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Abstract: Anti-SARS-CoV-2 vaccines have played a pivotal role in reducing the risk of developing
severe illness from COVID-19, thus helping end the COVID-19 global public health emergency after
more than three years. Intriguingly, as SARS-CoV-2 variants emerged, individuals who were fully
vaccinated did get infected in high numbers, and viral loads in vaccinated individuals were as high
as those in the unvaccinated. However, even with high viral loads, vaccinated individuals were
significantly less likely to develop severe illness; this begs the question as to whether the main effect of
anti-SARS-CoV-2 vaccines is to confer protection against severe illness or immunity against infection.
The answer to this question is consequential, not only to the understanding of how anti-SARS-CoV-2
vaccines work, but also to public health efforts against existing and novel pathogens. In this review,
we argue that immune system sensitization-desensitization rather than sterilizing immunity may
explain vaccine-mediated protection against severe COVID-19 illness even when the SARS-CoV-2
viral load is high. Through the lessons learned from COVID-19, we make the case that in the disease’s
aftermath, public health agencies must revisit healthcare policies, including redefining the term
“vaccine effectiveness.”
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1. Introduction

On 5 May 2023, the World Health Organization (WHO) declared that coronavirus disease
2019 (COVID-19), which is linked to infection with the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1] is no longer a public health emergency of international concern
(PHEIC) [2–4]. The WHO cautioned that the end of COVID-19’s PHEIC status was not a
license to stop being vigilant against the disease, but rather that COVID-19 should now be
managed by local public health agencies along with other common infectious diseases [2–4]. The
WHO justified its decision on the basis of data, which indicate that the proportion of infections
leading to severe illness and deaths from COVID-19 have satisfactorily declined since the PHEIC
was first declared in January of 2020 [2–4]. This is indeed a cause for celebration, given how
overwhelmed healthcare delivery systems were during the early waves of COVID-19 [5–13].
The accelerated development, testing, and deployment of anti-SARS-CoV-2 vaccines (a.k.a.,
COVID-19 vaccines), which were deemed safe and effective by various local regulatory bodies,
and ratified by the WHO and other global public health agencies, have played a pivotal role in
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reducing the likelihood of severe illness and death from COVID-19 [14,15]. Based on data from
185 countries, computational models suggest that during just the first year after the deployment
of COVID-19 vaccines, there was about a 63% reduction in total deaths [16]. While celebrating
the end of the COVID-19 PHEIC is warranted, it is important that the WHO and other health
agencies critically assess the public health management of COVID-19 in order to more rapidly
and effectively contain infectious disease outbreaks that might occur in the future [17].

In this review, we present two main lessons learned from the COVID-19 pandemic.
First, we present information on the pathophysiology of COVID-19 and discuss how
pathogens similar to SARS-CoV-2 might be causing severe illness and death. Second,
we review the evidence on COVID-19 vaccines and make the case that immune system
sensitization followed by desensitization to reduce severe outcomes (without necessarily
reducing infections) might be an acceptable benchmark for vaccine effectiveness compared
to sterilizing immunity (achieving an absolute reduction in infections).

2. SARS-CoV-2—Killer Virus or Just a Trigger for Kitchen Sink Inflammation?

SARS-CoV-2, which causes COVID-19, is a non-segmented, single-stranded, positive-
sense RNA virus from the β genus of coronaviruses [18,19]. SARS-CoV-2 infection was
first identified in Wuhan, Hubei Province, China in December of 2019, and was initially
characterized as virally-induced pneumonia by clinicians before it was finally isolated in bron-
choalveolar lavage fluid from patients [19,20]. The clinical presentation of COVID-19 ranges
from asymptomatic infection to mild respiratory symptoms to severe viral pneumonia [21].

While SARS-CoV-2 initially infects and compromises the respiratory system, it also
induces multiorgan dysfunction and damage [22–24]. One of the main factors implicated in
COVID-19 multiorgan failure is a massive release of proinflammatory cytokines—formally
known as cytokine release syndrome (CRS) but better known by the colloquial term
“cytokine storms” [25,26]. The inflammatory reaction in COVID-19 is due to the over-
activation of multiple cellular subtypes in the human body [27]. Inhaled viral particles bind
to epithelial cells in the nasal mucosa or travel down the nasopharyngeal tract to reach the
more distal areas of the airway. The effect of the virus in eliciting an inflammatory response
through different cell types is detailed below, and this gives us an idea of how the virus
wreaks havoc on homeostasis in the host. Local and systemic inflammation followed by
systemic disruption of homeostasis leads to multiorgan symptoms, multiorgan damage,
and the high case fatality rate associated with SARS-CoV-2 infection (Figure 1).

2.1. Epithelial System

The epithelial cells are the first line of defense against invading pathogens [28]. The
viral particles encounter different kinds of epithelial cells as they travel from the nose
and mouth, which are the most common points of entry, all the way down to the alveolar
sacs—the sites of gaseous exchange (Figure 1) [29]. The nasal mucosa has different cell
types, such as ciliated epithelial cells, mucous cells, and basal cells [30]. These cells
express angiotensin converting enzyme-2 (ACE2) and the transmembrane protein serine
protease-2 (TMPRSS2) on their plasma membranes [31–33]. ACE2, TMPRSS2, and other
plasma membrane proteins aid in the docking of SARS-CoV-2 onto host cells and facilitate
endocytosis of the virus [32]. Once the virus has entered host cells, the virus releases its
genetic material into the cytoplasm and hijacks the host’s cellular machinery to produce
more viral particles [34,35]—i.e., the cell is now infected with the virus. The release of
viral particles from cells has been detected as early as one hour post-infection; however,
6–8 h post-infection is when significant viral load has been detected and infection of
neighboring cells and loss of ciliated epithelium has been observed [36]. The loss of cilia
on the epithelium results in reduced mucociliary clearance, which leads to increased local
infection and progression of the disease [37,38]. This loss of clearance has been implicated
in increased COVID-19 severity in individuals with pre-existing pulmonary inflammatory
conditions like asthma [39], cystic fibrosis [40], and chronic obstructive pulmonary disease
(COPD), where ciliary function is already impaired [41]. In nasal epithelial cells, there is a
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delayed or a muted interferon response that is observed after infection. The levels of type
I (interferon alpha, beta) and type III (interferon lambda) interferons are lower in severe
COVID-19 compared to mild cases [42–44].
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As the virus moves down the airway, it encounters the bronchial epithelial cells, the
mucus cells, and the club cells [30] (Figure 1). In the middle and lower airway, ciliated
epithelial cells that become infected lose their cilia and have a denuded appearance, and
the levels of proinflammatory signals in these cells correlate with the disease severity [45].

When the virus finally reaches the alveoli (the distal-most regions of the airway) where
the epithelium, endothelium, and blood cells interface and enable gas exchange [46], it
activates numerous signaling cascades in multiple cell types, which cause the most dam-
age and destruction [47] (Figure 1). In alveoli, the virus primarily infects alveolar type 2
epithelial cells (a.k.a., AT2 cells or type 2 pneumocytes), potentially due to the abundance
of ACE2 on their surface [48]. Infection of type 2 pneumocytes seems to be the initial step
that triggers a domino of inflammatory signals [49]. It has been shown that alveolar type 1
cells can also be infected, but to a lesser extent [50]. The infection and damage of alveolar
pneumocytes results in a cascade of physiological changes, beginning with an increased
production of proinflammatory cytokines, such as interleukin (IL)-1 (IL-1), IL-6, IL-8, tu-
mor necrosis factor-alpha (TNF-α), and elevated levels of C-reactive protein (CRP) and
D-dimer [51–55]. These inflammatory cytokines result in recruitment of immune
cells—mainly neutrophils and macrophages to loci of inflammation. The recruitment
of immune cells further exacerbates the situation, as it results in the loss of barrier function
of the underlying endothelial layer [56,57]. Alveolar macrophages, which are recruited to
sites of damage have been shown to produce various chemokines, such as CCL2, CCL3,
CCL7, CCL8, CCL13, CCL20, and cytokines, such as CXCL1, CXCL3, and CXCL10 [58,59].
Among these chemokines, CCL2 and CCL3 attract more monocytes and macrophages to
the alveoli and induce CXCR1 gene expression in them; this promotes the production of
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tissue-damaging, proinflammatory reactive oxygen species [60]. The sum effect is largescale
destruction of epithelial tissue, which promotes the recruitment of neutrophils that try to
resolve the situation by forming neutrophil extracellular traps (NET) [61]. The heightened
cellular signaling and subsequent tissue damage described above leads to alveolar flooding
with the interstitial fluid and the blood, which leads to progressive hypoxia. Thus, the
replication of the virus in the alveoli results in the progression towards acute respiratory
distress syndrome (ARDS), triggering an imbalance between pro-coagulation and anticoag-
ulation (i.e., pro-fibrinolysis) pathways, plus stimulating complement activation, damage to
hyaline membranes, and the formation of clots in the small and large blood vessels [62,63].

A. Nasal epithelium. The primary site of entry for SARS-CoV-2 is the nasal epithelium
along with the oral mucosa. The virus binds to ciliated epithelial cells via ACE2 and is
endocytosed, thus infecting the host cells. The virus uses host cell machinery to replicate
and release more viral particles. The release of the viral particles results in the loss of
epithelial barrier integrity, the release of inflammatory mediators, and the aggravation of
symptoms. B. Alveolar epithelium. The Alveolar epithelium consists of ciliated type 2
alveolar epithelial cells (AT2) and type 1 non-ciliated (AT1) cells. Infection of the epithelial
cells results in the production of a multitude of proinflammatory cytokines that promote
extravasation/activation of the neutrophils and macrophages. This results in loss of barrier
integrity, alveolar flooding, loss of functional surfactant, diffuse alveolar damage, and
damage to the underlying endothelial cells. C. Endothelial cells. The loss of barrier integrity
on the epithelial layer promotes further spread of damage to the endothelial layer. Secreted
proinflammatory cytokines and chemokines recruit and activate a variety of immune cells
(macrophages, neutrophils, and T and B cells). The exposed extracellular matrix also acts as
a trigger for neutrophils, which undergo a process of cell death called NETosis; this leads to
the aggregation and entanglement of platelets, thus promoting clot formation. Furthermore,
T cells that are recruited to the site of injury can also aggravate endothelial injury. Figure
created with BioRender.com.

2.2. Endothelial System

The endothelial cells line the innermost layers of the blood vessels (adjacent to the
lumen) and tightly regulate the transport of nutrients, gases, metabolic wastes, bioactive
molecules, and cells [64]. The endothelial cells lining the smaller capillaries express ACE2
and TMPRSS2, which as mentioned earlier are necessary for the host cell binding and
internalization of SARS-CoV-2 [65]. The virus, on entering the endothelial cells, replicates
and then disseminates through the blood stream to organs other than the lungs. The
endothelial cells respond to the plethora of cytokines/chemokines that are produced by
the epithelial cells upon infection. The predominant chemical signals that affect endothelial
barrier function are IL-6 and TNF-α. Activation of the endothelial cells by IL-6 or TNF-α
results in the production of IL-8 (a major chemoattractant for neutrophils) and mono-
cyte chemoattractant protein (MCP-1) and in the activation of the C5a complement [66].
Indeed, plasma IL-6 levels in patients with COVID-19 correlate with the disease sever-
ity [67]. The recruitment of overly activated immune cells, a hallmark of COVID-19, can
result in endothelial cell death, which promotes vascular leak and initiation of microfoci
for clot formation [68,69]. Activated endothelial cells can release large amounts of von
Willebrand factor (VWF) and factor VIII, which play an active role in clot formation [70]. In
addition to stimulating the formation of fibrin, endothelial cells also secrete plasminogen
activator inhibitor-1 (PAI-1), which inhibits clot dissolution [71]. During the initial stage of
infection, the loss of contact with the surrounding cells results in the formation of circulating
endothelial cells (CECs), which can travel from one tissue to another. During the course of
infection, there is a loss of endothelial barrier integrity, which results in fluid accumulation
in the alveolar and pleural spaces. This is a result of the upregulation of interleukin 2
receptor (IL-2R) on the endothelial cells and the increased release of IL-2 from the activated
T cells [72]. Thus, direct viral infection or indirect activation of endothelial cells causes a
loss of barrier function, which then results in fluid accumulation, increased extravasation
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of immune cells, widespread microthrombosis, diffuse fibrin deposits, and secretion of
PAI-1 that prevents clot dissolution—all working together to increase the likelihood of
thromboembolisms [73,74] (Figure 1).

2.3. The Mismatch between Viral Load and Symptom Severity

In Section 2, we attempted to answer the question as to whether SARS-CoV-2 is a
killer virus or just a trigger for “kitchen sink inflammation”. The related expressions
“to throw everything but the kitchen sink” or “to throw the kitchen sink” imply doing
everything possible to address a problem, regardless of whether the solutions are likely
to be good or bad [75,76]. Due to the novelty of SARS-CoV-2 to the human immune
system, when people were first infected, the immune response was indeed comparable
to throwing an inflammatory kitchen sink at the viral invader, resulting in cell-signaling
storms [25,26,47,55,77–83]. The fact that some individuals with high viral loads presented
with minimal symptoms, and some individuals with severe symptoms had low viral loads
suggest that, SARS-CoV-2 by itself is not a killer virus, but rather, it is a nonspecific and
overly aggressive inflammatory response, which causes the most harm [84–88]. This is not
to diminish the fact that SARS-CoV-2 infection has been implicated in the deaths of nearly
seven million people, chronic illness in 10–20% of the survivors, and about 800 million
cumulative cases in just over three years [89,90]. However, the available data point towards
severe illness and deaths being linked to an inflammatory response, which overwhelms
the host, rather than widespread virus-mediated killing of cells in the respiratory system
and other vital systems of the body [88]. Interestingly, an overly aggressive immune
response, rather than the pathogen itself, might underlie severe illness in various infectious
diseases [91]. Therefore, public health agencies must invest resources in finding safe,
effective, practical, and standardized therapies, which can work to combat a wide range
of existing and novel pathogens. In hindsight, one of the simplest public health strategies
to blunt the impact of SARS-CoV-2 would have been to assume that it would behave just
like its predecessor SARS-CoV (implicated in the SARS outbreak of the early 2000s) and
amplify the importance of commonsense preventative healthcare measures (e.g., hand
hygiene, mask wearing, and avoiding unnecessary social activities) until safe and effective
pharmacological measures were available [92–94].

3. Calming the Inflammatory Storm by Conditioning the Immune System

For over a century, vaccines have served as a beacon of hope against infectious dis-
eases [95,96]. From mitigating the severity of various infectious diseases to completely
eradicating certain diseases in populations, vaccines are easily one of mankind’s greatest
innovations in the realm of public health [97,98]. Vaccines come in a variety of forms
such as live attenuated, inactivated, recombinant, toxoid, viral vector, and the recently
developed messenger RNA (mRNA vaccines) [95,99]. These formulations all follow the
same basic principle of exploiting the human immune system by exposing it to an innocu-
ous form, portion, or product of a pathogen to induce long-lasting protection against the
pathogen [100]. The benefits of this practice are reaped at an individual and population
level [97,98]. The individual, upon exposure to the real pathogen post-vaccination, avoids
severe disease outcomes due to his or her immune system being primed against it. On
a population level there exists the goal of herd immunity, where entire communities are
protected against a pathogen due to the high percentage of individuals who are vaccinated
and/or have been exposed to natural infection [101,102]. If the fraction of the population
that is vaccinated is low, then those who are not eligible for vaccination due to age, those
who are immunocompromised, and those who might be particularly vulnerable to disease
complications may not benefit from community-level protection. It is imperative that a
proper understanding of vaccines is reached to maximize their effectiveness and attain
herd immunity whenever possible for the maximum benefit to individuals and societies.
This is especially relevant considering the recent COVID-19 pandemic, where vaccination
has played a critical role in disease mitigation.
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3.1. How the Most Common COVID-19 Vaccines Work

As highlighted earlier, severe cases of COVID-19 can trigger sepsis, hypoxemia, pneu-
monia, and tissue damage [21,103]. In line with what is expected of respiratory viruses,
SARS-CoV-2 is transmitted mainly via the respiratory route by droplets and aerosolized
viral particles and also possesses an incubation period of approximately 5–12 days, making
the control of its spread challenging [18–20].

COVID-19 vaccines were in development within less than six months since the begin-
ning of the outbreak, with public health agencies and industry partners around the world
committing vast resources to vaccine development, testing, and deployment [104]. Out
of these efforts emerged the novel mRNA vaccines, such as those produced by Moderna
(Spikevax) and Pfizer-BioNTech (Comirnaty) [99,104]. These mRNA vaccines consist of a
segment of mRNA, which has the genetic code to make the SARS-CoV-2′s spike protein.
Since naked mRNA is not stable, it was packaged in a lipid (a basic chemical component
of fats and oils) coat to stabilize the structure and allow it to be readily delivered into
cells [99,105–107]. Based on the established understanding of conserved cellular biologi-
cal processes, we can assume that, once the mRNA-containing lipid spheres are inside a
host cell, such as a muscle fiber in the deltoid muscle (the muscle that is most commonly
injected), the mRNA information is used by the host cell ribosomes to assemble the amino
acid sequence for the spike protein through a process called protein translation [106,107].
After translation, spike protein molecules are processed and presented as an antigen at the
surface of the host cell, thereby activating both innate and adaptive immune responses,
which confer immune memory [105–107] (Figure 2). Another anti-SARS-CoV-2 vaccine
strategy that was widely employed, involved the use of DNA packaged in a harmless ade-
novirus [107,108]. DNA within the adenovirus contained the code needed for inoculated
host cells to generate mRNA in their nuclei through DNA transcription; the mRNA would
then exit the nuclei and bind to the ribosomes, and from that point on, the assembling and
presentation of spike protein molecules was similar to that of mRNA vaccines [107].

The recognition of “self” from “non-self” is a fundamental aspect of immunity, and
this function serves an important role in protecting the body from disease-causing ele-
ments [109]. Vaccination takes advantage of this by introducing a harmless version of the
disease-causing pathogen, allowing the body to recognize and remember it. There are two
phases of immunity that are activated upon infection or inoculation through vaccination:
Innate immunity and adaptive immunity [110–112] (Figure 2). Innate immunity is the first
line of defense and is activated when pattern recognition receptors detect foreign material
or damage, which are known as pathogen- associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) [110,111,113]. The result is the release of
proinflammatory molecules, such as cytokines, which recruit more immune cells to the site
of vaccination [110,111,113] (Figure 2). Shortly after this initial response, the adaptive im-
mune system is activated (Figure 2). The adaptive immune system is critical for the control
of viral infections, especially in the long term upon re-exposure to the same virus (Figure 2).
The main players in the adaptive immune response are T and B lymphocytes, which pos-
sess a range of functions that include killing infected cells, activating other lymphocytes,
producing antibodies, and generating memory cells [112] (Figure 2). With the production
of memory cells and antibodies against SARS-CoV-2 through vaccination, the expected
outcome in a vaccinated individual who was subsequently exposed to the actual virus,
was a decreased likelihood of infection, decreased viral load if infected, reduced ability to
transmit infection, and protection against severe illness (Figure 2). These predictions were
indeed borne out by initial clinical trials, thus prompting emergency use authorization and
approval of certain mRNA and DNA-adenovirus vaccines [108,114,115].
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3.2. COVID-19 Vaccination—Sterilizing Immunity or Protection against Severe Illness?

As discussed earlier, vaccination against COVID-19 was predicted to confer sterilizing
immunity—i.e., reduce the likelihood of infection and therefore transmission [116]. How-
ever, as real-world data from community vaccination programs emerged, it became clear
that even those considered to be fully vaccinated (those who completed the required vacci-
nation schedule for their age and health status) were still being infected in high numbers.
Infections in individuals who were considered fully vaccinated were called “breakthrough
cases” [117–119]. The incidence of breakthrough cases increased as new variants and
subvariants of SARS-CoV-2 emerged and created waves of infections that swept across
continents [120,121]. The first and earliest variant was identified in the UK and called
Alpha, the second was identified in South Africa and called Beta, and the third was found
in Brazil and called Gamma; Eta and Delta were the fourth and fifth variants, which were
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identified in the UK and India, respectively [120]. The Omicron variant was identified in
Botswana and is the most highly mutated strain, with twice as many mutations than the
Delta variant [121,122]. The incidence of breakthrough cases during the Delta variant wave
was high; however, despite the Delta variant being characterized as more aggressive in its
symptomatology than prior strains [123,124], the disease outcome in vaccinated individuals
was better than in those who were unvaccinated [125–127]. Intriguingly, during the Delta
variant wave of COVID-19, viral loads in fully vaccinated individuals were as high as
those seen in unvaccinated individuals, indicating that vaccination was reducing the risk of
severe illness without reducing host cell viral infection and without blunting the production
of viral particles in infected individuals [117,118,128–131]. During the Delta wave, it was
also humbling to learn that vaccinated individuals with breakthrough infections were just
as likely as unvaccinated individuals to transmit the virus to others—disturbing news at
a time when public health agencies in certain countries were relaxing nonpharmacologi-
cal COVID-19 mitigation measures against a backdrop of vaccine inequity based on age,
geography, economics, and other factors [117,132]. The conferring of protection against
severe illness and death through vaccination without blocking infection has continued
through subsequent waves of COVID-19 infections caused by less aggressive variants and
subvariants (e.g., Omicron) [133]. These observations are likely linked to our earlier point
about how a nonspecific and overly aggressive inflammatory response to SARS-CoV-2,
rather than the extent of viral infection, might be the factor underlying disease severity [88].
Based on the lessons learned from COVID-19 vaccination programs, it is imperative that
public health agencies reassess the benchmarks for vaccine effectiveness, since the benefits
of vaccination have medical, sociological, and economic implications that extend far beyond
the mere conferring of immunity as we know it [97,134]. While aiming to obtain steriliz-
ing, lifelong immunity through vaccination is a fair goal, settling for vaccine-mediated
protection against severe illness for fast-spreading diseases like COVID-19 would be an
acceptable strategy, so that, the highest number of individuals around the world are rapidly
protected and negative economic impact is reduced [102,135].

The flow chart summarizes how the innate and adaptive immune systems likely
play vital roles in reducing the risk of severe acute COVID-19 illness through vaccination,
natural infection, and natural infection following vaccination [28,136–139]. We make
the case that being up to date on COVID-19 vaccination through updated SARS-CoV-2
vaccines/boosters acts as a type of “continuing education” for the immune system. This
continuing education enables the immune system to remain conditioned, such that it
mounts a calm and focused response to viral exposure and does not overwhelm the host
through overly aggressive inflammation. We also indicate that in rare cases even vaccinated
individuals might develop severe acute illness and chronic complications (the dotted grey
arrow connecting the vaccination story in the flow chart (bottom) to the natural infection
story in the flow chart (top)) [140,141].

3.3. Could Immune System Sensitization Followed by Desensitization Explain Vaccine-Induced
Protection against Severe COVID-19?

Early in the COVID-19 pandemic, it was suggested that zoonotic transmission (animal
to human) from bats was the most likely source of SARS-CoV-2 and caused the first set of
infections in humans [142]. Viral genomes sharing > 90% similarity to human SARS-CoV-2
were found in bats and pangolins [143–146]. As the pandemic progressed, there were
reports of other animals being infected with SARS-CoV-2, raising concerns that animals
could act as viral reservoirs, leading to more human infections [142]. Similar to observations
in certain vaccinated and unvaccinated humans, animals that test positive for SARS-CoV-2
may have mild to no symptoms but can still serve as reservoirs/vectors of the virus [147].
These observations also support the idea that severe illness does not usually ensue if
the host does not mount a nonspecific and overly aggressive inflammatory response
(Figures 1 and 2). Thus, it is likely that vaccination initially acts as a sensitizer to the
immune system, which is naïve to SARS-CoV-2, but that through this sensitization, when
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an actual infection happens later, the result is a more tolerant, subdued, and conditioned
inflammatory response that does not overwhelm the host [148–150] (Figure 2). Immune
system desensitization is the process of gradually exposing an individual to an antigen so
that their immune system becomes nonreactive [151]. Desensitization has been used for
decades to improve clinical outcomes in people with allergies and asthma [151–153]. It is
tempting to speculate if small doses of SARS-CoV-2 antigens that are updated to include
new variants, might not only be able to act as a form of continuing education to the adaptive
immune system, but also act as a way to maintain a conditioned and tolerant innate immune
system, which does not overwhelm the host through inflammation when exposed to the
actual pathogen [154] (Figure 2). Intriguingly, vaccine desensitization protocols have been
successfully used to reduce the likelihood of allergic reactions in individuals who display
signs of COVID-19 vaccine hypersensitivity [155–157].

3.4. Cutaneous Delivery of SARS-CoV-2 Vaccines as a Potential Strategy to Rapidly Vaccinate/Boost a
Large Number of Individuals

In the preceding section, we presented evidence to suggest that COVID-19 vaccines
offer protection to the host against severe illness and death even if they do not reduce the
risk of infection. We then made the case that, if protection against severe illness rather
than sterilizing immunity is an acceptable benchmark for vaccine effectiveness, it may be
possible to achieve this by periodically exposing the immune system to small amounts of
updated antigenic material. The logistics of administering updated vaccines to the entire
global population on a semiannual or even annual basis is daunting [158]. It is in this
context that cutaneous vaccine delivery systems are appealing.

The skin is a viable organ with a large concentration of antigen-presenting cells including
the epidermal Langerhans cells and dermal dendritic cells [159]. The minimally invasive
microneedle (MN) of cutaneous drug delivery systems reduces safety concerns associated
with parenteral administration and increases patient compliance, thus making MN-enhanced
transdermal delivery an attractive route for vaccine administration. Different types of antigens
including inactivated whole virus, live attenuated virus, virus-like particles, recombinant
bacteria, protein subunits, and plasmid DNA have been investigated to demonstrate immune
responses following MN delivery. Many promising examples of MN-based vaccine delivery
have appeared in recent publications [160,161], a few of which have been highlighted in this
section. Antigens can be introduced into the skin using different MN approaches, including
intradermal injection (similar to the Mantoux method), stratum corneum disruption by solid
MN abrasion, antigen-coated MN, and dissolvable MN insertion [162].

Intradermal delivery using MNs can provide superior antigenicity, as demonstrated
through studies with influenza vaccines. Using three different types of influenza vaccines
(a whole inactivated influenza virus, a trivalent split-virion human vaccine, and a plasmid
DNA encoding the influenza virus hemagglutinin), the MN-based system provided up to
a 100-fold dose sparing in rats compared to intramuscular injection for the same induced
immune response [163]. Recent clinical trials in adults showed that an MN-based deliv-
ery of influenza vaccine can induce immune responses with less antigen (9 µg) at rates
comparable to those with intramuscular (15 µg) vaccination [164]. A stronger humoral
immune response in the elderly was also induced with MN-based intradermal delivery
compared to intramuscular injection [165]. A hollow 1.5 mm–long MN Becton Dickinson
Soluvia prefilled microinjection system has recently been approved to deliver Fluzone
intradermal vaccine (single 0.1 mL dose, Sanofi Pasteur) for influenza prophylaxis [94].
Other MN-based vaccines currently under investigation include a recombinant Bacillus
anthracis vaccine formulated with aluminum and administered by hollow MNs [166], a live
attenuated chimeric flavivirus vaccine delivered by skin microabrasion for the treatment of
Japanese Encephalitis and yellow fever [167], and a smallpox DNA vaccine delivered by
MN coating and skin electroporation [168]. It is therefore not surprising that MN-based
delivery of COVID-19 vaccines is a topic of interest, which could potentially lead to a
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paradigm shift in how large numbers of people could be safely and rapidly vaccinated with
fewer logistical hurdles and reduced amounts of biowaste [169].

4. Conclusions

We started this review by highlighting the end of the COVID-19 global health emer-
gency, which is undoubtedly a cause for celebration. We then went on to present two main
lessons learned from the COVID-19 pandemic, and how these lessons prompt all public
health stakeholders (i.e., the entire global human community) to examine our assumptions
about how COVID-19 makes people sick and how COVID-19 vaccines work. Paying heed
to these lessons could help improve public health and better prepare global communities
for future health emergencies that may arise due to infectious diseases.
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