

The Mediterranean region is renowned for its abundant plant biodiversity, which has
been cultivated and utilized for centuries in traditional medicine. Among the numerous
therapeutic properties attributed to Mediterranean plants, their antimicrobial activity
stands out as an important attribute [53]. The unique ecological conditions, including
a mild climate and diverse soil composition, have contributed to the rich diversity of
phytochemicals in these plants, which possess remarkable potential in combating microbial
pathogens [1]. This serves as a tool to fight antimicrobial resistance, which has become a
critical global health challenge [48]. The complex chemical composition of these plants,
including alkaloids, terpenes, flavonoids, phenolics, and essential oils, provides a diverse
range of compounds with diverse mechanisms of action against a broad spectrum of
microbial pathogens, including bacteria, fungi, and viruses [54,55].

The antimicrobial mechanisms employed by these phytochemicals encompass various
actions, such as disruption of cell membranes, inhibition of enzyme activity, modula-
tion of microbial gene expression, and interference with microbial adhesion and biofilm
formation [56–58].

Numerous plants have been investigated for their bioactive compounds and their po-
tential efficacy against Staphylococcus aureus, including both methicillin-susceptible Staphy-
lococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains [1,59].
It is important to note that the effectiveness of these plants and their extracts can vary
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depending on the specific strains of Staphylococcus aureus tested, the concentration and
formulation of the extracts, and the methods used for evaluation. For this reason, the litera-
ture on this subject is very heterogeneous, and it is missing a work capable of summarizing
the plant extracts showing the highest MICs against the growth of S. aureus [56].

This research holds significant relevance, primarily because MRSA is the central
concern within the antimicrobial resistance (AMR) monitoring initiative for animals raised
for food production. Consequently, the proliferation of these bacteria resistant to multiple
drugs presents a considerable public health hazard, given the potential for cross-species
transmission, including to humans [60].

As described in the results section, we performed a systematic literature search and
filtering that produced 2301 records that were subsequently manually filtered (see methods
section) and screened by three different reviewers. The second column of Table 2 shows
the total records for each plant, and the third column shows the records whose MIC was
annotated for further statistical analysis. The forest plot represented in Figure 2 shows all
the plants involved in this study, including plants such as Schinus molle, Coriadrum sativum,
and Crocus sativus, which showed high values of average MICs. It is important to note
that while Schinus molle has demonstrated antibacterial activity in various studies, further
research is still needed to determine the optimal extraction methods, identify the most
potent bioactive compounds, and evaluate the plant’s potential for clinical applications,
but for the purpose of this work, it was discarded from further analysis. Additionally,
the concentration, formulation, and mode of application of Schinus molle extracts can
significantly influence their antibacterial efficacy. The average MIC calculated from the
MICs recorded in our included studies was equal to ≈250 mg/mL, and the recorded values
ranged from 176 to 324 mg/mL; therefore, we can consider that those values are too high
to be considered a potential candidate against S. aureus. Even with lower MICs, plants such
as Coriandrum sativum and Crocus sativus showed high average values (≈43 mg/mL and
≈24 mg/mL, respectively). For a more comprehensive visualization, those plants were
removed from the forest plot.

The forest plot shown in Figure 3 does not include the three previously mentioned
plant extracts and shows the most effective ones.

Salvia officinalis [52,61–68], Cistus monspeliensis [69–72], Cistus salviifolius [69,71], Ori-
ganum vulgare [70,73–107], and Myrtus communis [19,108–120] showed an average MIC
against S. aureus of respectively 0.46 (±0.56) mg/mL, 0.72 (±0.78) mg/mL,
0.831 (±1.033) mg/mL, 0.997 (±3.24), and 0.736 (±1.32).

Myrtus communis, commonly known as common myrtle or true myrtle, is a flowering
plant native to the Mediterranean region. It has been used for various medicinal purposes
throughout history, and its essential oil was used as an antibacterial [121,122]. It possesses
antibacterial activity against Gram-positive and Gram-negative and is particularly active
against Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas
aeruginosa [123]. Monoterpenes are the most abundant group of compounds in Myrtus
communis essential oil. They include compounds such as α-pinene, β-pinene, limonene,
myrcene, and cineole (also known as eucalyptol) [124,125]. These compounds contribute
to the characteristic scent of the essential oil and have shown various biological activities,
including antibacterial and anti-inflammatory. Sesquiterpenes are another group of com-
pounds present in Myrtus communis essential oil, although in smaller amounts compared to
monoterpenes [126]. Examples of sesquiterpenes found in Myrtus communis essential oil
include caryophyllene, germacrene D, and α-humulene [127]. Sesquiterpenes are known
for their potential anti-inflammatory and antioxidant properties. Oxides, such as 1,8-cineole
(eucalyptol), are commonly found in Myrtus communis essential oil. Oxides can contribute
to the expectorant and respiratory benefits of the essential oil and may have antimicrobial
properties [112,128].

Sage exhibits antimicrobial activity against both methicillin-resistant Staphylococcus
aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) strains [129]. Its
extracts contain compounds such as thujone, camphor, and cineole. These compounds have
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been shown to possess antibacterial properties and can inhibit the growth and proliferation
of bacteria [67,130].

Cistus monspeliensis, commonly known as Montpellier cistus or rock rose, is a Mediter-
ranean shrub known for its medicinal properties. It has been traditionally used for various
therapeutic purposes, including its potential antimicrobial activity against Staphylococcus
aureus [131]. While there is limited specific research available on the antibacterial activity
of Cistus monspeliensis against Staphylococcus aureus, other species of the Cistus genus have
been studied for their antimicrobial properties [132]. The antimicrobial activity of Cistus
species is believed to be attributed to their bioactive compounds, such as polyphenols,
flavonoids, and tannins, that are effective antibacterial agents [133].

The herb oregano, also known as Origanum vulgare L., is a perennial aromatic plant that
is a member of the Lamiaceae family. It is frequently used as a flavoring herb, feed addition,
and garden adornment, but it also serves as a medicine since it possesses antibacterial,
antioxidant, and anti-inflammatory effects [134,135]. Oregano has a wide range of uses
in food preservation due to the abundance of its active ingredients, including carvacrol
and thymol, but it also has a unique bacteriostatic action on Salmonella enteritidis [136],
Cronobacter sakazakii [137], Escherichia coli [135,138,139], Staphylococcus aureus [135], and
Listeria monocytogenes [140,141]. There are differences in the quantity and quality of oregano
essential oil (OEO) from diverse germplasm sources. The molecular composition of OEOs
from various populations differs noticeably even under the same development environ-
ment. The composition of plant essential oils, which affects their antibacterial qualities, is
influenced by a number of factors in addition to the diverse plant species, including the
geographical environment and the time of harvest. With a rise in demand for the plant,
artificial oregano growth and cultivar development have become more significant [137].

The five plants, Salvia officinalis (Common Sage), Cistus monspeliensis (Montpelier
Rockrose), Cistus salviifolius (Sage-leaved Rockrose), Origanum vulgare (Common Oregano),
and Myrtus communis (Common Myrtle), belong to different genera but share common traits
in their composition. These traits provide valuable insights into their botanical classification
and evolutionary relationships. All of these plants belong to the Kingdom Plantae and
are classified under the Division Magnoliophyta (angiosperms) since they are flowering
plants. In the case of Salvia officinalis and Origanum vulgare, they belong to the Lamiaceae
family (the mint family), and both are part of the Mentheae tribe. Cistus monspeliensis and
Cistus salviifolius are members of the Cistaceae family. There is significant research attention
focused on the Cistus L. genus, which comprises numerous plants utilized in traditional
medicine by populations residing in the vicinity of the Mediterranean Sea [142,143]. Myrtus
communis belongs to the Myrtaceae family. Plants in this family are characterized by their
aromatic leaves, usually containing essential oils, and their flowers often have numerous
stamens surrounding a central style [144].

Despite being members of different genera, some of these plants share common traits
in their taxonomy; two are part of the Lamiaceae family and two are of the Cistaceae family.
Only Myrtus communis belongs to the Myrtaceae family.

From a chemical composition point of view, according to El Euch and colleagues [145],
S.officinalis EO is mainly composed of Camphor (33.61%), 1,8-cineole (22.22%), and α-
thujone (21.43%); the most abundant compounds detected in Cistus spp. include α-pinene,
viridiflorol, borneol, trimethyl cyclohexanone, and camphene [146]; Origanum spp. es-
sential oil is mainly composed of carvacrol (61.08–83.37%), p-cymene (3.02–9.87%), and
γ-terpinene (4.13–6.34%) [91] and Myrtus communis EO is largely dominated by monoter-
pene hydrocarbons, with α-pinene (24.3–59.0%) and 1,8-cineole (13.2–49.5%) [147]. This
evidence easily demonstrates that the majority of compounds are terpenes, and they are
responsible for the characteristic aromas and flavors of these plants. One of the notable
properties of terpenes is their antibacterial activity. While the specific mechanisms of action
may vary depending on the terpene and the bacterial species, some common mechanisms
include disruption of cell membranes, inhibition of enzyme activity, and interference with
bacterial growth and replication [148–151]. Recently, terpenes have been found to be ef-
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fective inhibitors of efflux pumps in a diverse range of bacterial strains, suggesting their
potential utility in drug development for addressing antibiotic resistance [149]. Using
terpenes as a sole treatment for bacterial infections may not be sufficient; they may be more
effective as part of a comprehensive approach that includes traditional antibiotics and other
appropriate medical interventions.

The presence of monoterpenes (alpha-pinene, beta-pinene, limonene, and myrcene)
and sesquiterpenes (beta-caryophyllene, caryophyllene oxide, and germacrene-D) is gener-
ally a significant common trait among these essential oils [91,145–147]. Another common
trait in the chemical composition of these essential oils is the presence of oxygenated
compounds. These compounds include alcohols, esters, ketones, and aldehydes. For
instance, essential oils from Salvia officinalis and Origanum vulgare are rich in oxygenated
monoterpenes, such as thujone and carvacrol, which contribute to their potent antimicrobial
properties [152,153]. Myrtus communis oil contains myrtenol and 1,8-cineole [125,147,154],
while Cistus species oils contain alpha-pinene and caryophyllene oxide as prominent
oxygenated compounds [142].

Similarly, phenolic compounds are abundant in the essential oils of these plants and
contribute to their antioxidant and antimicrobial activities. Salvia officinalis and Origanum
vulgare oils are particularly rich in phenolic compounds, such as thymol and carvacrol,
which have been extensively studied for their health benefits [155,156].

Terpenoids, a class of compounds derived from terpenes, are also present in these
essential oils. Notable terpenoids found in the oils of these plants include terpinen-4-ol,
linalool, and borneol. These compounds contribute to the overall aroma and therapeutic
effects of the oils.

ChatGPT-aided analysis helped with the qualitative representation of the compounds
mainly present in the most effective EOs, as shown in the following Table 3.

Table 3. Qualitative representation of the volatile compounds present in the EOs.

Salvia officinalis Cistus monspeliensis Myrtus communis (Myrtle)

1,8-Cineole Camphene 1,8-Cineole
Borneol Eugenol Geraniol

Camphor Geraniol Limonene
Limonene Limonene Linalool
Linalool Nerol Methyl eugenol

α-Humulene Sabinene Myrtenol
α-Pinene α-Pinene Myrtenyl acetate
α-Thujone α-Thujone Nerol
β-Pinene β-Pinene α-Pinene
β-Thujone δ-3-Carene α-Terpineol

Limonene and α-Pinene are present in the three most effective EOs against S. aureus
(Venn diagram in Figure 4). Limonene is a cyclic monoterpene with a pleasant citrus
aroma known for its strong antimicrobial activity against various bacteria and fungi. Its
mechanism of action may be attributed to its ability to disrupt the cell membranes of
bacteria and fungi, leading to cell leakage and subsequent cell death. It also interferes with
the enzymatic processes in microorganisms, affecting their growth and replication [148,151].

α-Pinene is a bicyclic monoterpene commonly found in the essential oils of pine
trees and other coniferous plants. Like limonene, α-pinene has demonstrated significant
antimicrobial activity related to its ability to disrupt bacterial membranes and interfere
with their essential cellular processes [157,158]. Both compounds were demonstrated to be
strongly active against S. aureus [148,151,157,158].

Phytocomplexes, defined as a blend of bioactive compounds, have the ability to work
synergistically, targeting multiple receptors, aiding the molecules in reaching their intended
destination, and slowing down the degradation of active compounds [159,160].
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The superiority of plant phytocomplexes over individual molecules is evident from
the decreased activity observed after fractionation [159,160]. Furthermore, it is widely
acknowledged that there is a need for compounds that can synergistically enhance the
effectiveness of existing antibiotics when combating drug-resistant bacteria [161–163].

Utilizing plant-based compound extracts could be beneficial in combating antibiotic
resistance. Nevertheless, their eventual application requires cautious regulation and con-
trol to prevent the emergence of resistance mechanisms to less specific biocides such as
antiseptics, disinfectants, and preservatives [164].

5. Conclusions

The published literature about plants with antimicrobial activity against S. aureus is
extremely wide and heterogeneous, and for this reason, it is necessary to comprehensively
analyze the published results to draw a conclusion. This work started from the idea of
developing a Green Veterinary Pharmacology intervention to be used against the most
relevant bacterial pathogens. However, before starting with an experimental (benchtop)
approach, we considered it necessary to deeply understand what was already published
to avoid repeating previously performed experiments and to avoid producing redundant
experimental evidence.

The essential oils of Salvia officinalis, Cistus monspeliensis, Cistus salviifolius, Origanum
vulgare, and Myrtus communis share common traits in their chemical composition, including
the presence of monoterpenes, sesquiterpenes, oxygenated compounds, phenolic com-
pounds, and terpenoids.

From obtained results herein described, it is possible to draw a conclusion about the
most effective plants capable of inhibiting the growth of S. aureus that could be further
tested for GVP interventions, such as the efficacy against isolates from animals.
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82. Hulankova, R.; Borilova, G.; Hulánková, R.; Bořilová, G. In vitro combined effect of oregano essential oil and caprylic acid
against salmonella serovars, escherichia coli O157:H7, staphylococcus aureus and listeria monocytogenes. Acta Vet. Brno 2011,
80, 343–348. [CrossRef]

83. Nedorostova, L.; Kloucek, P.; Kokoska, L.; Stolcova, M.; Pulkrabek, J. Antimicrobial properties of selected essential oils in vapour
phase against foodborne bacteria. Food Control 2009, 20, 157–160. [CrossRef]

84. de Souza, G.T.; de Carvalho, R.J.; de Sousa, J.P.; Tavares, J.F.; Schaffner, D.; de Souza, E.L.; Magnani, M. Effects of the Essential Oil
from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and
Slurry. J. Food Prot. 2016, 79, 246–252. [CrossRef]

85. de Souza, E.L.; de Barros, J.C.; da Conceicao, M.L.; Neto, N.J.G.; da Costa, A.C.V. Combined application of Origanum vulgare L.
essential oil and acetic acid for controlling the growth of staphylococcus aureus in foods. Braz. J. Microbiol. 2009, 40, 387–393.
[CrossRef]

86. Heni, S.; Boughendjioua, H.; Saida, M.; Bennadja, S.; Djahoudi, A. Use of Origanum vulgare Essential Oil as an Antibacterial
Additive in the Preservation of Minced Meat. J. Pharm. Res. Int. 2020, 32, 1–9. [CrossRef]

87. de Oliveira, J.; Diniz, M.D.M.; Lima, E.D.; de Souza, E.L.; Trajano, V.N.; Santos, B.H.C. Effectiveness of Origanum vulgare L. and
Origanum majorana L. Essential oils in Inhibiting the Growth of Bacterial Strains Isolated from the Patients with Conjunctivitis.
Braz. Arch. Biol. Technol. 2009, 52, 45–50. [CrossRef]

https://doi.org/10.4315/0362-028X-67.6.1252
https://www.ncbi.nlm.nih.gov/pubmed/15222560
https://www.actahort.org/books/679/679_11.htm
https://doi.org/10.1155/2022/7467279
https://www.ncbi.nlm.nih.gov/pubmed/36204117
https://doi.org/10.1371/journal.pone.0207574
https://www.ncbi.nlm.nih.gov/pubmed/30540782
https://doi.org/10.1080/09603123.2022.2133096
https://doi.org/10.3390/molecules25204862
https://doi.org/10.1016/j.foodcont.2016.10.043
https://doi.org/10.2298/ABS1302639S
https://doi.org/10.3390/pr9061032
https://doi.org/10.1590/S1517-83822012000300039
https://www.ncbi.nlm.nih.gov/pubmed/24031936
https://doi.org/10.1111/jam.13413
https://doi.org/10.3390/antibiotics11111572
https://doi.org/10.1016/j.foodcont.2013.03.020
https://doi.org/10.2754/avb201180040343
https://doi.org/10.1016/j.foodcont.2008.03.007
https://doi.org/10.4315/0362-028X.JFP-15-172
https://doi.org/10.1590/S1517-83822009000200032
https://doi.org/10.9734/jpri/2020/v32i3230927
https://doi.org/10.1590/S1516-89132009000100006


Microorganisms 2023, 11, 2264 15 of 18

88. de Souza, E.L.; Stamford, T.L.M.; Lima, E.D.O.; Barbosa, J.M.; Marques, M.O.M. Interference of heating on the antimicrobial
activity and chemical composition of Origanum vulgare L. (Lamiaceae) essential oil. Cienc. E Tecnol. Aliment. 2008, 28, 418–422.
[CrossRef]

89. Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Consoli, G.M.L.; Cafiso, V.; Stefani, S.; Geraci, C. Essential oils
encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem. 2018,
269, 286–292. [CrossRef]

90. Karaboduk, K.; Karabacak, O.; Karaboduk, H.; Tekinay, T. Chemical analysis and antimicrobial activities of the Origanum vulgare
subsp. Hirtum. J. Environ. Prot. Ecol. 2014, 15, 1283–1292.

91. Béjaoui, A.; Chaabane, H.; Jemli, M.; Boulila, A.; Boussaid, M. Essential oil composition and antibacterial activity of Origanum
vulgare subsp. glandulosum Desf. at different phenological stages. J. Med. Food 2013, 16, 1115–1120. [CrossRef]

92. Verma, R.S.; Padalia, R.C.; Saikia, D.; Chauhan, A.; Krishna, V. Antibacterial Activity of Origanum vulgare L. Popul. Indian Orig. J.
Biol. Act. Prod. from Nat. 2012, 2, 353–359. [CrossRef]

93. Hussain, A.I.; Anwar, F.; Rasheed, S.; Nigam, P.S.; Janneh, O.; Sarker, S.D. Composition, antioxidant and chemotherapeutic
properties of the essential oils from two Origanum species growing in Pakistan. Rev. Bras. Farmacogn. 2011, 21, 943–952.
[CrossRef]

94. Da Costa, A.C.; Dos Santos, B.H.C.; Filho, L.S.; Lima, E.D.O. Antibacterial activity of the essential oil of Origanum vulgare L.
(Lamiaceae) against bacterial multiresistant strains isolated from nosocomial patients. Rev. Bras. Farmacogn. 2009, 19, 236–241.
[CrossRef]

95. Enayatifard, R.; Akbari, J.; Babaei, A.; Rostamkalaei, S.S.; Hashemi, S.M.H.; Habibi, E. Anti-microbial potential of nano-emulsion
form of essential oil obtained from aerial parts of Origanum vulgare L. as food additive. Adv. Pharm. Bull. 2021, 11, 327–334.
[CrossRef] [PubMed]

96. Turgis, M.; Vu, K.D.; Dupont, C.; Lacroix, M. Combined antimicrobial effect of essential oils and bacteriocins against foodborne
pathogens and food spoilage bacteria. Food Res. Int. 2012, 48, 696–702. [CrossRef]

97. Koca, T.; Koca, O.; Korcum, A.F. Antimicrobial activities of essential oils on microorganisms isolated from radiation dermatitis. J.
Clin. Anal. Med. 2019, 10, 307–310. [CrossRef]
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