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Abstract: The use of particles to develop vaccines and treatments for a wide variety of diseases
has increased, and their success has been demonstrated in preclinical investigations. Accurately
targeting cells and minimizing doses and adverse side effects, while inducing an adequate biological
response, are important advantages that particulate systems offer. The most used particulate systems
are liposomes and their derivatives, immunostimulatory complexes, virus-like particles, and organic
or inorganic nano- and microparticles. Most of these systems have been proven using therapeutic
or prophylactic approaches to control tuberculosis, one of the most important infectious diseases
worldwide. This article reviews the progress and current state of the use of particles for the admin-
istration of TB vaccines and treatments in vitro and in vivo, with a special emphasis on polymeric
particles. In addition, we discuss the challenges and benefits of using these particulate systems to
provide researchers with an overview of the most promising strategies in current preclinical trials,
offering a perspective on their progress to clinical trials.

Keywords: polymeric nano- and microparticles; delivery systems; tuberculosis prophylaxis; tubercu-
losis treatment

1. Introduction

Tuberculosis (TB), caused by the intracellular bacillus Mycobacterium tuberculosis (Mtb),
remains one of the most prevalent infectious diseases, representing the leading cause of
death from a single infectious agent until the COVID-19 pandemic. Despite the large
global drop in the diagnosis and reporting of cases in the pandemic period, it is estimated
that 10.6 million people contracted the disease in 2021, of whom 450,000 were rifampicin-
resistant cases, and 1.4 million of people died. Compared with the 10 million cases of TB
and the 1.2 million deaths reported in 2019, the worrying increase in cases and the setbacks
in the quest to end tuberculosis after COVID-19 are evident [1].

Although this pathogen preferentially generates a pulmonary disease, the infection
can be disseminated by generating extrapulmonary TB, such as lymphatic, miliary, and
central nervous system TB, which represent approximately 15% of all TB infections and are
prevalent in immunocompromised patients [2].

The probability of developing TB disease is much higher among individuals with med-
ical conditions that weaken the immune system, such as HIV/AIDS, diabetes, cancer, renal
disease, and severe fungal infections; in individuals who have received organ transplanta-
tion or tumor necrosis factor alpha (TNF-α) antagonist therapy; or in individuals that have
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been exposed to alcohol and tobacco abuse, malnutrition, or air pollution [3–5]. Recently,
new hypotheses derived from meta-analyses have stated that coinfection with SARS-CoV-2,
or the use of drugs to treat it, could accelerate the progression of a preexisting TB infection
to pulmonary disease, suggesting that coinfection is a predictor of poor prognosis [6,7].

Adding to the complexity, latent TB infection is recognized as the main source of new
TB cases, favoring the prevalence of the disease and its high morbidity and mortality in all
countries with a high TB burden. This is not a minor problem if we consider that, according
to the latest reports, it is estimated that 23% of the world’s population has a latent infection
and the diagnostic methods currently available do not allow us to distinguish between
a latent infection and active disease [8].

No less important are the factors that have contributed to the increasing emergence
of strains that are resistant to the available antibiotics. Some of these factors include the
incomplete and variable protection provided by the existing Bacillus Calmette–Guérin
(BCG) vaccines against pulmonary TB [9], late diagnosis, the lack of the timely and proper
administration of effective drugs, and extensive treatment regimens that have led to poor
patient adherence [5]. Consequently, it is extremely important to develop alternatives that
increase or reinforce the protective efficacy of the BCG vaccine [10] and therapeutic alterna-
tives to shorten the treatment timespan and ideally decrease the side effects generated by
antibiotics [11].

For TB prevention, the strategies have included the design, development, and evalua-
tion of recombinant BCG strains [12–14]; the live-attenuated Mtb strain (MTBVAC) [15,16];
other Mycobacterium strains, such as M. vaccae [17]; subunit recombinant vaccines [18–21];
and vectorized recombinant vaccines [22,23]. The most recent and promising candidates
that have shown evidence of efficacy in animal studies and human trials are summa-
rized in the current TB vaccine pipeline updated as of October 2022 by the TuBerculosis
Vaccine Initiative (TBVI) [24]. Treatment strategies have included the use of therapeu-
tic vaccines produced from different Mycobacterium strains, such as M. indicus pranii and
M. vaccae [25,26], BCG recombinant strains [12], multiantigenic and multiphasic vectors [27],
adjuvanted antigens alone or in combination with nonsteroidal anti-inflammatory drugs
(NSAIDs) [28,29], and detoxified cellular fragments of Mtb, such as RUTI [30,31]. Other
promising candidates include the use of peptides from different natural sources, such as
antimicrobial peptides [32,33] and scorpion venom peptides [34]. Moreover, the use of
cytokine gene therapy has also been proven its efficacy and prevented reactivation in experi-
mental TB models [35,36]. No less important are the opportunities that emerge with natural
compounds such as flavonoids and lignan aglycones, diferuloylmethane, polyphenols,
and aldehydes, among others, which are isolated from plants, fungi, marine species, and
bacteria and have shown interesting results alone or in combination with already approved
medications [37–39].

Among other interesting strategies, the use of particles is becoming more frequent
for both TB prophylaxis and therapy [40]. Particles not only protect the molecules that are
administered from degradation but also facilitate their controlled and directed release to
the target cells, allowing dose optimization [41,42]. They also contribute to overcoming the
lack of immunogenicity of subunit vaccines, because many of these particles are inherently
immunogenic or can be manipulated to promote enhanced antigenic uptake and processing,
mediating adaptive immune responses [43]. As a result of all their properties and benefits,
they have been used to formulate vaccines and treatments for TB. Our main objective is to
provide a comprehensive perspective on the current state of the preclinical investigation
of TB vaccines and treatments formulated with polymeric particles, the challenges and
opportunities in the field, and the impact that they could have in future clinical trials.

2. Particulate Systems for the Administration of Vaccines and Therapeutics

Particulate systems are important biotechnological tools that have had an enormous
impact on biomedical applications, including basic research, imaging, theranostics, and
especially therapeutic or vaccine design and delivery [44,45]. They have sizes ranging
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from nanometers to micrometers and can be manufactured from inorganic materials (i.e.,
gold, metal oxides, or silica), synthetic or natural polymers (i.e., aliphatic polyesters or
chitosan respectively), or synthetic or natural lipids, among other materials [45,46]. Similar
to the materials with which they are manufactured, the methods for their loading and
functionalization are varied. Some of these methods include adsorption or immobilization
onto the surface, dispersion inside the matrix, linking between the matrix and the bioactive
molecule, and encapsulation [47].

The materials and preparation methods of particles define their physicochemical char-
acteristics, such as their size, shape, and charge, which in turn define their biodistribution,
targeting, release profiles, toxicity, accumulation time, and clearance [48]. Other properties,
such as bioavailability, biodegradability, biocompatibility, and bioadhesiveness, are influ-
enced by the intrinsic properties of the particles and their route of administration [49,50].
Consequently, the main challenge is to reach the best combination of materials to obtain
the best particles whose properties guarantee their function and safety in vivo.

Currently, almost all routes of administration can be used to deliver particulate sys-
tems, including oral, transdermal, intravenous, subcutaneous, topical, intranasal, and
pulmonary routes, the last of which is particularly important for TB treatment and prophy-
laxis because inhalable formulations are the most effective to induce a memory immune
response in the lungs [23,51,52].

In addition, particulate systems can be useful to expand the type of immune response
generated, considering that the few currently approved adjuvants are effective in inducing
antibody responses but are less successful in inducing cell-mediated immunity, which
is very important to eliminate intracellular pathogens such as Mtb [53]. In Figure 1, we
consider the advantages and the most common characteristics of particles intended for the
nasal and pulmonary administration of vaccines and treatments. In subsequent sections,
we address the main factors that justify the use of particles to develop TB vaccines or
treatments and summarize the most recent preclinical studies with polymeric formulations.

2.1. Particulate Systems for TB Vaccine Development

Greater comprehension of the roles that immune cells play in response to Mtb infection
is of vital importance for the development of vaccines against this pathogen [54]. For many
years, exhaustive efforts have been made to modify, improve, or find an alternative to the
BCG vaccine [13,55,56]. This vaccine, the only anti-TB vaccine approved in humans, confers
effective protection against disseminated and meningeal TB only in children, with variable
protection in adults. The factors that mainly affect its protective efficacy include coinfections
with viruses or parasites, comorbidities, environmental factors, intrinsic genetic factors of
both mycobacteria and humans, and, importantly, the route of vaccination [57–59]. After
intradermal vaccination, the BCG vaccine interacts with resident epidermal macrophages,
whereas Mtb interacts, in most cases, with resident alveolar macrophages (AMs) and
does not suffer opsonization. Consequently, antigenic recognition, uptake, processing,
and presentation are different, with implications for the induction of the T-cell memory
response required for protection against lung disease [57]. This complex situation has
justified the administration of the BCG vaccine directly into the respiratory system as
a strategy to induce resident memory T cells in the lung [60–62] and the exploration of
new vaccines against TB that can be administered by nasal or pulmonary routes, which
favor the retention of the antigen at mucosal sites, the induction of systemic and mucosal
immunity, and, importantly, the development of lung-resident memory T cells. These are
important advantages of mucosal vaccination and, of course, an opportunity for the use of
particulate systems [63,64].
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Figure 1. Particles for nasal and pulmonary administration. The main physicochemical properties
to consider for the preparation of particles intended for TB prophylaxis and treatment are size,
shape, and surface charge. Sizes from 100 to 500 nm are preferable but not exclusive for nasal
administration, while 1–5 µm particles are optimal for intrapulmonary administration. Shapes
such as those present in nature are also favorable for the internalization of particles in the lung,
mainly those that are spherical or rod-shaped, as is the case for Mtb. Additionally, a preferential
but not exclusive interaction between cationic microparticles (+) and macrophages and anionic
nanoparticles (−) with dendritic and epithelial cells has been documented. All these properties in
turn will depend on the fabrication materials. For the formulation of TB vaccines, the most reported
materials are natural and synthetic polymers, followed by lipids (for the fabrication of solid lipid
nanoparticles and liposomes), while, for TB treatment formulations, the use of lipids is most frequent,
followed by synthetic and natural‘polymers.

2.1.1. Immune Activation Induced by Mtb and Particulate Systems

After inhalation, mycobacteria in the deep lung (alveoli) can interact through pattern
recognition receptors (PRRs) with AMs and dendritic cells (DCs). Mycobacterial endocyto-
sis leads to the activation and maturation of these cells and the migration of DCs toward
the lung-draining lymph nodes for antigenic presentation and the differentiation of T
lymphocytes toward a Th1 type. Th1 cells contribute to the elimination of bacilli and create
a positive feedback loop by secreting IFN-γ, which in turn activates more macrophages,
enhancing the microbicidal response against Mtb by executing functions including the
secretion of microbicidal factors and cytokines such as TNF-α [65,66]. In the same way,
particles formulated in prophylactic or therapeutic vaccines can also interact with and
activate innate immune cells, increasing their mycobactericidal performance to prevent
or combat the infection (Figure 2). Particles can also promote endocytosis by professional
phagocytes, induce the production of cytokines and microbicidal factors such as nitric oxide
and reactive oxygen species (ROS) [67,68], or induce apoptosis and autophagy [69–71],
which together are very important mechanisms to eliminate bacilli.
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Importantly, these particulate formulations can be administered by several routes, such
as parenteral, nasal, and pulmonary, protecting the antigen and supplying it to immune
cells, and they can also be engineered to have intrinsic immunostimulant activity that
increases the microbicidal performance of cells. In such scenarios, they can act as delivery
systems, adjuvants, and immunostimulants, simultaneously or separately, which is highly
desirable for the formulation of subunit vaccines against TB. For this purpose, the most used
nano- and microparticles include natural and synthetic polymeric capsules and spheres
(mainly of chitosan and poly(lactide-co-glycolide) (PLGA)) [72], followed by liposomes
and derivatives, solid lipid nanoparticles (SLNs), and immune-stimulating complexes
(ISCOMs) [73–75]. In Figure 3, we summarize the main functions of particles in vaccines
against TB depending on their use as delivery systems, adjuvants, or immunostimulants.

2.1.2. In Vitro and In Vivo Evaluation of Particulate TB Vaccines

When particles are added into a vaccine formulation, in addition to antigens and
adjuvants, in vitro preclinical studies are necessary to characterize the particles’ properties,
their capacity to transport and release antigens, and their stability, safety, and efficacy
in the formulation in terms of the immune response induced in cell lines or primary
isolates [76,77]. For instance, one of the most complete in vitro characterization studies
was carried out on the subunit vaccine candidate ID93 [76,78]. The authors used the
recombinant TB antigen ID93 (composed of three immune-dominant antigens and one
latency-associated antigen) conjugated to a modified liposome (mGLA-LSQ). This liposome
has intrinsic adjuvant properties because it contains the TLR4 agonist glucopyranosyl lipid
adjuvant (GLA) and the saponin QS21. The authors demonstrated that the vaccine was
stable and bioactive for 3 months, being able to induce the secretion of IL-2, INF-γ, and
TNF-α in a cytokine stimulation assay using fresh whole blood from 10 healthy donors [78].
Most of the time, and if the formulation is successful in vitro, the next step is to test it
in vivo. These studies are more robust in exploring the immune response generated after
administration by different routes and are a requirement to proceed to clinical phase studies.
In the last decade, most of the particulate TB vaccine candidates tested have contained
polymeric particles that encapsulate, accompany, or present the antigen on their surfaces
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and have been administered by the parenteral or mucosal routes. In Table 1, we summarize
some recent in vivo studies carried out with particulate TB vaccine candidates based on
natural and synthetic polymers, showing the scheme of immunization and the immune
response induced.
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Table 1. Polymeric particulate TB vaccines and the immune response induced in vivo.

Particulate System
Vaccine

Formulation
(Antigen/Adjuvant)

Scheme of
Immunization

(Model/Route/Dose)
Immune Response Induced Ref

N
A

TU
R

A
L

PO
LY

M
ER

S

Chitosan NPs
Encapsulation

pDNA encoding Ag
85B

No extra adjuvant

BALB/c mice
50 µg

SC, 1× at day 0
IN, 2× at 2w interval

- Higher levels of Ag-specific IgG
and IgG2a

- Enhanced proliferation of CD4+ T
cells

- Higher release of IFN-γ and IL-2
in splenocytes restimulated with
Ag 85B

- Induction of autophagy

[79]

Chitosan NPs
Mix

ESAT-6 (1–20 peptide)
A: MPL

C57BL/6J, IFN-γ−/−

and IL-17−/− mice
133 µg/50 µg

IN, 3× at 2w interval

- Potent induction of Th17 in lung
and Th1/Th17 in spleen

- Higher protection against Mtb
infection

- Induction of NLRP3-independent
inflammasome and IL-1β

[80]

Chitosan NPs
Coating

Mtb cell wall lipids
No extra adjuvant

BALB/c mice
0.5 mg/kg

SC, 1×
IP, 4× 0, 21, 45, 66 days

- Higher levels of Th1 (IFN-γ, IL-2,
TNF-α) and Th2 cytokines (IL-4,
IL-5, IL-13) in LNs and spleen

- γδ T-cell activation in LNs
- Higher levels of IgG, IgG1, IgG2,

and IgM

[81]
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Table 1. Cont.

Particulate System
Vaccine

Formulation
(Antigen/Adjuvant)

Scheme of
Immunization

(Model/Route/Dose)
Immune Response Induced Ref

N
A

TU
R

A
L

PO
LY

M
ER

S

Inulin chitosan
NPs

Conjugation

Fusion
CT (CFP10-TB10.4)
No extra adjuvant

C57BL/6 mice
100 µg/mL

SC, 3× 0, 14, 28 days

- Higher release of IFN-γ, TNF-α,
IL-2, and IL-4 in splenocytes
restimulated with CT

- Higher levels of CT-specific IgG1
and IgG2b

[82]

Advax™
(δ-Inulin-NPs)

Mix

Fusion
CysVac2

(Ag85B-CysD)
A: Advax CpG

C57BL/6 mice
3 µg of fusion/mg

inulin
IM, 3× at 2w interval

- Induction of specific
multifunctional CD4+ T cells
(IFN-γ+, TNF+, IL-2+)

- Reduction in CFU in lung after
Mtb infection

- Strong immunogenicity and
protection

[67]

Advax™
(δ-Inulin-NPs)

Mix

Fusion
CysVac2

(Ag85B-CysD)
A: Advax

C57BL/6 mice
3 µg of fusion/mg

inulin
IT, 3× at 2w interval

- Induction of lung-resident
antigen-specific IL17-secreting
CD4+ cells

- Higher protection against Mtb
infection compared with
BCG-vaccinated mice

[63]

INU/pArg
NCs

Adsorption

Fusion
ECH (ESAT6/CFP-10)

A: Imiquimod

C57BL/6 mice
10 µg of fusion

IN, 3×

- Higher levels of IgA in
bronchoalveolar fluid

- Higher titers of IgG in sera
- Higher release of IFN-γ and IL-17

in splenocytes restimulated with
ECH

[83]

Dextran NPs
Immobilization

Fusion
GamTBvac (Ag85A-
ESAT6-CFP10-DBD)

A: DEAE-dextran-CpG

C57BL/6 mice and
guinea pigs

5, 10, 20 µg of fusion
SC, 2× at 3w interval

As booster of BCG vaccine in mice:

- Higher levels of IFN-γ and
Ag-specific IgG

- Reduction in CFU in lung
- Higher survival

[68]

SY
N

TH
ET

IC
PO

LY
M

ER
S

PLGA NPs
Encapsulation

Fusion
HspX/EsxS
A: DOTAP

BALB/c mice
25 µg of fusion/5 mg

NPs
SC, 3× at 2w interval

- Higher levels of IFN-γ
- Higher titers of specific IgG1 and

IgG2a compared with BCG
[84]

PLGA NPs
Encapsulation

Plasmid
pcDNA3.1/Mtb72F

A: TB10.4 and/or CpG

BALB/c mice
SC, 1× BCG or plasmid

at day 0
SC, 3× 7, 14, 21 days

As booster of BCG vaccine:
- Higher levels of IFN-γ in

splenocytes restimulated with
BCG

[85]

Polyester NPs
Coating

Fusion
H28 (Ag85B-TB10.4-

Rv2660c)
H4 (Ag85B-TB10.4)

A: DDA

C57BL/6 mice
2–10 µg of fusion
SC, 3× at 9-day

intervals

PNPs-H4 induced:

- Long-lasting antigen-specific T-cell
responses

- Protective immunity in infected
mice

- Reduction in CFU in lung
- Similar protective immunity to

BCG

[43]

NPs: nanoparticles; INU/pArgNCs: inulin/polyarginine nanocapsules; PLGA: poly(lactide-co-glycolide);
A: adjuvant; MPL: monophosphoryl lipid A; DEAE: diethylaminoethyl; DOTAP: 1,2-dioleoyl-3-
trimethylammonium propane; DDA: dimethyldioctadecyl ammonium bromide; SC: subcutaneous; IN: intranasal;
IM: intramuscular; IP: intraperitoneal; IT: intratracheal; LNs: lymph nodes.
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In contrast to the growing number of preclinical phase studies conducted with par-
ticulate TB vaccine formulations, progression to clinical phase trials is scarce. Ongoing
clinical trials of new TB vaccines were recently reviewed by Saramago et al. [86]. Based on
their review, and in our search, only two particulate vaccine candidates have progressed
to clinical studies: ID93+GLA-SE and GamTBvac. Coler et al., conducted a randomized,
double-blind phase I study in 60 healthy non-TB-exposed non-vaccinated adults. The
purpose was to evaluate two dose levels of the ID93 antigen, administered intramuscularly
alone or in combination with two different doses of the GLA-SE adjuvant. The vaccine
was safe and well tolerated under all regimes and induced antigen-specific IgG responses
in subjects that also received the adjuvant. The use of the adjuvant also enhanced the
magnitude and cytokine profile of polyfunctional CD4+ T cells [87]. Tkachuk et al., in 2020,
conducted a phase II study with 180 healthy volunteers previously vaccinated with BCG
and immunized subcutaneously twice at 8-week intervals with their vaccine, GamTBvac.
This was a particulate system composed of a multi-antigen fusion protein (the TB antigens
Ag85A-ESAT6-CFP10 and a dextran-binding domain) immobilized on dextran NPs and a
CpG adjuvant. The vaccine was also safe and well tolerated and induced antigen-specific
IFN-γ release, augmented Th1 cytokine-expressing CD4+ T cells, and a higher IgG response
in vaccinated subjects [88].

2.2. Disadvantages of Conventional Treatments for TB and Opportunities for
Particulate Formulations

After infection, the main objective is to target the mycobacteria that are present in-
side macrophages, which the immune system is unable to eliminate. It would also be
relevant to target the bacteria that are present inside neutrophils or DCs, with therapeutic
agents. However, most of the WHO-recommended drugs for TB treatment, which show
variable permeability, are administered by oral or intravenous routes, implying that they
are present at high concentrations in serum but not in the lungs. This partially explains
their lower effectiveness in pulmonary disease treatment and their higher toxicity [89].
Additionally, Mtb not only survives inside the cells but also in the granuloma, the complex
multicellular structure formed as a result of the host immune response, and drugs must also
permeate these structures and reach the mycobacteria that are contained within them [90].
Importantly, prolonged treatments for drug-susceptible TB (6 months of isoniazid and
rifampicin, with the addition of pyrazinamide and ethambutol in the initial 2 months)
and drug-resistant TB (between 9 and 24 months depending on the strain) become very
toxic, increase secondary adverse effects, and therefore decrease patient adherence to the
treatment scheme [91,92].

One way to overcome or at least partially resolve these problems is to use engi-
neered carriers for the directed administration of TB drugs, such as liposomes, solid lipid
nanoparticles (SLNs), and polymeric micro- and nanoparticles [89]. The physicochemical
characteristics of these particles, mainly but not exclusively the size, surface charge, and
functionalization, are crucial in the design and must be considered together with the route
of administration. Particularly for the treatment of TB, the inhalation route is of interest
to target resident AMs loaded with bacteria. In this regard, several investigations have
been developed to find the ideal characteristics that a particle must have to reach this cell
population and deliver its load (Figure 1) [93]. Another important advantage of this route
of administration is that it mimics the course of bacterial spread: because the AMs are the
first cells to phagocytize Mtb and drug-containing particles upon inhalation, they traffic
them to the lung interstitium and travel to the site at which the bacteria tend to migrate,
which can guarantee the directed and controlled release of anti-TB drugs and, consequently,
a more precise dosage with fewer side effects [94].

2.2.1. In Vitro Evaluation of Particulate TB Drug Delivery Systems

In the same way as for evaluating particulate vaccines, in vitro assays are also re-
quired for the preclinical investigation of anti-TB treatments formulated with particles.
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Each study has its limitations and advantages, but they are essential in determining the
safety and efficacy of these systems. In vitro studies are also very important to standardize
and achieve particles with an optimal aerodynamic diameter for pulmonary delivery, en-
suring deposition in the apical and deep regions of the lung [95]. These studies are also
critical in characterizing the physicochemical properties, stability, loading efficiency, and
release of anti-TB drugs, as exemplified in the works of Garg et al. and Desai et al. [96,97].
Additionally, they allow us to evaluate the phagocytosis of loaded particles, their intracel-
lular accumulation, and their cytotoxicity, because the main objective is to induce lower
cytotoxicity than that induced by free drug administration [98–102].

Novel tools such as the in silico stochastic lung model have also been developed to
correlate with in vitro studies and to predict the amount of drug deposited quantitatively
in the lungs. Mukhtar et al., who reported the fabrication and characterization of a chi-
tosan/hyaluronic acid nanoparticle and isoniazid suspension, predicted, with this model,
that a very low fraction of particles was exhaled, while the particle deposition was high in
the lung–bronchial and acinar regions, correlating with their in vitro observations [103].

Interestingly, several authors have also evaluated in vitro drug-free microparticles as a
strategy to reduce the bacillary load in infected cell lines. For instance, Lawlor et al. reported
the use of PLGA particles to reduce the bacillary load in THP-1-derived macrophages
infected with the H37Rv strain. Without altering cell viability and without modifying
proinflammatory cytokine secretion, they demonstrated that the particles induced NF-kB
activation and autophagy in a dose-dependent manner, which in turn increased the killing
performance of macrophages [70]. Bai et al., used curcumin particles to treat human alveolar
and THP-1-derived macrophages before infection with the H37Rv strain, and curcumin also
reduced the bacillary load through the induction of autophagy and caspase-3-dependent
apoptosis [69]. Machelart et al., using beta cyclodextrin NPs, demonstrated that they were
efficiently captured by bone-marrow-derived macrophages and bone-marrow-derived
dendritic cells and were able to impair Mtb replication and induce apoptosis in infected
macrophages [71].

In Table 2, we summarize some studies carried out in the last decade with particulate
TB drug delivery systems based on natural and synthetic polymers, tested on different cell
lines before or after infection with mycobacteria.

Table 2. Particulate systems evaluated in vitro as carriers of anti-tuberculosis drugs.

Particulate
System Drug Administration Scheme

(Cell Line/Strategy) Observations Ref

N
A

TU
R

A
L

PO
LY

M
ER

S

Chitosan MPs INH
RFB

A549, THP-1 Mϕ
AI with Mb BCG

- Cell viability above 70% for A549
cells

- Dose-dependent effect on THP-1 Mϕ
- Microencapsulation preserved

antibacterial activity of drugs
- Free and drug-loaded MPs induced

increased secretion of TNF-α and
IL-18 in THP-1 Mϕ

[104]

Chitosan NPs
Anti-

Cystatin C
siRNA

HMDM, THP-1 Mϕ
BI with Mtb H37Rv and
susceptible and resistant

isolates

- Loaded NPs were non-cytotoxic and
were efficiently internalized by cells

- Significant reduction in intracellular
bacteria

[105]
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Table 2. Cont.

Particulate
System Drug Administration Scheme

(Cell Line/Strategy) Observations Ref

N
A

TU
R

A
L

PO
LY

M
ER

S Fucoidan MPs RFB
INH

A549, THP-1 Mϕ
AI with Mb BCG

- Cell viability above 65% at 24 h
- Encapsulation reduced RFB

cytotoxicity
- Free and loaded MPs induced TNF-α

and IL-8
- Dose-dependent uptake of MPs

[106]

Glucan NPs RFB
J774

AI with Mtb H37Ra

- Induction of ROS and NO within
infected Mϕ

- Induction of lysosome accumulation
and phagolysosomal maturation in
infected cells

- The efficacy of RFB was enhanced
2.5-fold

[107]

SY
N

TH
ET

IC
PO

LY
M

ER
S

PLGA NPs RIF RAW 264.7, BMDM
BI with Mb BCG

- Loaded NPs promoted the efficient
clearing of BCG infection over a
12-day period

[108]

PLGA NPs RIF
INHP

HMDM
BI with Ms

- Sustained release of drugs over 15
days

- Six-fold increase in therapeutic
efficacy

- Higher cell uptake and better
antimicrobial activity than free drugs

[109]

PLGA NPs
encapsulated

inside MAAEA
MPs

RIF Caco2, MH-S
AI with Mtb H37Rv

- Loaded NPs translocated to the
basolateral side of Caco2 cells and
were not cytotoxic

- Loaded and empty NPs decreased
growth of intracellular bacteria

[110]

Poly(ε-
caprolactone)

INH
SQ641+

CsA + VE

J774A.1
AI with Mtb H37Rv

- Better inhibition of intracellular
replication of Mtb with
SQ641-CsA-VE than SQ641 alone or
INH

[111]

Poly(ethylene
sebacate) NPs RIF-CUR RAW 264.7

AI with Mtb H37Rv

- NPs were non-cytotoxic
- Showed 1.5-fold higher drug

internalization compared to free
drugs

- Significant killing of intracellular
bacteria

[112]

NPs: nanoparticles; MPs: microparticles; PLGA: poly(lactic-co-glycolic) acid; MAAEA: methacrylic acid–ethyl
acrylate copolymer; RIF: rifampicin; INHP: pentenyl–isoniazid; INH: isoniazid; SQ641 + CsA + VE: natural
analogue of capuramycin + cyclosporine A + vitamin E; RFB: rifabutin; CUR: curcumin; BI: before infection; AI:
after infection; BMDM: bone-marrow-derived monocytes; HMDM: human-monocyte-derived macrophages; Ms:
Mycobacterium smegmatis; Mb: Mycobacterium bovis.

Although less frequent, the study of inorganic particles that have a direct microbicidal
effect is also of interest. Gold and silver NPs have been functionalized with variable ligands,
such as citrate or polyallylamine hydrochloride A, to effectively reduce the cell viability
of mycobacteria [113]. The antimycobacterial properties of gold have been supported by
auranofin, a gold-based antirheumatic drug that inhibits bacterial thioredoxin reductase,
making replicating and nonreplicating mycobacteria susceptible to oxidative species; con-
sequently, gold has become a suitable material to develop particles for the treatment of
TB [114,115].
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2.2.2. In Vivo Evaluation of Particulate TB Drug Delivery Systems

In vivo studies conducted to evaluate particulate TB drugs are performed with antibiotic-
loaded particles (against drug-sensitive and drug-resistant Mtb strains) and are useful
in showing prolonged drug release, long-term antibacterial effects, reduced toxicity, and
the prevention of infection relapse. There is agreement that, for inhalable formulations,
the most appropriate materials are natural or synthetic polymers, and those made from
polysaccharides are especially promising. Wu et al. evaluated the in vivo toxicity and release
properties of an inhalable preparation of chitosan nanogel particles loaded with genipin,
isoniazid, and rifampicin. They demonstrated enhanced antimycobacterial activity in mice
infected with the resistant H37Rv strain [116]. Machelart et al., with their beta-cyclodextrin
NPs administered by direct aerosolization, were also able to decrease the Mtb burden in the
lung after infection, and the authors proposed that this observation was a result of AMs’
reprogramming by these particles, which had intrinsic immunostimulant properties [71].

Grehna et al., showed that after the pulmonary administration of spray-dried locust
bean gum MPs loaded with isoniazid and rifabutin, lung infection and mycobacterial
growth rate values were decreased in the spleens and livers of infected mice. The short-
term treatment regimen (five times per week) that the authors used was more effective
than the oral coadministration of both antibiotics, even at lower doses. Additionally, they
highlighted that polysaccharide-based particles are promising for pulmonary administra-
tion because they contain sugar units that are recognized by surface receptors expressed
by AMs [117]. Singh et al. also developed a dry powder for inhalation, composed of 25%
isoniazid, 25% rifabutin, and 50% biodegradable polymer poly(L-lactide). The authors
demonstrated the efficacy, safety, and tolerability of the inhalable particles in three TB mod-
els (high-dose intravenous and low-dose aerosol infection in mice and low-dose aerosol
infection in guinea pigs). They were also able to prevent the relapse of infection four weeks
after stopping the treatment, using the combination strategy of half the oral dose of antibi-
otics with inhalable particles [118]. Antonov et al. showed that encapsulated levofloxacin in
PLGA MPs achieved greater bacterial clearance than the free drug orally administered after
infecting mice with the H37Rv strain. The particles demonstrated suitable biocompatibility
and release kinetics [119].

In contrast to the growing number of preclinical phase studies conducted with par-
ticulate formulations for TB treatment, progression to clinical phase trials is also scarce
and, based on our search, there are no polymeric formulations at this stage of investigation.
Srichana et al., demonstrated the safety of a dry powder formulation with liposomes con-
taining four anti-tuberculosis drugs (isoniazid, rifampicin, pyrazinamide, and levofloxacin)
administered via inhalation to 40 healthy adults. After successfully passing this clinical
phase I trial [120], the formulation was evaluated for approximately eight weeks in 44 adult
patients with active pulmonary TB. Although the treatment did not increase Mtb sputum
culture conversion after two months, the percentage of patients having adverse side effects
was significantly lower. The main results were decreased cough at 4 weeks of treatment,
substantially reduced hemoptysis at 2 weeks of treatment, and lower incidences of nausea
and vomiting [121].

2.2.3. Opportunities for Particulate Systems for TB Theranostics

Recent studies have focused their attention on theranostics as means to combine early
diagnosis and the administration of targeted treatments in a single system. Particulate
systems applied to TB theranostics must be developed with a favorable aerodynamic
diameter for pulmonary delivery, to maximize drug delivery while avoiding toxic systemic
side effects and potentially shortening the treatment duration. These systems are composed
of a biocompatible metal organic framework (MOF) as a drug carrier, which usually has
synergistic therapeutic activity and one or several anti-TB drugs [122]. The MOF delivers its
cargo upon activation by endogenous stimuli such as pH, redox, or ATP or by exogenous
stimuli such as temperature, ions, pressure, light, humidity, or a magnetic field [123].
Recently, Jiménez-Rodríguez et al. successfully encapsulated RIF in liposomes and silver
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nanoparticles to develop a luminescent biomarker for its evaluation as a TB theranostic.
The particles permitted early diagnosis and treatment, and, due to their optical properties,
the authors highlighted their utility in pharmacokinetic studies [124].

An emerging opportunity for TB theranostics is the tracking of complex structures
such as granulomas and encapsulating various anti-TB drugs for directed administration.
In latent TB that can become active TB, this strategy is a priority because granulomas con-
tribute to the persistence and/or spread of the bacilli present inside them. For this reason,
in recent studies, the use of sophisticated systems to localize and treat early granulomas
has been explored. Liao et al. designed a TB granuloma imaging-guided photodynamic
therapy (PDT) using an aggregation-induced emission carrier. After exposure to white
light, the carrier generated ROS and simultaneously released rifampicin. With this system,
the authors were able to perform an early diagnosis ex vivo using a granuloma tail model in
mice and control the drug-sensitive and drug-resistant bacteria in vitro [125,126]. However,
these strategies are in the preliminary stage of investigation and their efficacy and safety
levels need to be further studied and characterized.

In Figure 4, we provide an overview of the main advantages, disadvantages, chal-
lenges, and opportunities regarding particulate systems for the formulation of TB vaccines
or treatments.
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3. Concluding Remarks and Prospects

In addition to the challenges involved in combating the immune evasion and resis-
tance mechanisms generated by mycobacteria, challenges related to the development of
novel and safe protective and therapeutic alternatives against TB persist. A sophisticated
approach that matches the sophisticated evasion mechanisms of Mtb is needed to target
infected cells or cells that potentially will be infected. One important approach is the use
of particles. They are not only ideal for pulmonary administration, imitating the portal
of entry and path of bacilli, but can also be engineered by selecting the most desirable
materials, ligands, and physicochemical characteristics depending on whether it is a vaccine
or a drug delivery system.

However, the landscape is complicated because few studies have moved on to clinical
research phases. This may be because, despite the versatility and advantages of particles,
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they also have intrinsic limitations, and their performance is affected by external factors,
which must be weighed against the benefits, especially regarding to formulating a vaccine
or a treatment for a disease of such relevance as TB. Complicating the academic scenario,
other associated problems that likely affect translation to clinical practice are related to
the lack of clinical phase III trials that evaluate the efficacy and safety of these systems
in large populations, the availability of resources and infrastructure for research and
development, and the consideration of the health emergency that TB represents globally,
especially in countries with a higher prevalence and the presence of hypervirulent multi-
drug-resistant strains.

As researchers involved in the field of particulate vaccine development for mucosal
administration, we aimed to provide a grounded perspective on the importance of the
rational design of these systems, since they are recognized, phagocytosed, and can influence
the same cells that the tubercle bacillus interacts with. Moreover, we sought to highlight
the value of multidisciplinary work to advance the field and the work that is required to
move beyond a proof of concept without losing sight of the challenges imposed by particles
and Mtb in its progression.
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