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Abstract: Interferons (IFN) are an assemblage of signaling proteins made and released by various
host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus,
and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses
depending on various factors. In this review, the role and function of type I, II, and III IFN responses
to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying
anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity
and protection from disease.
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1. Interferons

Interferons (IFNs) were first discovered during a study on viral interference in egg
chorioallantoic membranes. The early study found that a factor was released which had the
ability to induce viral interference, hence “interferon” [1]. This soluble IFN was detected
within 3 h of infection and was found to confer resistance to viral replication in treated cells
before infection [1,2]. There are now three known types of IFNs: type I, II, and III, each
with distinct and overlapping functions which signal through different receptors. Type I
IFNs signal through the IFN alpha receptor (IFNAR), type II signaling occurs through the
IFN gamma receptor (IFNGR), and type III IFN signaling occurs through the IFN lambda
receptor (IFNLR) [1,3–5]. Type I IFN consists of 14 subtypes of IFNα, INFß, and IFNκ and
IFNω [6]. Most cell types are capable of secreting IFNß, but plasmacytoid dendritic cells
(pDCs) and other innate immune cells are the primary producers of IFNα [7]. IFNγ is the
only type II IFN [8]. Adaptive and innate immune cells, including T helper 1 (Th1) cells,
CD8+ cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and innate lymphoid cells
(ILCs), are responsible for the majority of IFNγ production [9]. IFNγ expression is linked
to cell-mediated immunity against intracellular pathogens/viruses, macrophage activation
and polarization towards an M1 phenotype, and IgG class switching [9,10]. Type III IFNs
include four subtypes: IFN-λ1 (IL-29), IFN-λ2 and IFN-λ3 (IL-28A and IL28B, respectively),
and IFN-λ4 [11]. IFNλ4 is the most recently discovered IFN. Type III IFNs are the first
defense against virus replication in epithelial cells and are less likely to cause damaging
inflammatory responses compared to the more potent type I IFN response. The IFNLR
receptor is found in mucosal sites, inducing less potent inflammatory properties [3–5]. The
IFN response is crucial in limiting viral replication and dissemination [12].

2. Downstream Signaling

The development of innate and adaptive antiviral immunity is influenced by pattern
recognition receptors (PRRs). The activation of innate immunity by respiratory viruses can
occur either on the cell surface through host cell receptors or by the interaction of intracel-
lular and cytosolic PRRs. These receptors detect viral components such as RNA or DNA,
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resulting in the generation of downstream pathways that lead to antiviral immunity [13].
When PRRs recognize pathogen-associated molecular patterns (PAMPs), type I and III
IFN responses are initiated which activate IFN regulatory factors (IRFs) in a signaling
cascade [14]. Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-1) receptors, and
nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are the principal
IFN-stimulating PRRs [14–16]. TLR recognition of viral PAMPs signals through myeloid
differentiation primary response 88 (MYD88) which acts as an adapter connecting proteins
that receive signals from outside the cell to the proteins that relay signals inside the cell [17].
RIG-like receptors (RLRs) primarily detect viral genomes [18] and signal through the mito-
chondrial antiviral signaling protein (MAVS) and TIR domain-containing adaptor inducing
INFß (TRIF) [19]. The binding of viral PAMPs ultimately leads to the activation of IRF3 and
IRF7, which drive the transcription of type I and type III IFNs [20]. These pathways also
activate nuclear factor κ-B (NF-κB) leading to the transcription of other inflammatory cy-
tokines [14,21]. Binding of type I and III IFNs results in the recruitment of signal transducer
and activator of transcription (STAT) for phosphorylation by Janus kinases (JAKs) [22].
The JAK/STAT pathway is the major signaling pathway activated by IFNs, leading to the
expression of IFN-stimulated genes (ISGs). To reduce IFN effector function, viruses have
developed various strategies to antagonize the JAK/STAT pathway [23].

The primary function of ISGs is to detect viral RNA, thus inhibiting viral replica-
tion [24]. The activation of the genes responsible for producing IFNs creates a positive
feedback loop. ISGs, including transcription factors, have the ability to activate multiple
genes. Differential activation is associated with the various subtypes of type I and type III
IFNs and is believed to occur due to varying binding affinities of the IFN subtypes and the
shared receptor. The outcomes of these activations are still being studied [5,25]. In response
to viral DNA and RNA, the IFIT family of ISGs is commonly induced by type I and type
III IFNs. IFIT genes suppress viral infection primarily by limiting viral RNA and DNA
replication and impairing the entry of enveloped viruses [26]. Oligoadenylate synthetase
(OAS1) functions in the activation of RNase L which cleaves viral RNA species [27]. ISG15
is a ubiquitin-like protein that can target viral proteases, preventing replication [28]. ISG20
is a 3′-5′ exonuclease which can cleave viral RNA, thereby reducing replication and trig-
gering PRRs [29]. Viperin functions by disrupting lipid rafts which interferes with viral
replication complexes [30]. As multiple ISGs exist, we direct readers to a recently published
comprehensive review of ISGs [24].

IFNγ is different from types I and III and has a unique structure and function. It is
primarily secreted by activated CD4 T helper and CD8 T cells, natural killer (NK) cells,
NK T cells, and professional antigen-presenting cells (APCs) [31]. The production of
IFNγ is prompted by IL-12 and IL-18, which are primarily produced by macrophages and
dendritic cells [32,33]. While Th1 CD4 cells are major producers of IFNγ, CD8 CTLs also
express it [9]. IL-12 drives the Th1 differentiation of naïve CD4 T cells, which is necessary
for the expression of IFNγ [34]. The expression of IFNγ relies on transcription factors
such as STAT4, Tbet, AP-1, and Eomes [35–37]. When IFNγ binds to IFNGR it results in
JAK phosphorylation of STAT1 which causes the formation of homodimers that act as
transcription factors for γ-activated sites (GAS) [9]. GAS includes a multitude of genes,
including transcription factors that drive the expression of other genes, similar to ISGs
stimulated by type I and type III IFNs. When macrophages are activated by IFNγ it results
in upregulated antigen presentation, increased sensitivity to cytokines and chemokines,
increased sensitivity of PRRs, and decreased sensitivity to anti-inflammatory cytokines such
as IL-10 [9]. IFNγ is essential in linking T cells and macrophages and cellular immunity
to intracellular pathogens so any shortcomings in this response can lead to increased
susceptibility [38,39].

3. IFNs in Early Life and Childhood

Infants initially have a Th17/Th2-biased immune response with lower levels of
IFNs [40–42]. A study of a longitudinal cohort found that levels of type I (and type
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III) IFNs were reduced in cord blood but increased with age [43]. Interestingly, infants with
low IFN levels at birth had a higher risk of developing severe respiratory tract infections
and persistent wheezing later in life [43]. When stimulated, cord blood responses showed
decreased IFNα expression compared to whole blood from adult donors, while IFNß pro-
duction in neonatal samples was similar to monocytes and slightly increased to whole
blood from adult donors [44]. Another study found that IFNß expression was impaired
in cord blood and monocyte-derived dendritic cells in response to TLR4 stimulation, due
to defective CREB binding protein (CBP) binding to IRF3 [45]. Similarly, pDC-dependent
IFNα response in cord blood plasmacytoid dendritic cells (PDC) has been shown to be
deficient in response to TLR9 stimulation due to defective nuclear translocation of IRF7 [46].
Infants, particularly pre-term ones, produce lower levels of IFNs after TLR9 stimulation
compared to adults [47]. Researchers continue to investigate the role of type III IFNs in
human development. A recent study conducted on primary human airway epithelium
cultures (AECs) showed that infant AECs produce more IFNλ1 than young children when
exposed to poly I:C stimulation [48]. The study also found that infants hospitalized with
respiratory virus infections produce higher levels of IFNλ1 in nasal aspirate than young
children [48]. Interestingly, the study also observed that IFNLR1/IL10RB upregulation was
specific to certain pathogens in infants aged 1–6 months, and this was associated with more
severe bronchiolitis and eosinophilia, implying that IFNλ signaling is connected to disease
in certain cases [49].

At birth, the expression of IFNγ and other Th1-associated responses is reduced but
increases as age progresses [50–52]. This pattern is observed in a mouse model of respiratory
syncytial virus (RSV) infection as well. This could be attributed to the fact that the fetal
liver gives rise to neonatal T cells, whereas in adults, it is the bone marrow [53]. In a mouse
model that involved thymic transfer of fetal derived T cells into adult mice it was observed
that fetal-derived T cells produced higher levels of cytokines than adult-derived T cells and
were skewed towards a Th2-bias [53–55]. This effect maybe partly due to the lack of IL-12
production by dendritic cells (DCs) in neonatal mice, as IL-12 is a cytokine associated with
differentiation of Th1 cells [56]. In addition, cord blood and moDCs stimulated with LPS
showed impaired CBP and IRF binding compared to adults. This is relevant because IRF3 is
a necessary transcription factor for IL-12 expression [45]. The epigenetic profile of neonatal
T cells is linked to enhanced IL-4 and IL-13 expression, and the IL-13Rα1, in conjunction
with IL4Rα acts as a receptor for IL-4 in a neonatal mouse model and induces apoptosis
of Th1 cells further driving the Th2-bias [57–59]. GATA3, a Th2-associated transcription
factor, was found to be upregulated in neonatal CD4+ T cells [58]. In human cord blood
and neonatal adenoid tissue, IL4 receptor expression at an early stage in development
decreased with age and may contribute to Th2-biasing [60]. All these studies support the
conclusion that age-dependent immune responses to viral infections occur, with infants
producing lower IFN levels and subsequent Th2 biasing.

4. Mice as a Model

Mice are often used in translational research due to their easy housing and relatively
low cost, as well as the availability of a range of immunology reagents. However, IFN
responses vary between strains of mice and between mice and humans. In mice, there is a
notable difference in the expression of type III IFN compared to humans. Humans possess
up to four functional subtypes of IFNλ, while mice only have functional IFNλ2/3 and a
pseudogene for IFNλ1 [61,62]. Studies have shown that age-dependent differences in IFN
response also exist in mice, which reflect those observed in humans. For instance, in the
context of RSV, neonatal mice exhibit reduced IFNα expression by pDCs and a tendency
towards Th2-type cytokines [63,64]. Furthermore, it has been shown that aged mice are
more susceptible to severe SARS-CoV-2 disease, a feature linked to an impaired IFN and
antibody response [65]. Although mouse models do recapitulate age-related discrepancies
in the severity of respiratory virus infection observed in humans, it is essential to consider
the biological differences between the two species to interpret the data accurately. Genetic
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susceptibility to infection is determined by defects in genes that control non-redundant
pathways of type I and III IFN responses [66,67].

Certain inbred strains (e.g., C57/BL6 and BALB/c) lack a functional Mx1 gene, which
is a dominant antiviral resistance gene known as Mx for ‘myxovirus resistance’ [68,69].
Mice with the Mx1 gene are able to survive infection with mouse-adapted influenza A
virus at doses that would be lethal for standard inbred strains [70]. Interestingly, neonatal
mice with a functioning Mx1 gene remain just as susceptible to influenza challenge as
their Mx1-negative counterparts [71]. However, when treated with exogenous IFN, Mx1-
competent mice become resistant, similarly to their adult counterparts, whereas neonates
without a functioning Mx gene do not respond to IFN treatment [72,73]. These experiments
demonstrate the significance of IFN in the susceptibility of newborns and young children
to influenza virus as modeled in neonatal mice [72,73]. Other mammals used in respiratory
virus infection studies, such as cotton rats, hamsters, and ferrets, have functional Mx
genes [74–76]. In humans, the MxA gene has an important role in inhibiting viral replication
by interfering with the assembly of viral ribonucleoprotein, although the exact mechanism
is yet to be determined [77,78].

5. Respiratory Syncytial Virus

RSV is a virus that can cause serious respiratory tract diseases and death in certain
groups of people, including young children (up to 60 months old), the elderly, and those
with weakened immune systems [79]. A 2019 review of RSV cases around the world
estimated that there were 3.6 million hospital admissions, 26,300 in-hospital deaths, and
101,400 total deaths attributable to RSV [80]. Appallingly, 45,700 of those deaths were infants
between the ages of 0–6 months, accounting for 2% of all deaths in that age range [80].
RSV is a single strand of RNA and belongs to the Pneumoviridae family. Its genome
is 15.2 kb long and contains 10 genes that produce 11 proteins. One of the genes, M2,
actually produces two different proteins, M2.1 and M2.2 [81,82]. RSV’s genome contains
two nonstructural (NS) proteins, NS1 and NS2, as well as nucleocapsid proteins N, L, and P,
regulatory protein M2, the inner envelope protein M1, and three surface proteins SH, G, and
F. The G and F proteins are the main antigenic proteins. RSV has two main lineages, A and
B, which are defined by differences in their G protein sequences [81,82]. RSV usually infects
ciliated airway epithelial cells [83]. RSV can cause a variety of health problems, including
changes in lung structure, decreased lung function, and increased mucosal responses [79].
RSV’s proteins are known to cause a range of immune responses that can suppress the
body’s antiviral response and even cause damage to the host’s immune system [82,84,85].
Several studies have shown that RSV can fail to elicit a strong type I IFN response [86–89].

Research has shown that the RSV NS1 and NS2 proteins are effective in suppressing the
IFN response. Removing these proteins results in a weakened response making NS1/NS2
deletion mutants’ potential candidates for a vaccine [86,90,91]. NS1 and NS2 are known
to inhibit type I IFNs by blocking STAT2 in human epithelial cells [92]. Although NS2
was originally believed to be redundant to NS1, recent studies have revealed significant
differences between them, such as the lack of structural homology in the crystallographic
structure of NS2 [93]. NS2 has been shown to inhibit RIG-1 activation by binding to the
N-terminal caspase activation and recruitment domain (CARD) of RIG-1, thus preventing
downstream interaction with MAVS [94]. In contrast, NS1 binds to MAVS and inhibits its
interaction with RIG-1 [93,95]. In mice, alveolar macrophages induced by MAVS coupled
with RLRs are the primary source of type I IFNs during RSV infection [96]. Overall, the NS
proteins block separate signaling proteins within identical pathways, resulting in a weak
IFN response to infection.

The RSV G protein has been found to affect the immune response through a CX3C motif
that is present in all RSV strains and is similar to the natural chemokine fractalkine [97].
The G protein inhibits the production of type I IFN by interacting with the CX3CR1 receptor
on pDCs and monocytes through its CX3C motif. Blocking this interaction through a
CX4C mutant virus or mAb treatment that targets the interaction increased IFNα and
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pro-inflammatory cytokines such as TNFα [85,98]. A recent study that examined anti-
RSV G monoclonal antibodies (mAbs) 3D3 and 2D10 found that treatment improved the
types I and III response in BALB/c mice and mouse lung epithelial cells (MLE-15) in
a neutralization-independent mechanism, likely through binding the CX3C motif [99].
Neutralizing anti-F protein mAb, Palivizumab, did not improve the IFN response. This
is expected since the F protein stimulates the production of IFN [99,100]. Studies that
examined the human peripheral blood mononuclear cell response to RSV found that pDCs
were the primary mediator of IFNα production in a RIG-1-dependent manner [101,102].
This response was impaired in infants suggesting that pDCs have a role in responding to
RSV infection but are less responsive in young children [103].

It has also been shown that the administration of IFNα to mice before RSV challenge
can decrease IL-4Rα and Th2 polarization [104]. In a clinical trial, topical administration of
IFNα2a improved symptoms, but had no effect on viral shedding suggesting that viral load
is not a correlate of disease severity [105]. Although no side effects were noted in this study,
IFNα2a has shown dose-dependent side effects in other contexts including influenza-like
symptoms, neurotoxicity [106], and pulmonary toxicity [107]. However, IFNα treatment is
generally safe with appropriate caution and monitoring of potential toxicity [105,108,109].
The IFN response of the host undoubtedly influences RSV disease, and infants and children
show dysfunctions, indicating the role of the impaired IFN response in severe disease in
these groups [64,103,110].

The function of type III IFNs in RSV infection is an area that requires further investiga-
tion. Research has shown that in an in vitro model of primary human nasal epithelial cells,
RSV infection induced IFNλ1 through RIG-1 activation [111]. Pretreatment with IFNλ1
resulted in resistance to RSV replication [112]. Surprisingly, no type I IFNs were expressed
following RSV infection. However, in primary human airway epithelium cultures, IFNλ1
pretreatment did not inhibit RSV infection [113]. These conflicting results are likely due to
differences in the assays used. In a study of young children with RSV it was found that the
mRNA levels of IFNλ1-4 were positively correlated with age in the control group of healthy
children. However, no correlation was noted in RSV-infected children, possibly due to
RSV’s ability to suppress the IFN response [114]. Another study found that type I, II, and III
IFN responses increased with age and were lowest in children under 6 months of age [115].
Higher levels of IFNλ2/3 were associated with a reduced risk of hospitalization. However,
a separate study of infants with RSV did not find a correlation of IFNλ2/3 with clinical
outcomes [116]. Instead, IFNλ1 was associated with an increased clinical severity index
and respiratory rate. RSV activation of epidermal growth factor (EGF) receptor causes
suppression of IRF1, antagonizing the IFNλ response, mediated by RSV F protein [117].
These studies suggest that type III interferons have a role in the immune response to RSV
infection. RSV viral proteins, NS1, NS2, and G protein suppress these antiviral responses.

When infants are infected with RSV, a Th2 polarization is often linked to RSV im-
munopathology, and the lack of a strong Th1 response in infants and young children can
lead to more severe illness [82,118,119]. RSV activates Rab5a GTPase in cells and mice
to suppress IRF1-dependent IFNγ. Knockdown of Rab5a increases IFNγ by mediating
IRF1 nuclear translocation [120]. Studies have shown that minimal IFNγ production in
RSV infected neonatal mice can result in reduced viral clearance and increased disease
severity. However, intranasal administration of IFNγ can improve these outcomes by
activating alveolar macrophages [121]. Interestingly, blocking IFNγ or depleting NK and
T cells has been associated with an increased antibody response in neonatal mice during
RSV infection [122], whereas in adult mice, this depletion impairs the antibody response
due to CD4 T cell-dependent antibody production [122]. This is likely due to increased
viral load in IFNγ-depleted mice, resulting in more antigen exposure. While viral loads
were lower in IFNγ-depleted mice, only one viral gene was measured by qRT-PCR and no
other factors were measured to determine pathology. These findings suggest that IFNγ is
needed for protecting neonatal mice from RSV, and this protection may be independent of
T cell-mediated antibody production.
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Type I IFNs can promote IFNγ expression by CD8 T cells via STAT4 in conjunction
with TCR activation [104] and in NK cells with IL-12 via STAT1 [102,123]. However, IFNß
has been shown to suppress DC production of IL-12, which is linked to Th1 differentiation
and IFNγ production [124]. These studies suggest that IFNγ is protective during RSV
infection and may contribute to increased susceptibility of neonates and children. Overall,
these findings support clinical evaluations of infected neonates and children, which have
concluded that RSV does not induce a robust IFNγ response [41,42], due to a combination
of viral and host factors.

6. SARS-CoV-2

COVID-19 is caused SARS-CoV-2. This virus belongs to the family Coronaviradae
and has a single-stranded, positive-sense RNA enclosed in an envelope [125]. Its genetic
material is made up of 29.9 kb and contains 27 ORFs which encode 31 different proteins,
including the four structural proteins (S, E, M, N) [125]. The first two-thirds of the genome
encodes two large poly proteins (ORF1a and ORF1ab) which are cleaved by viral proteases
to form 16 non-structural proteins (nsp1-16) [126–128]. These proteins are involved in repli-
cation, transcription, and interfering with the host’s innate defenses. The remaining third
of the genome encodes 10 accessory proteins and the four structural proteins mentioned
earlier [126–128]. As of June 2023, COVID-19 has caused 767 million confirmed cases and
6.9 million deaths worldwide since its emergence in 2019 [129].

Similarly to other respiratory viruses, SARS-CoV-2 triggers an IFN response through
the recognition of various viral PAMPs by PRRs [130,131]. These include the S protein by
TLR4 and TLR2, the E protein by TLR2 [132], and viral ssRNA and dsRNA intermediates by
TLR7/8, TLR3, and RLRs [133–136]. However, similarly to RSV, SARS-CoV-2 has strategies
to evade IFN signaling and expression [137–140]. Several viral proteins including NSP1,
ORF6, and NSP13 have been shown to inhibit type I IFNs through different mechanisms
including interference with host mRNA translation, nuclear translocation of IRF3 and
STAT1, and binding with STAT1 to prevent phosphorylation, respectively [141,142]. ORF6
has also been shown to inhibit type I IFNs by mechanisms that include the inhibition of
nuclear translocation of IRF3 and the inhibition of STAT1 nuclear translocation [143,144].
NSP13, which is highly conserved among coronaviruses, has been shown to inhibit type I
and II signaling through binding STAT1 and preventing phosphorylation by JAK1 [145].

Several other SARS-CoV-2 viral proteins have been shown to inhibit the IFN response,
specifically NSP1, NSP3, NSP5, NSP12, NSP13, NSP14, NSP15, ORF3a, ORF3b, ORF6,
ORF7a, ORF7b, ORF8, ORF9b, N, and M reported to inhibit IFNß expression by suppression
of RLR-mediated signaling [137,138,142,144]. Further studies indicate ORF7a interferes
with TANK-binding kinase (TBK1) preventing IRF3 phosphorylation, and ORF9b interferes
with the interaction of MAVS and RIG-1 [146]. NSP 6 has been shown to interact with TBK1
to inhibit IRF3 activation and STAT1/2 phosphorylation. ORF 7a, ORF 7b, ORF3a, and the
M protein were shown to inhibit IFNß in a luciferase reporter assay, a feature attributed
to STAT1 and/or STAT2 activation depending on the viral protein [142]. Moreover, using
a luciferase reporter, NSP13, NSP14, NSP15 and ORF6 were found to inhibit IFNß by
disrupting nuclear translocation of IRF3 [138].

While SARS-CoV-2 primarily replicates in the nasopharyngeal and type II alveolar
epithelial cells, recent evidence has shown that ACE2 expression (the receptor for SARS-
CoV-2) and TMPRSS2 (a protease required for viral cell entry) are also present in other
cells [147]. A mouse model of SARS-CoV-2 was created by expressing hACE2 in transgenic
mice originally developed to study SARS-CoV-1 [148]. A mouse-adapted strain has also
been developed, which is attributed to a mutation in the receptor binding domain of the
S protein [149]. Interestingly, new variants of SARS-CoV-2 (including B.1.1.7) contain the
same substitution and can infect mice [150,151]. Different small animal models, such as
ferrets and golden hamsters, which are both naturally susceptible to SARS-CoV-2 have
varying outcomes from mild to lethal [151].



Microorganisms 2023, 11, 2179 7 of 17

In contrast to other respiratory viruses, children and neonates are not more likely than
adults to develop severe COVID-19, possibly due to differences in IFN signaling [152–156].
Elderly adults with severe COVID-19 have shown lower levels of type I IFNs, potentially
due to IFN autoreactive antibodies [157,158]. The other major finding related to age-
dependent differences in the IFN response found reduced IFNα secretion by pDCs in
adults with severe COVID-19 [159]. The other major finding related to age-dependent
differences in the IFN response found reduced IFNα secretion by pDCs in adults with
severe COVID-19 [159], and patients with autoimmune polyendocrine syndrome type-1
(APS-1) which produces autoantibodies against type I IFNs are at increased risk of severe
disease [158], and require mechanical ventilation [160]. pDCs and fibroblasts of these
patients indicated blunted IFN responses [161]. Age-related discrepancies in the IFN
response to SARS-CoV-2 can be attributed to several plausible mechanisms related to
suppression of the IFNs. Several studies have shown a role of IFNs in immune-mediated
pathology with a deficient early response followed by a persistent and heightened late
response associated with severe disease. ScRNASeq analysis of bronchial alveolar lavage
(BAL) or lung tissue samples identified a type I IFN-associated inflammatory signature,
consistent with findings in peripheral blood, suggesting that an early and regulated IFN
response is protective while a latent dysregulated response is pathogenic [162,163].

The findings suggest that the neonatal immune system changes rapidly in early years
of life affecting the IFN response. Neonates are less likely to suffer severe outcomes from
SARS-CoV-2 infection, but pre-term infants are at higher risk of COVID-19 and pre-term
birth due to medically induced birth.

7. Influenza Virus

Influenza virus is an enveloped ssRNA virus belonging to the Orthomyxoviridae
family [164]. It has a segmented genome with eight segments encoding various proteins
including polymerase subunits, surface glycoproteins, nucleoprotein, matrix protein, mem-
brane protein, nuclear export protein, and nonstructural proteins [164–166]. An analysis
from 1996 to 2016 estimated a suggested 32.1 million influenza virus episodes and 5.7 mil-
lion hospitalizations in adults per year globally with those over 65 years of age having
the highest rate of hospitalization [167]. In 2018, an analysis of children under 5 years of
age estimated 10.1 million cases of influenza-like respiratory illness with 870,000 hospital
admissions [168]. Pandemic strains have a much greater impact than seasonal strains with
the 1918 pandemic resulting in estimates of 40–50 million deaths globally [169]. Age is
an important factor contributing to disease severity, with the young and old particularly
susceptible to severe disease. One of many factors contributing to severity by strains of
influenza is their ability to suppress the IFN response [170].

Influenza virus activates TLRs 3, 7, and 8, as well as RIG-1/MAVs, inducing the pro-
duction of type I and III IFNs [171,172]. The influenza NS1 protein suppresses the IFN
response through multiple mechanisms [173,174] including blocking host protein transla-
tion by interfering with pre-mRNA processing via binding to cleavage and polyadenylation
specificity factor 30 (CPSF30), a component of the pre-mRNA processing machinery respon-
sible for 3′ cleavage and polyadenylation [175,176]. NS1 also prevents dsRNA-mediated
IFN responses by scavenging dsRNA and blocking IRF3 phosphorylation [177]. Addition-
ally, NS1 inhibits RIG-1-mediated IFN production by preventing TRIM25 multimerization
and CARD domain ubiquitination [178]. Influenza PB1 and PA can also counteract the type
I IFN response in mice with PA interacting with IRF3 to prevent its activation and PB1-F2
interfering with the MAVs adapter protein [170,179,180]. PB2 interacts with MAVs and
IPS-1 to reduce IFNß transcription, and NS1 is the dominant IFN antagonist of influenza
virus, with IFN suppression being associated with more severe disease [181–183]. IFNß
is protective [72,184], but type I IFNs can contribute to mortality [185]. IFNα and IFNλ
reduce viral load but only IFNλ controls viral replication in the upper airways [186].

Neonatal mice are more susceptible to influenza virus due to poor IFN responses [187].
Reduced IFNγ response in young mice delays viral clearance and increases mortality [188].
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Adoptive transfer of adult CD8 T cells into neonatal mice confers resistance to influenza
challenge dependent on IFNγ [189]. A separate study utilizing IFNγ knockout mice found
no difference in mortality of WT and IFNγ-/- mice after IAV challenge, while finding
increased antigen-specific T cells in IFNγ-/- mice [190]. In mice, type III IFNs were found
to have an important role in the course of infection with IFNλ levels found to be higher in
the lungs of influenza-infected BALB/c mice than type I IFNs [191]. Children infected with
influenza virus had higher levels of IFN in their nasal wash than children infected with
RSV, but that IFN was not associated with reduced viral shedding. Children between the
ages of 29 and 54 months who were given a live attenuated influenza vaccine (LAIV) had
upregulated ISGs and lower viral loads on days 2 and 7, which was attributed to asymp-
tomatic respiratory virus infection prior to the administration of LAIV [192]. Children with
an autosomal recessive IRF7/IRF9 deficiency are at greatest risk for severe influenza due to
poor IFN responses [66,193,194]. In one report, three children with a rare TLR3 deficiency
were found to be susceptible to severe influenza pneumonitis [193]. It was shown that
treatment with IFNα2a and IFNλ1 rescued this susceptibility using pulmonary epithe-
lial cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) [193].
Taken together, these studies corroborate the importance of IFN responses to influenza,
particularly in infants, children, and the elderly.

8. Conclusions

IFNs have an early and crucial role in the body’s antiviral response. Three major
respiratory viruses affecting humans, i.e., RSV, influenza virus, and SARS-CoV-2, have IFN
antagonistic features (summarized in Figure 1) [1,102,195,196]. For RSV, the NS1, NS2, and
G genes are key effectors in this response [102], while for SARS-CoV-2 the NSP1, ORF6, and
NSP13 genes have a particularly potent effect on IFN. Influenza virus has the NS1 gene as
the canonical IFN antagonist [137], but antagonism activities are associated with the PA,
PB1, PB1-F2, and PB2 genes [170].

In infants and young children, type I, II, and III IFN responses are lower compared
to adults [41,42]. The reduced IFNα producing pDCs and reduced expression of IL-12,
(a cytokine that increases production of IFNγ) are principally linked to the diminished
IFNγ [44]. Additionally, a general lack of Th1-type responses causes IFNγ to be diminished
due to several mechanisms such as a lack of IL-12 production in neonatal moDCs [56],
IL-4 induced apoptosis of neonatal Th1 cells and increased expression of GATA3 [58], and
increased IL-4 expression [60]. While IFNs are protective against RSV [105,115,121] and
influenza [192,193] in neonatal mice and children, they experience more severe disease
compared to older counterparts due to blunted IFN responses. However, SARS-CoV-2-
infected infants and young children are not at increased risk for severe disease compared
to healthy adults [152–155]. There is evidence that dysregulation of IFNs may contribute to
severe disease, but that an early regulated response is protective [197,198].

A beneficial IFN response is associated with lower viral loads, faster viral clearance,
and reduced disease severity [66]. IFN treatments have been investigated for viral infections,
including approved use of IFNα2a for hepatitis C [199]. However, excessive inflammation
has been linked to higher levels of IFNs [198] highlighting the importance of properly
regulated anti-viral responses and caution with off-target effects and side effects [199]. Type
I and type III IFNs have distinct roles, with type III IFN demonstrating a more targeted role
and generally mediating a more diminished inflammatory response [200]. Drugs that boost
endogenous IFN have also been investigated as treatments for viral infection [201–203].
The lack of a strong interferon response in neonates and children has been associated
with susceptibility to influenza and RSV, but this has not been observed in the context of
SARS-CoV-2 infection [155]. The protective and pathogenic role of IFNs in respiratory virus
infection is likely linked to underlying mechanisms.
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Figure 1. Overview of viral protein interactions. Viral proteins from RSV, SARS-CoV-2, and IAV
antagonize or agonize IFN responses using a variety of mechanisms. An abridged illustration of the
viral proteins and host factors involved is pictured summarizing those mentioned throughout the
text. RIG-I (retinoic acid-inducible gene 1), EGF (epidermal growth factor), TLR (toll-like receptor),
JAK (Janus kinase), MAVS (mitochondrial antiviral-signalizing protein), TRIM25 (tripartite motif-
containing protein 25), CARD (caspase recruitment domains), CPSF30 (cleavage and polyadenylation
specificity factor subunit 4), IAV (influenza A virus), RSV (respiratory syncytial virus), S-CoV-2
(SARS-CoV-2), NS/NSP (non-structural/non-structural protein), IRF (interferon regulatory transcrip-
tion factor), TBK1 (TANK-binding kinase), U (ubiquitination), P (phosphorylation). Created with
BioRender and Microsoft PowerPoint.
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