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Abstract: N-acyl homoserine lactones (AHLs) are small, diffusible chemical signal molecules that
serve as social interaction tools for bacteria, enabling them to synchronize their collective actions in a
density-dependent manner through quorum sensing (QS). The QS activity from epiphytic bacteria
of the red macroalgae Porphyra haitanensis, along with its involvement in biofilm formation and
regulation, remains unexplored in prior scientific inquiries. Therefore, this study explores the AHL
signal molecules produced by epiphytic bacteria. The bacterium isolated from the surface of P.
haitanensis was identified as Pseudoalteromonas galatheae by 16s rRNA gene sequencing and screened
for AHLs using two AHL reporter strains, Agrobacterium tumefaciens A136 and Chromobacterium
violaceum CV026. The crystal violet assay was used for the biofilm-forming phenotype. The inferences
revealed that P. galatheae produces four different types of AHL molecules, i.e., C4-HSL, C8-HSL, C18-
HSL, and 3-oxo-C16-HSL, and it was observed that its biofilm formation phenotype is regulated by
QS molecules. This is the first study providing insights into the QS activity, diverse AHL profile, and
regulatory mechanisms that govern the biofilm formation phenotype of P. galatheae. These findings
offer valuable insights for future investigations exploring the role of AHL producing epiphytes and
biofilms in the life cycle of P. haitanensis.

Keywords: acyl homoserine lactones; biofilms; macroalgae; Pseudoalteromonas galatheae; Porphyra
haitanensis; quorum sensing

1. Introduction

The macroalgae are not only important photosynthetic ecosystem engineers in the
marine environment, but they also contribute to the overall productivity of the oceans
by fixing carbon dioxide [1,2]. Moreover, they serve as biological indicators of ecosystem
health in monitoring programs worldwide [3]. The surfaces of macroalgae are diverse,
complex, and ever-changing, making them ideal sites for biofilm formation [4]. Bacteria like
Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria
form core communities in biofilms that are well-suited for living with algae [5]. These
bacteria, particularly those belonging to the Proteobacteria and Bacteroidetes phyla, are
commonly found on macroalgae. These organized bacterial communities create a protective
layer on the algal surface, acting as a physical and physiological barrier between the host
and its surroundings, thus providing insulation [6]. Although these bacteria are genetically
different, they can nevertheless interact and communicate through quorum sensing [7].

Epiphytic bacteria engage in communication and cooperation, both within their species
and with other species [8,9]. Additionally, they interact with hosts using chemical signal
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molecules known as the inter-kingdom QS phenomenon. During QS, bacteria produce
and release signals that accumulate until they reach a certain threshold level within their
environment [10]. Once this threshold is reached, coordinated activities such as virulence,
resistance, bioluminescence, and biofilm formation are regulated [11]. In mutualistic associ-
ations between surface bacteria and macroalgae, bacterial secondary metabolites protect the
algal host from other organisms and fouling agents in return, benefiting from the readily
available organic carbon sources and nutrients produced by the macroalgae [12,13]. How-
ever, the relationship between epiphytic bacteria and macroalgae is not always beneficial;
some studies have reported potential negative consequences, like the marine macroalga
Delisea pulchra using a temperature-dependent chemical defense called furanones to protect
itself from the bacterial pathogen Ruegeria sp. This defense mechanism inhibits bacterial
quorum sensing and effectively prevents colonization and infection of D. pulchra by R11.
Furanones produced by D. pulchra hinder the ability of R11 to successfully colonize, as R11
relies on quorum sensing signals for its colonization process [14]. Furthermore, Acineto-
bacter sp. and Pseudoalteromonas bacteriolytica are considered causative agents of white rot
disease in Nereocystis luetkeana and red spot disease in Laminaria japonica [15–17]. Some
other bacterial species, such as Cobetia marina, Pythium porphyrae, and Pseudoalteromonas
citrea, have been found to induce diseases in P. haitanensis [18,19]. However, the mutually
beneficial relationship between adhered bacteria and algae can be broken when bacteria
have limited availability of phosphorus during metabolic processes, and both partners may
compete for this limited resource [20]. Furthermore, the climatic changes and influx of
harmful pollutants impose stress on the marine habitat and its associated microbiota, ren-
dering the bacterial biofilms more susceptible to opportunistic pathogens and consequently
induced negative impacts on algae [21].

Biofilms are widely adopted by bacteria in various environments, forming intricate
microbial communities through collective behavior and communication systems known as
quorum sensing [22,23]. The Quorum sensing involves the production and recognition of
signaling molecules called auto-inducers [24–26]. Autoinducing peptides (AIPs) and acyl
homoserine lactones (AHLs) have been identified as regulators of QS in gram-positive and
gram-negative bacteria [27–29]. Among various molecular signals utilized in QS systems,
the acyl-homoserine lactones (AHLs) or autoinducer type-1 are considered the predominant
class [30,31]. AHLs are composed of a homoserine lactone (HSL) moiety linked to fatty
acyl chains through an amide bond, and the QS processes relevant to AHL could be
common activities in marine environments. Huang and coworkers reported the presence
of AI-1 and AI-2 autoinducers in a dinoflagellate bloom and found correlations between
dominant species and QS signals, with quorum quenching (QQ) indicating the participation
of both QS and QQ in regulating the microbial communities during bloom formation [32].
Moreover, the longer-chain AHLs are believed to be better adapted to marine environments
as they seem less affected by pH hydrolysis caused by daily changes in light and dark due
to photosynthesis in marine biofilms (Decho et al. 2009) [33].

The red macroalga P. haitanensis, also known as Zicai, is a widely cultivated edible
seaweed in China, particularly in Guangdong, Zhejiang, and Fujian provinces. It holds
significant economic importance due to its high nutritional value [34,35]. Most of the studies
conducted on P. haitanensis focused on its cultivation, secondary metabolite production,
and assessment of nutritive values for aquaculture [36–38]. However, few studies have
reported the impacts of epiphytic bacteria on P. haitanensis growth [39]. There exists a study
gap because there have been no reports on the presence of AHLs producing epiphytic
bacteria associated with the red macroalga P. haitanensis. Additionally, the role of AHLs
in biofilm formation and their regulatory mechanisms in this context remain unexplored.
Therefore, we propose that the epiphytic bacterial community present on the surface of P.
haitanensis plays a vital role in protecting the host by impeding the settlement and growth
of potential competitors. We hypothesize that epiphytic bacterial communities act as an
effective additional protective layer by utilizing their QS communication system, thereby
providing insulation against host fouling.



Microorganisms 2023, 11, 2228 3 of 18

To test the hypothesis, epiphytic bacteria from the surface of cultured P. haitanensis
were isolated to analyze the diverse profile of AHL production and the biofilm-forming
capability of these bacteria. Additionally, this study explored the role of AHLs as regulators
of biofilm formation. Notably, this is the first study to report the diverse profile of AHL
production in Pseudoalteromonas galatheae and its role in biofilm regulation. The findings of
this study would significantly contribute to our understanding of bacterial colonization on
macroalgal surfaces and the involvement of regulators, specifically AHLs. Furthermore,
these results serve as a valuable foundation for future investigations into the role of AHLs
in the life cycle of P. haitanensis.

2. Materials and Methods
2.1. Sample Collection

P. haitanensis was hand-picked using disposable gloves from Nan’ao Island, Guang-
dong province of China (116◦6 40′′ E, 23◦29′9′′ N) in November and March 2018–2019
(Figure 1) during low tides. The collected algal samples were stored in sterile zipper
polybags and sealed immediately. Seawater samples were collected from the phycosphere
of P. haitanensis in sterile plastic bottles. Both the seaweed and seawater samples were
transported to the laboratory in cold conditions. During each collection, the temperature,
pH, salinity, and dissolved oxygen of the seawater were measured and are presented in
Table 1. Upon retrieval, the associated epiphytic bacteria from macroalgal samples were
isolated following the established procedure [40]. Briefly, the P. haitanensis fronds were
gently cleaned with autoclaved seawater at room temperature, and a small portion of the
frond was cut using a sterilized blade. The cut portion was then placed onto marine agar
2216 and LB agar and incubated at 25 ◦C for 2–15 days to isolate the epiphytic bacteria. The
plates were observed daily, and different colonies were picked and re-streaked onto the
respective media to obtain a pure colony. Each pure bacterial colony was designated with a
unique lab code, then maintained at 4 ◦C in slants and stored in a 25% glycerol suspension
in cryotubes at −80 ◦C for further experiments [40].

 
Figure 1. Map of the study area with sampling sites for macroalgae P. haitanensis cultures. The + indicates 
the loca on of the P. haitanensis culture site, from where samplings were collected. 

Figure 1. Map of the study area with sampling sites for macroalgae P. haitanensis cultures. The +
indicates the location of the P. haitanensis culture site, from where samplings were collected.
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Table 1. Physical parameters of the sampling site, including the mean of three replicates.

Location (Nan’ao)

Month Temperature (◦C) pH Salinity (ppt) DO

November 13.8 7.8 30.5 8.0
March 21.2 8.1 31.7 8.1

2.2. Isolation of gDNA and 16S rRNA Gene Amplification

Morphologically different picked bacterial colonies from the previous step were
subjected to the isolation of gDNA for 16S rRNA gene amplification. Briefly, gDNA
was isolated using a gDNA isolation kit (TIANGEN Biotech, Beijing, China) follow-
ing the manufacturer’s instructions. The concentration of gDNA was measured using
a NanoDrop One (Thermo Fisher, Waltham, MA, USA), and its purification was con-
firmed with 1% agarose gel electrophoresis. The universal 16S rRNA primers 27F (5′-
AGAGTTTGATCMTGGCTCAG-3′) and 1492R (5′-TACGGYTACCTTGTTACGACTT-3′)
were used for PCR amplification and sequencing [41]. The reaction mixture and PCR
conditions were as follows. The PCR reaction mixture consisted of 2.5 µL of dNTP, 100 ng
of each 10× PCR buffer with MgCl2, 25 mM of each forward and reverse primer, 0.5 µL of
Taq DNA polymerase, and 10 ng of template DNA. The PCR protocol involved an initial
denaturation step at 95 ◦C for 5 min, followed by 30 cycles at 94 ◦C for 40 s, 55 ◦C for 40 s,
and 72 ◦C for 2 min. A final cycle of 10 min at 72 ◦C was performed using the Bio-Rad
T100TM Thermal Cycler (Bio-Rad, Hercules, CA, USA). The amplified products were then
analyzed on 1.2% (w/v) agarose gels stained with ethidium bromide, and the bands were
visualized under UV light. For further purification, the PCR products were processed using
a QIAquick PCR purification kit (QIAGEN, No. 28104). Subsequently, the amplicons were
Sanger sequenced using the 3730XL DNA Analyzer (ABI, Foster, CA, USA).

2.3. Bacterial Identification and Phylogenetical Analysis

The sequences were blasted to check their sequence homology against other sequences
from NCBI GenBank (https://blast.ncbi.nlm.nih.gov/Blast.cgi) accessed on 15 July 2023.
Those with a sequence identity greater than 99% were considered members of the same
species [42] (see Table 2). The aligned 16s rRNA bacterial sequences were used to construct
the phylogenetic trees with the neighbor joining method [43] using the MEGA 11.0.10
software [44]. The sequences were compiled and aligned using ClustalW embedded in
MEGA 11. The Tamura–Nei model was employed to estimate the evolutionary distance
model [45]. For reliability, the bootstrap test was performed with 1000 replicates in the
phylogenetic trees (Figure 2) [46].

Table 2. Isolated culturable epiphytic bacteria and their similarity with previously reported marine
bacteria.

Lab Code Identified as Accession No. Similarity (%) Genera

P1 Pseudoalteromonas galatheae NR_178361.1 99.59 Proteobacteria
P2 Staphylococcus saprophyticus strain UTI-045 CP054831.1 100.00 Firmicutes
P3 Vibrio alginolyticus strain NBRC 15630 NR_122050.1 99.55 Proteobacteria
P4 Vibrio sp. strain 201709CJKOP-32 MH093789.1 99.48 Proteobacteria
P5 Vibrio antiquarius NC_013456.1 98.82 Proteobacteria
P6 Vibrio sp. strain 201709CJKOP-38 MH093795.1 99.93 Proteobacteria
P8 Zobellia russellii strain KMM 3677 NR_024828.1 100 Bacteroidetes
P9 Paraglaciecola mesophila KMM 241 NZ_BAEP01000046.1 99.70 Proteobacteria
P10 Vibrio diabolicus strain HE800 NR_036811.1 98.82 Proteobacteria
P12 Vibrio sp. VibC-Oc-059 KF577068.1 100.00 Proteobacteria
P15 Pseudoalteromonas sp. strain 5315 ON026012.1 100 Proteobacteria
P17 Pseudoalteromonas distincta strain KMM 3548 NR_025654.1 99.7 Proteobacteria
P18 Pseudoalteromonas sp. ZJHD1-34 JN107745.1 99.77 Proteobacteria
P19 Vibrio sp. strain 201709CJKOP-60 MH093817.1 99.92 Proteobacteria
P20 Vibrio alginolyticus strain 2014V-1011 CP046772.1 100.00 Proteobacteria
P21 Halomonas venusta strain MA-ZP17-13 CP034367.1 99.80 Proteobacteria

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 2. Phylogenetic tree of the AHL positive strain (red dot) created with MEGA11 using the
Neighbor–Joining method. Eight nucleotide sequences were analyzed, and bootstrap values (based
on 1000 replicates) indicating the support for each branch are shown. Evolutionary distances were
computed using the Maximum Composite Likelihood method, and all ambiguous positions were
removed for each sequence pair (pairwise deletion option).

2.4. Screening for AHL Production

The bacterial reporter strains used for AHL screening were Chromobacterium violaceum
CV026, which responds to short carbon chain AHLs (C4–C6), and Agrobacterium tumefaciens
A136, which responds to long carbon chain AHLs (C6–C12) [47,48].

All the isolated bacteria were screened for AHL production using a 96-well microtiter
plate assay [49,50] with slight modifications. In brief, the reporter strain A136 was grown
overnight at 28 ◦C at 150 rpm in 5 mL LB broth supplemented with 50 µg/mL spectinomycin
and 4.5 µg/mL tetracycline, while the test bacteria were grown in 75 µL LB broth in a
96-well microtiter plate. The 5× diluted 75 µL of overnight cultured reporter strain A136
was mixed with test bacteria and incubated at 28 ◦C with constant shaking at 150 rpm for
12 h. X-Gal (40 µg/mL) was added (40 µg/mL) to each well and incubated for 12–24 h.
Wells with a blue color were marked as positive. The same protocol was followed with the
reporter strain CV026, except for the addition of X-Gal, and wells with purple pigmentation
were marked as positive (Figure 3). Positive colonies were double-checked by streaking
the bacterial isolate parallel to the reporter strain [51,52]. The pH of 2216E medium was
adjusted to 6.7 to avoid the spontaneous alkaline hydrolysis of AHLs during incubation at
28 ◦C for 24 h.

2.5. Isolation and Characterization of AHLs

AHLs were extracted from a positive bacterium colony by individually culturing it
in 500 mL of Zobell marine broth pH 6.7 at 28 ◦C with continuous shaking at 180 rpm
for 48 h. Cell suspensions were then aseptically transferred to 50 mL sterile centrifuge
tubes and centrifuged for 10 min at 12,000 rpm at 4 ◦C. The supernatant was collected
carefully and mixed with an equal volume of ethyl acetate acidified with acetic acid (0.5%)
for liquid-liquid extraction. The process was repeated three times. The upper organic layer
was collected separately using a funnel, and the solvent was evaporated using a rotary
apparatus to reduce the volume to 1 mL and then completely dried using nitrogen [53,54].
The extracted AHLs were stored at −20 ◦C for further use.
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2.6. Identification and Characterization of AHLs by LC–MS

The residues from the previous step were dissolved in 1 mL of HPLC-grade acetonitrile
and used for analyzing the samples with liquid chromatography electrospray ionization
mass/mass spectrometry (LC–MS). The characteristics of ion products were proposed on
the basis of low-resolution MS/MS spectra [55]. The spectra of LC–MS were recorded
from 0 m/z to 300 m/z to obtain a definite identification of these ion products for their
accurate mass values, along with considering the retention time. The theoretical masses of
the most likely AHLs in the protonated form were calculated and compared with standards.
For our analysis, we used ESI–MS and LC–ESI–MS/MS–CID techniques with a Waters®

Micromass® Q-Tof micro™ mass spectrometer connected to a Waters Alliance HPLC and
equipped with an electrospray ionization source. During ESI–MS analysis, the samples
were directly injected into the mass spectrometry system at a flow rate of 20 µL/min. The
capillary voltage was maintained for the sample cone and extraction cone at 2.5 KV, 25 V,
and 1.5 V, respectively. For LC–ESI–MS/MS, 2 µL of the sample residues were injected
onto a reverse-phase C18 column with a solvent gradient, and argon gas (Phenomenex,
150 mm × 4.6 mm) was used for this process as a collision source.

2.7. Biofilm formation Assay
2.7.1. Ninety-Six-Well Microtiter Plate Crystal Violet Biofilm Formation Assay

A biofilm formation assay was conducted in the 96-well microtiter plate as described
by [54]. The bacterium was grown in liquid 2216E broth to an OD600 value of 0.5 (ap-
proximately 107 CFU/mL in 15–18 h) followed by a 100-fold dilution in the same medium.
Subsequently, 200 µL per well of diluted bacteria with exogenous AHLs (i.e., 150 µM of
each C8-HSL, 3OC16-HSL, and C18:1-HSL) and without exogenous AHLs were dispensed
into the 96-well microtiter plate and incubated at 28 ◦C for 24 h. E. coli DH5 alpha was used
as a negative control (NC). The OD 600 of the incubated microtiter plate was measured
after every 12 h before washing off the unattached planktonic bacterial cells in order to
confirm similar growth of bacteria. Each well was washed three times with 250 µL of
0.1 M PBS (pH 7.3–7.4). The biofilm was fixed with 250 µL of anhydrous methanol by
incubating it for 15 min at room temperature, followed by staining with 250 µL per well of
0.1% (v/v) crystal violet solution. The microtiter plate was incubated at room temperature
for 15 min and rinsed three times (250 µL per rinse) with deionized water. The crystal violet
was dissolved by the addition of 200 µL of 33% glacial acetic acid, followed by shaking at
150 rpm for 10 min. Finally, the absorbance of the plate at OD 590 was measured using a
UV-Vis spectrophotometer.
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To measure the effect of different concentrations of selective AHL, i.e., C8-HSL, on
biofilm formation based on the previous step, the bacterium was co-cultured with different
concentrations, specifically 50 µM, 100 µM, 150 µM, and 200 µM, of exogenous AHLs, and
absorbance was measured at OD 590.

2.7.2. Scanning Electron Microscopy Assay

The bacterium P1 (AHL-positive strain) was cultured at 28 ◦C with shaking at 180 rpm
until an OD600 nm value of 1.0 was achieved. Cells were diluted to 1.0× 107 CFU/mL with
culture medium. First, 1 mL of the diluted culture was dispensed onto a pre-treated sterile
glass cover slip (0.5 mm × 0.5 mm) placed inside a 24-well microtiter plate and cultured at
28 ◦C for 24 h. The biofilm deposited on the glass surface was then prepared for scanning
electron microscopy (SEM) analysis according to the method described by [56,57]. Plates
were wrapped with parafilm in order to avoid evaporation/drying. Later, the broth from
the wells was removed gently with a pipette, and a glass coverslip was recovered from the
well using clean tweezers, followed by a gentle wash with sterile 0.1 M PBS. The biofilm
was fixed with a 2.5% glutaraldehyde solution for 2 h at room temperature, followed by a
wash with 0.1 M PBS. The glass coverslip was subjected to dehydration under a graded
series of ethanol in ascending order (i.e., 30%, 50%, 70%, 90%, 20 min each) and finally
washed twice with 100% ethanol for 20 min. This was followed by critical point drying,
platinum sputtering, and SEM observation (JSM 6360L Jeol Tokyo, Japan) performed at
3.0 kV under 5000 and 50,000×magnifications.

2.7.3. Confocal Laser Scanning Microscopy (CLSM) Assay

The overnight bacterial culture was resuspended after 10 min of centrifugation at
7000× g in 0.1 M PBS (pH 7.3–7.4) to achieve a final OD600 of 0.25. One ml of the resulting
bacterial suspension was loaded into a compartment of a 6-well Petri dish (6 mm Corning
Costar 6-well cell culture plate, Greiner Bio-one Corning) with a glass coverslip in the
bottom [57]. Notably, to obtain a clean surface of the glass coverslip for biofilm development,
glass coverslips were treated with 1 M HCl overnight, followed by washing with anhydrous
ethanol and drying at 50 ◦C for 30 min. The treated coverslips were then placed in the
6-well plate and incubated at 28 ◦C for 24 h without shaking. The wells were gently washed
with 0.1 M PBS (pH 7.3–7.4), and 1 mL of 2216E medium was added to each compartment.
Biofilms were then grown for 24 h at 28 ◦C. The surfaces were then gently rinsed with 0.1 M
PBS (pH 7.3–7.4), and biofilms were stained with PI and Syto 9 using the Bact Live/Dead
Bacterial Kit (BacLight™ viability kit, Invitrogen, Waltham, MA, USA) in the dark for
15–20 min. After rinsing with ultra-pure water and drying, the samples were analyzed
using a Zeiss LSM 800 (Carl Zeiss, Jena, Germany), and 3D structures were reconstituted
using software ZEN version 2.3 (Figure 6). COMSTAT 7 built-in with Image J was used for
quantification of biofilm formation (Heydron et al. 2000) [58].

Comstat version 2.1 is software designed for analyzing image stacks of biofilms
captured using confocal microscopes. It quantifies various factors by breaking down the
Z-stack images into small 3D elements called voxels. The voxel’s width (x) and length (y)
correspond to the pixel’s sides, while the height (z) represents the spacing between the
slices [59]. The following parameters were considered for the quantification of the biofilm
formed by P. galatheae:

• Biomass (µm3/µm2): The volume of biomass per unit area, estimated as the volume
of all voxels that contain biomass divided by the substratum area; COMSTAT 2 counts
as biomass all voxels above a given threshold.

• Average thickness (biomass) (µm): Measuring/considering only the area covered by
the biomass.

• Average thickness (entire area) (µm): Measurement of the complete extent of the stack.
• Maximum thickness (µm): Measurement of the highest point of the biofilm relative to

the substratum.
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• Roughness coefficient, Ra (nondimensional): Quantifying the height variability of
the biofilm.

• Surface area (µm2): The sum of the areas of all visible biomass voxel surfaces against
the background, including the area occupied in each layer (µm2), considering biomass
pixels in each layer (confocal slices).

2.8. Statistical Analysis

A one-way analysis of variance (ANOVA) was conducted to assess the differences
in biofilm growth/production by different types of AHLs, considering their respective
concentrations. Subsequently, Tukey’s post hoc test was employed to perform pairwise com-
parisons and identify specific AHL types and concentrations that significantly influenced
biofilm growth.

3. Results
3.1. Identification and Phylogenetic Analysis

Sixteen culturable bacterial strains were isolated from the surface of P. haitanensis.
The highest number of isolates were selected with 2216E marine agar, followed by LB.
Gene amplification (16S rRNA) revealed that the isolates belong to the Vibrio, Pseudoal-
teromonas, Zobellia, and Firmicutes genera. Vibrio was the highest in number followed
by Pseudoalteromonas, Zobellia, and Firmicutes genera. All isolates were found to be
associated with marine environments (Table 2).

The phylogenetic tree constructed for the AHL-positive strain represents its closest
relatives as obtained from the Gene Bank (Figure 2).

3.2. Screening for AHL Production

All isolated bacteria were screened for AHLs using two bio-reporter strains: CV026 for
short carbon chain AHLs (C4–C6), and A136 (C6–C14). Initial screening was performed on
a 96-well microtiter plate. Out of sixteen isolates, only one isolate (i.e., P1), which was later
identified as Pseudoalteromonas galatheae, produced indigo (blue color) among all the test
strains when incubated at 28 ◦C for 24 h, demonstrating the production of AHLs (Figure 3).
This positive bacterial isolate was confirmed for AHL production by parallel streaking on
2216E marine agar to make double confirmation.

3.3. Extraction and Characterization of AHL

LC–MS data of the strain P1 extract show the presence of a characteristic lactone
fragment at m/z of 102 and the molecular ion peak at m/z of respective ions, suggesting
different AHL production. The results revealed that our isolate could produce four different
types of QS signals, i.e., C4-HSL, which had a precursor ion (m/z) of 172.2 and a retention
time of 5.80 min. For C8-HSL, the precursor ion (m/z) was 228.2 and retention time was
4.72 min, and for 3-oxo-C16-HSL and C16-HSL, the precursor ion (m/z) was 214.1 and 368.3
and retention time was 8.0 and 9.03 min, respectively (Figure 4).

3.4. Biofilm Formation Assay
3.4.1. Crystal Violet Assay

Crystal violet assay revealed that the growth of P. galatheae was not affected by exoge-
nous AHLs, i.e., C4-HSL, C8-HSL, 3OC16, and C18:1-HSL. The growth curves show almost
similar patterns with and without exogenous AHLs in the growth media, suggesting no
role for AHLs in the growth of bacterial cells (Figure S1). Additionally, no correlation was
found between growth and different AHLs (Figure S2).

However, a significantly higher level of biofilm formation was observed in the presence
of C8-HSL. Other exogenous AHLs, such as C4-HSL, 3OC16, and C18:1, also enhanced
the formation of biofilm compared to biofilm formation by P. galatheae without exogenous
AHL (Figure 5A,C). This suggests that C8-HSL primarily regulates biofilm formation
in P. galatheae. Moreover, it was also observed that higher biofilm was produced with
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increasing concentration (50 µM–200 µM), demonstrating a positive correlation between
C8-HSL concentration and biofilm formation (Figures 5B,D and S3).
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3.4.2. Scanning Electron Microscopy (SEM) Assay

Scanning electron microscopy of the biofilm on a glass cover slip revealed that P.
galatheae formed biofilm with and without exogenous HSL. In the absence of C8-HSL, a
thin biofilm layer was scattered all over the cover slips during the initial, intermediate,
and final stages (Figure 6a–c). However, cells treated with 200 µM exogenous C8-HSL
formed a highly dense biofilm that covered most of the glass coverslip during the initial,
intermediate, and final stages (Figure 6d–f). Moreover, a thick EPS matrix was also observed
with bacteria trapped in it. This observation validates the results of the crystal violet assay
regarding biofilm formation and its regulation by AHLs.

3.4.3. Confocal Laser Scanning Microscopy (CLSM) Assay

The biofilm developed on a standard glass coverslip by P. galatheae in the presence
and absence of exogenous AHLs was studied using Confocal Laser Scanning Microscopy
(CLSM). The images from CLSM and biofilm quantification are presented in Figure 7
and Table 3, respectively. The results revealed high biofilm formation in the presence
of exogenous AHLs (200 µM of C8-HSL). The effects of AHLs on biofilm characteristics
were investigated using Comstat version 2.1 integrated with ImageJ. The analysis revealed
significant differences between the “with AHL” and “without AHL” conditions. In the
absence of AHL, the biomass of both dead and live cells was lower, with corresponding
mean thickness values. However, the presence of AHL significantly increased biomass,
mean thickness (both biomass and area), and maximum thickness. Moreover, AHL was
found to decrease surface roughness, resulting in a smoother biofilm surface. Additionally,
AHL positively influenced the expansion of the biofilm surface area. These findings
highlight the role of AHL in promoting biofilm growth, thickness, and surface properties,
suggesting its importance in shaping the structural characteristics of biofilms (Figure 7,
Table 3).
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Figure 6. SEM of Biofilm formation by P. galatheae on a glass cover slip. (a) Initial stage of biofilm
formation without C8-HSL. (b) Intermediate stage of biofilm formation without C8-HSL. (c) Final
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C8-HSL. Without C8-HSL, a thin biofilm is observed, while with C8-HSL, a much thicker and denser
biofilm is formed. Arrows represent the biofilm formation and square represents thick biofilm.

Table 3. Biomass, mean thickness, roughness, and surface area of biofilm growth on glass cover slip
in the presence and absence of C8-HSL. Analysis was performed using COMSTAT. The values are the
mean ± standard deviation of the data from five replicates.

P. galatheae
Without AHL With AHL

Dead Live Dead Live

Biomass (µm3/µm2) 1.14 ± 0.01 2.63 ± 0.37 5.91 ± 0.78 9.99 ± 1.30
Mean thickness
(Biomass) (µm) 4.36 ± 0.60 6.50 ± 1.25 7.42 ± 1.20 9.60 ± 0.94

Mean thickness (Area) (µm) 1.24 ± 0.03 4.36 ± 1.05 5.05 ± 1.31 8.10 ± 1.37
Maximum thickness (µm) 5.54 ± 0.52 8.61 ± 1.88 21.01 ± 4.18 24.05 ± 6.24

Roughness (–) 1.85 ± 0.03 0.95 ± 0.22 0.76 ± 0.29 0.19 ± 0.18
Surface Area (105 m2) 0.22 ± 0.02 1.81 ± 0.44 2.90 ± 0.71 3.76 ± 0.33
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Figure 7. CLSM of biofilm formation by P. galatheae on a glass cover slip. (a) A 2D structure of biofilm
without C8-HSL, with dead cells represented in red and live cells in green. (b) A 2.5D structure of
biofilm without C8-HSL. (c) A 3D image of biofilm without C8-HSL. (d) A 2D structure of biofilm in
the presence of C8-HSL. (e) A 2.5D structure of biofilm in the presence of C8-HSL. (f) A 3D structure
of biofilm in the presence of C8-HSL. The biofilm in the absence of C8-HSL shows an uneven and thin
surface with a higher number of dead cells. However, in the presence of C8-HSL, the biofilm appears
smooth, healthy, and dense. Green color represents live and red color represents dead bacterial cells
during biofilm formation.

4. Discussion

Marine macroalgae establish highly specific associations with numerous microor-
ganisms. Bacteria inhabiting the macroalgal surface have been found to utilize AHL-QS
systems for their cell-to-cell communication, which often plays a crucial role in bacterial
colonization, such as biofilm formation. This symbiotic relationship between bacteria
and their hosts was found to be regulated by AHL quorum sensing [60–62]. The bac-
terial communities identified in this study were similar to those identified in different
seaweeds [63,64]. Gammaproteobacterial genera, including Vibrio, Pseudomonas, and
Acinetobacter, are known for their well-studied AHL-based QS systems. These bacteria
are commonly found in different marine habitats and are known for producing AHL
molecules [65–72]. Additionally, metagenomics studies reported that Vibrionales, Pseu-
domonadales, or Alteromonadales are the main contributors to AHL production [32,63–75].
Furthermore, it has been demonstrated that Gammaproteobacteria AHL pathways regulate
various traits that may have significance in biogeochemical processes, including biofilm
regulation, production of hydrolytic enzymes, siderophores, and motility [48,49].

Most of the Pseudoalteromonas species obtained from living surfaces are often found
in epiphytic and epizoic microbiomes associated with marine microorganisms [76]. Pseu-
doalteromonas isolates are frequently recognized as valuable sources of bioactive exo-
products, specifically secondary metabolites like exopolymeric substances and extracel-
lular enzymes [77]. However, there is a paucity of knowledge on cultured P. haitanensis
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macroalga-associated microbial communities with the QS phenotype. Therefore, this study
was aimed at surveying, for the first time, the QS activity from the epiphytes of P. haitanensis,
along with biofilm-forming capability and its regulation.

We isolated Pseudoalteromonas galatheae from the surface of P. haitanensis (Figure 2) with
the ability to produce QS signals and exhibit a biofilm-forming phenotype (Figure 4). For
the AHL screening assay, CV 026 and A136 reporter strains were used, with the biosensor
CV026 containing a deletion in the luxI homolog cviI gene, which produces the purple
pigment violacein in response to fully reduced short-chain AHLs (C4–C6 side chains) with
a hydrogen as the R-group at the b carbon [78]. The A136 report strain expresses a lacZ
fusion most strongly in response to medium-chain-length AHLs (C6–C12, although weakly
to C4), with limited distinction of AHLs carrying a hydrogen, a hydroxyl, or a carbonyl
as the R-group at the b carbon as reflected by β-galactosidase activity [47,79,80] (None of
the epiphytic bacteria respond to CV026. However, the strain (PI) identified as P. galatheae
demonstrates β-galactosidase activity (Figure 3).

Further characterization of the bacterial culture extract by LC–MS data revealed
that P. galatheae produces four types of AHL signal molecules, including three linear
chain AHLs (C4, C8, and C18-1), and one β-carbon-oxidative AHL product i(3OC6), with
the following concentration order: C4 > C8 > 3OC6 > C18:1 (Figure 4). Our findings
are consistent with previous research demonstrating the production of diverse AHLs by
individual bacterial species. For instance, Pseudoalteromonas sp. R3, obtained from marine
sediment, could produce two AHLs, namely 3-OH-C6-HSL and C8-HSL [81]. Similarly,
Pantoea ananatis B9, isolated from natural marine snow particles in marginal seas of China,
exhibited the ability to produce six different AHLs: C4-HSL, 3OC6-HSL, C6-HSL, C10-
HSL, C12-HSL, and C14-HSL [61]. Marine bacterial strains ST2 from Scrippsiella trochoidea
and RT1 from the root nodules of Lens culinaris, have been found to produce multiple
AHL compounds, including C4-AHL, C8-AHL, and C10-AHL, and 3-oxo-C8-HSL and
3-OH-C10-HSL, respectively [75]. Furthermore, 3-oxo-C8-HSL, produced by RT1, has also
been found to influence bacterial motility and biofilm formation [82]. Additionally, the
bacterium Anemonia viridis, isolated from cnidarian species, has been reported to produce
five AHLs: C6-HSL, C8-HSL, 3-OH-C6-HSL, 3-OH-C8-HSL, and 3-OH-C10-HSL [83].
Certain Pseudoalteromonas strains, such as 520P1 and NJ6-3-1, have also been shown to
produce AHLs like 3-oxo-C8HSL, C14-HSL, and C8-HSL, respectively, and have regulatory
effects on violacein production and the secretion of antibacterial compounds [84,85]. In
another study, Ziesche and colleagues reported that marine Roseobacter clade bacteria
isolated from macroalgae could produce a variety of AHLs [86]. Moreover, P. ananatis
SK-1, isolated from the Shirakawa River in Japan, could produce two AHLs, namely C6-
HSL and 3OC6-HSL, and induce center rot disease in onions using an AHL-based QS
system [87]. Another bacterium, Pseudomonas fluorescens PF07, known for fish spoilage,
produces three different AHLs, with C4-HSL being the predominant signal molecule and
acting as a biofilm regulator [88]. It has been revealed that the production of various
long-chain AHLs is species-specific, and the bacterial community associated with A. viridis
undergoes compositional changes alongside AHL profiles, indicating a potential connection
between bacterial community dynamics and quorum sensing [83]. Epiphytic bacterium
Shewanella algae of red macroalgae have been found to produce five types of AHLs, namely
C4-HSL, HC4-HSL, C6-HSL, 3OC6-HSL, and 3OC12-HSL, and induce carpospore liberation
in Gracilaria dura [89]. It is suggested that bacteria produce long-chain AHLs as an adaptive
response to the alkaline seawater environment [52]. Therefore, we assume that the epiphytic
bacterium P. galatheae produces a variety of AHLs, mostly long chains, as an adaptive
response to the alkaline seawater environment.

Bacteria utilize QS as part of their genetic machinery, enabling them to dominate
marine niches and drive the succession of the entire bacterial community [52]. Bacterial
biofilm formation and its regulation have been reported to be controlled by QS [88,90].
The biofilm acts as a defensive coating, protecting the surface of macroalgae from macro-
foulers [91]. We also observed a biofilm-forming phenotype in our isolated bacterium,
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P. galatheae (Figure 5). Our data on biofilm formation by P. galatheae and its regulation
by AHLs demonstrate similar results to those reported previously [47,92,93]. It is well
established that the gene encoding proteins involved in biofilm formation are regulated
by the QS system [94]. Several bacterial species, such as Pseudomonas putida, Pseudomonas
fluorescens, Pseudomonas aeruginosa, and Burkholderia cenocepacia, have been studied for their
regulation of biofilm formation, with observations suggesting that biofilm formation is
governed by three regulatory systems, i.e., c-di-GMP, sRNA, and QS [95]. In contrast to
Tang’s study [88], our data revealed that C8-HSL played a significant role as the primary
biofilm regulator (Figure 5) instead of C4-HSL. Whereas the study of Hayek and co workers
reported that C8-HSL had no impact on biofilm adhesion but regulates bioluminescence in
the marine bacterium Shewanella woodyi [96]. However, our results are similar to those of
previous study, where diatom biofilm thickness was enhanced in the presence of C8-HSL
along with other AHLs [97]. Additionally, C8-HSL significantly increased the biomass
and thickness (both by biomass and surface area) of the biofilm formed [97]. Similarly,
P. galatheae also demonstrates similar biofilm structure formation as revealed by the biofilm
CLSM assay and biofilm quantification (Figure 7, Table 3). Interestingly, while conduct-
ing co-culture experiments with different AHLs, bacterial growth demonstrates a similar
growth curve (Figure S1), yet the production of biofilm was higher in the presence of
exogenous AHLs, as confirmed by crystal violet, SEM, and CLSM assays (Figures 4–6),
further supporting the argument that C8-HSL is the primary regulator of biofilm formation
in Pseudoalteromonas galatheae. The positive correlation between different concentrations of
C8-HSL and biofilm formation revealed that relative increases in the concentration of up to
200 µM also enhance biofilm formation (Figure S3).

However, to gain further insight into the mechanism of AHLs and their role in biofilm
formation and regulation in macroalga, more studies, especially concerning biofilm gene
expression, are warranted. However, the specific physiological role of AHL molecules
within this epiphytic bacterium is yet to be fully understood. To gain a comprehensive
understanding of AHL producers and their ecological functions within the macroalgal
ecosystem, further investigation using reporter strains and non-cultivable approaches tar-
geting AHL genes is warranted. This study contributes valuable insights into the cultivable
population of AHL-producing bacteria associated with P. haitanensis. The findings from this
study will significantly advance future research on the roles of AHL signaling molecules in
macroalgal-epiphytic interactions and the role of AHLs in the life cycle of host macroalga
P. haitanensis.

5. Conclusions

The cultural diversity of epiphytic bacteria in the cultured red macroalga P. haitanensis
revealed a predominance of Vibrio species, followed by Pseudoalteromonas. Among these
bacteria, a specific strain named Pseudoalteromonas galatheae, isolated from P. haitanensis,
produces four types of AHL signal molecules, namely C4-HSL, C8-HSL, C18-HSL, and 3-
oxo-C16-HSL. Additionally, this bacterium also exhibited a biofilm-forming phenotype. The
regulation of biofilm formation was observed to be influenced by quorum sensing signal
molecules, particularly C8-HSL, and show a positive correlation with its concentration. This
is the first report of QS activity from epiphytic bacteria of P. haitanensis in an artificial culture
environment. These findings provide valuable insights for designing future investigations
that explore the role of AHL-producing epiphytes in the life cycle of P. haitanensis.
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