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Abstract: Antimicrobial resistance (AMR) is a public health problem threatening human, animal,
and environmental safety. This study assessed the AMR profiles and risk factors associated with
Escherichia coli in hospital and environmental settings in Lusaka, Zambia. This cross-sectional
study was conducted from April 2022 to August 2022 using 980 samples collected from clinical and
environmental settings. Antimicrobial susceptibility testing was conducted using BD PhoenixTM

100. The data were analysed using SPSS version 26.0. Of the 980 samples, 51% were from envi-
ronmental sources. Overall, 64.5% of the samples tested positive for E. coli, of which 52.5% were
from clinical sources. Additionally, 31.8% were ESBL, of which 70.1% were clinical isolates. Of the
632 isolates, 48.3% were MDR. Most clinical isolates were resistant to ampicillin (83.4%), sulfamethox-
azole/trimethoprim (73.8%), and ciprofloxacin (65.7%) while all environmental isolates were resistant
to sulfamethoxazole/trimethoprim (100%) and some were resistant to levofloxacin (30.6%). The
drivers of MDR in the tested isolates included pus (AOR = 4.6, CI: 1.9–11.3), male sex (AOR = 2.1,
CI: 1.2–3.9), and water (AOR = 2.6, CI: 1.2–5.8). This study found that E. coli isolates were resistant to
common antibiotics used in humans. The presence of MDR isolates is a public health concern and
calls for vigorous infection prevention measures and surveillance to reduce AMR and its burdens.

Keywords: Escherichia coli; ESBL; One Health; antibiotics; multidrug resistance; antimicrobial
stewardship; Zambia

1. Introduction

Antimicrobial resistance (AMR) is a growing public health crisis that affects both
human and animal health and has a strong relationship with the environment [1–5]. The
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concerns regarding AMR have been steadily increasingworldwide, endangering a wide
variety of effective medical interventions (e.g., surgery, chemotherapy, intensive care), and
the ability to effectively prevent and cure infectious diseases [6,7]. It has been established by
numerous studies that the overuse and misuse of antibiotics in the agricultural, veterinary,
and human medical sectors promote the development and spread of multidrug-resistant
(MDR) pathogens and allow for the emergence of novel resistance mechanisms [8–11].
Additionally, antimicrobial-resistant bacteria and their resistomes spread between humans,
animals, and their environment [12–14]. In real-world settings, infections caused by MDR
bacteria are associated with increased morbidity and mortality [4,6,7,15]. The significance
of MDR infections has been estimated by the Global Burden of Disease (GBD) study, where
it was shown that ~1.27 million (95% UI: 0.91–1.71 million) deaths were directly attributable
to bacterial MDR globally in the year 2019 alone [6,16]. Among these MDR bacteria,
Escherichia coli (E. coli), Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae,
Acinetobacter baumannii, and Pseudomonas aeruginosa were the most significant and asso-
ciated with ~0.93 million (95% UI: 0.66–1.27 million) directly attributable deaths [6,7,16].
Alongside these consequences, other AMR implications include increased medical costs
with a negative impact on the economy (both due to direct and indirect costs), and limited
options to treat infections, endangering sustainable development globally [15,17–21].

E. coli, a gram-negative rod belonging to the Enterobacterales order, is a lactose and
non-lactose fermenting microbe [22–24]. It is among the microorganisms that have devel-
oped considerable levels of resistance to most antimicrobials used in humans, animals,
and agriculture, and has the potential to spread effectively in the environment [1,25–31].
The injudicious handling of antimicrobials in the One Health ecology further exacerbates
the resistance situation [32–37]. E. coli is considered a major cause of pediatric infections
that result in adverse outcomes [37,38]. It has been reported as one of the most common
pathogens responsible for infections, particularly in countries with unstable healthcare and
surveillance systems [6,39–42]. Despite being a common member of the intestinal micro-
biota in humans and animals, E. coli is also found in water, soil, and around plants, and is
the leading cause of several common bacterial infections, including gastroenteritis, urinary
tract infections (UTIs), septicemia, and neonatal meningitis [2,43–49]. In recent years, the
rise of MDR E. coli has been documented in almost all countries worldwide [43,46,50–53].
The spread of extended-spectrum β-lactamase (ESBL)-producing bacteria (including ESBL-
E. coli; ESBL-EC) through the environment—a major cause of healthcare problems (i.e., in
healthcare-associated infections) and community-acquired infections—is caused by the in-
creasing global dependence and use of β-lactam antibiotics (i.e., penicillins, cephalosporins,
carbapenems, and monobactams), which necessitates urgent action [54–57].

ESBL-EC possesses various β-lactamase enzymes that rapidly evolve through the
ability to hydrolyze antimicrobials and cause increased resistance to β-lactam antibi-
otics [57,58]. Extended-spectrum cephalosporins—such as cefotaxime, ceftriaxone, and
ceftazidime—and monobactams (such as aztreonam) are susceptible to hydrolysis by ES-
BLs [59,60]. Resistance to other antimicrobial classes, such as aminoglycosides, macrolides,
tetracyclines, quinolones, and sulfonamides, may be acquired by plasmid-encoded re-
sistance determinants—coexisting in bacteria-harbouring ESBLs—rapidly reaching the
phenotype of MDR, which further limits therapeutic options and poses a therapeutic conun-
drum [2,16,60,61]. β-lactam antibiotics are among the most commonly administered drugs
globally, as they have an advantageous side effect profile and in many patient populations
(i.e., children, the elderly, and pregnant women), they are the only suitable antimicro-
bials [62–65]. However, the development of resistance to these agents in recent years has
become a serious public health concern [66–68]; this is especially true in low-income coun-
tries, such as Zambia, where β-lactam antibiotics are overused and misused and are often
readily available without a medical prescription [63,64,69]. In addition to β-lactamases, the
modification of penicillin-binding proteins (PBPs), the decreased permeability of the bacte-
rial outer membrane, and the co-existence of several resistance mechanisms contributed
to this phenomenon [57]. One of the direct causes of the development of ESBL strains in
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resource-constrained healthcare settings includes the empirical and symptomatic (without a
diagnosis) use of antibiotics [70]. Despite multiple cases of nosocomial outbreaks attributed
to these pathogens, there is limited information regarding the frequency of ESBL-producing
bacteria in most Zambian hospitals.

Due to the isolation of MDR bacteria—such as E. coli—from humans, animals, and the
environment, it is being increasingly understood that a One Health approach is required
to address this problem [45,71,72]. This is because there is a clear interaction between
humans and animals in the environment that can facilitate the transmission of E. coli from
humans to animals or the environment and vice-versa [73]. Moreover, the presence of
antimicrobial-resistant E. coli and other pathogens in humans, animals, and the environ-
ment calls for a holistic, multi-disciplinary collaborative action guided by the World Health
Organization Global Action Plan (GAP) on AMR [74]. The One Health approach aims
to address AMR across all the abovementioned domains (i.e., humans, animals, and the
environment), as there is a higher transmission potential at the human and animal interface
in the environment [1,5,75,76]. Therefore, a One Health approach (i.e., the systems thinking
within ecological systems) promotes, and is an integral part of, antimicrobial stewardship
(AMS) programmes for the prudent of antimicrobials in humans, animals, and the environ-
ment [77–81]. Most AMR data comes from high-income countries (HICs), while the AMR
burden of sub-Saharan Africa (SSA)—including Zambia—is inadequately documented.
In Zambia, the National Action Plan (NAP) on AMR was developed in 2017 in line with
the GAP on AMR to tackle this problem using a One Health approach [82,83]. Alongside
this, there have been some studies published to promote AMS in human and animal health
in this geographical region [27,28,63,64,84–91]. However, there is still very little informa-
tion on the isolation, resistance patterns, and risk factors associated with ESBL-producing
and/or MDR E. coli originating in humans, food-producing animals, other food products,
and the environment. With this in mind, this study aimed to comprehensively assess the
AMR patterns and risk factors associated with ESBL-producing and MDR E. coli in hospital
and environmental settings in Lusaka, Zambia.

2. Materials and Methods
2.1. Study Design and Site Location

The present cross-sectional study was conducted between April and August 2022
at the main referral University Teaching Hospital (UTH) and townships (administrative
sub-districts) in the capital city of Zambia, Lusaka. The samples collected and included in
the data analysis were (i) clinical samples (i.e., urine, stool, blood, cerebrospinal fluid) from
inpatients and outpatients and (ii) environmental samples (i.e., meat, fruits and vegetables,
water, and those isolated from hospital equipment). The UTH has a bed capacity of
1665 beds, acting as a national and the largest tertiary referral hospital in Lusaka that
provides specialised patient care for patients from all over Zambia. Lusaka (360 km2) is the
capital city of Zambia, with an estimated 687,923 households [92], and a human population
of approximately 3,079,964 [93].

2.2. Data Collection

Data collection for clinical samples included the date and time of sample collection,
sample type, anonymised identification code, and the age and sex of the patients. Infor-
mation corresponding to the environmental samples included the source, type and area
sampled. Only the samples kept at an ambient temperature for no longer than two hours
were included in the study.

2.3. Specimen Collection and Processing

The environmental samples were first swabbed and enriched in buffered peptone
water (BPW) (Oxoid Ltd., Basingstoke, Hampshire, UK) and incubated for 3 h at 37 ◦C. A
sterile loop was dipped into the enriched BPW, where the sample was incubated. After-
wards, a 0.5 mL sample of incubated BPW was inoculated on CHROMagar™ ECC (E. coli
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and coliforms; HiMedia Laboratories Pvt. Ltd., Mumbai MS, India) agar plates at 37 ◦C for
18 to 24 h for the isolation of E. coli. Presumptive E. coli colonies were streaked on Eosin
Methylene Blue (EMB) agar (Oxoid™, Basingstoke, Hampshire, UK) for the identification
of E. coli.

For clinical specimens, the presumptive identification of E. coli colonies was defined
as the growth of lactose-fermenting, donut-shaped colonies on Xylose Lysine Deoxycholate
(XLD) agar (Oxoid Ltd., Basingstoke, Hampshire, UK), MacConkey agar (Oxoid Ltd.,
Basingstoke, Hampshire, UK), and Hichrome chromogenic UTI agar (HiMedia Laboratories
Pvt. Ltd., Mumbai MS, India). Therefore, urine samples were inoculated directly onto
Hichrome chromogenic UTI agar and incubated at 37 ◦C for 18 to 24 h. Presumptive E. coli
colonies were characterised by the appearance of dark blue to violet colonies. The stool
was inoculated and incubated on XLD for 24 h at 37 ◦C, and E. coli colonies were defined
after the appearance of yellow colonies. Clinical specimens were inoculated directly on
MacConkey agar (Oxoid Ltd., Basingstoke, Hampshire, UK) and incubated for 24 h at
37 ◦C. On MacConkey agar, lactose-fermenting colonies appeared pink in colour while
non-lactose-fermenting colonies appeared off-white opaque. On EMB, greenish metallic
colonies were presumed to be E. coli and were sub-cultured on nutrient agar (Oxoid Ltd.,
Basingstoke, Hampshire, UK), where they appeared large, thin, circular, and greyish-white
after 24 h of aerobic incubation at 37 ◦C. To differentiate E. coli from other lactose-fermenting
bacteria, phenotypic confirmation was performed on all pure colonies using a battery of
biochemical tests, including triple sugar iron (TSI) agar, lysine iron agar (LIA), simmons
citrate agar (SCA), and sulfide indole motility (SIM) agar, respectively. Only colonies that
passed the biochemical tests were identified as E. coli. The identified presumptive colonies
of E. coli were selected and cultured on nutrient agar for purification purposes and further
analysis. For further confirmation, E. coli isolates were subjected to identification using the
Becton Dickinson BD PhoenixTM 100 system (BD Diagnostic Systems, Sparks, MD, USA).

2.4. Antibiotic Susceptibility Testing

Antimicrobial susceptibility testing (AST) for the respective E. coli isolates was per-
formed using disk diffusion and the BD PhoenixTM 100 Automated Microbiology System
(BD Diagnostic Systems, Sparks, MD; based on minimum inhibitory concentrations). The
following antibiotics were used for AST: ampicillin 10 µg (AMP), amoxicillin/clavulanic
acid 10 µg (AMC), cefepime 30 µg (FEP), ceftazidime 30 µg (CAZ), cephazolin 30 µg (KZ),
ceftriaxone 30 µg (CRO), cefuroxime 30 µg (CXM), ciprofloxacin 5 µg (CIP), ertapenem
30 µg (ETP), gentamicin 10 µg (CN), imipenem 10 µg (IPM), levofloxacin 5 µg (LEV),
nitrofurantoin 30 µg (NIT), and sulfamethoxazole/trimethoprim 23 µg (SXT). Interpreta-
tion of the AST results (i.e., defined as susceptible, intermediate or resistant) was based
on the standards and breakpoints as defined by the Clinical and Laboratory Standard
Institute (CLSI) [94]. Furthermore, ESBL-producing isolates were confirmed by the com-
bined double-disk test (with cefotaxime and ceftazidime alone, and in combination with
cefotaxime/clavulanic acid) and the Becton Dickinson BD PhoenixTM 100 system (Becton,
Dickinson Company, Sparks, MD, USA) as defined by CLSI guidelines [94]. Each batch
incorporated a control strain of E. coli ATCC 25922 to ensure the validity and reliability of
AST. Isolates were classfied as MDR (resistance to at least one agent in ≥3 different antibi-
otic classes), extensive drug resistance (XDR; susceptibility to 1 or 2 remaining antibiotics),
and pan-drug resistance (non-susceptiblity to all classes of antibiotics) (PDR) [95].

2.5. Data Analysis

The raw data of the isolates was summarised, cleaned, and coded in Microsoft Excel
2013 (Microsoft Corp., Redmond, WA, USA). Descriptive analysis was conducted to charac-
terise the data using means, medians, ranges, and percentages. Various statistical tests were
employed to determine the factors associated with ESBL and MDR E. coli isolates, includ-
ing Chi-square tests, univariate and multiple logistic regression (ESBL), and multinomial
(MDR) analyses. The backward elimination method (MDR: based on the likelihood ratio
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test) was utilised to select the most relevant variables, accounting for confounding factors.
Adherence to the assumptions of the Chi-square tests was ensured, and if not met, Fisher’s
exact test with Monte Carlo simulation (n = 1000) was used. The analyses were performed
using the Statistical Package for Social Sciences (SPSS), version 26.0 (IBM Corp, Armonk,
NY, USA). The normality of the data was assessed through the Kolmogorov-Smirnov test.
All statistical tests were performed at a 95% confidence level with a p < 0.05 indicating
statistical significance.

3. Results
3.1. Descriptive Characteristics of Clinical and Environmental E. coli Strains

A total of n = 980 samples were collected and subjected to microbial culture for E. coli
using phenotypic methods. Of the n = 980 samples, n = 480 were from clinical sources,
while n = 500 were from environmental sources (Figure 1); out of the total sample number,
E. coli was isolated from n = 632 (64.5%) of samples, where the distribution was n = 332
(69.2%) and n = 300 (60.0%) from clinical and environmental sources, respectively.

Microorganisms 2023, 11, x FOR PEER REVIEW 5 of 22 
 

 

100 system (Becton, Dickinson Company, Sparks, MD, USA) as defined by CLSI guidelines 
[94]. Each batch incorporated a control strain of E. coli ATCC 25922 to ensure the validity 
and reliability of AST. Isolates were classfied as MDR (resistance to at least one agent in 
≥3 different antibiotic classes), extensive drug resistance (XDR; susceptibility to 1 or 2 
remaining antibiotics), and pan-drug resistance (non-susceptiblity to all classes of 
antibiotics) (PDR) [95]. 

2.5. Data Analysis 
The raw data of the isolates was summarised, cleaned, and coded in Microsoft Excel 

2013 (Microsoft Corp., Redmond, WA, USA). Descriptive analysis was conducted to 
characterise the data using means, medians, ranges, and percentages. Various statistical 
tests were employed to determine the factors associated with ESBL and MDR E. coli 
isolates, including Chi-square tests, univariate and multiple logistic regression (ESBL), 
and multinomial (MDR) analyses. The backward elimination method (MDR: based on the 
likelihood ratio test) was utilised to select the most relevant variables, accounting for 
confounding factors. Adherence to the assumptions of the Chi-square tests was ensured, 
and if not met, Fisher’s exact test with Monte Carlo simulation (n = 1000) was used. The 
analyses were performed using the Statistical Package for Social Sciences (SPSS), version 
26.0 (IBM Corp, Armonk, NY, USA). The normality of the data was assessed through the 
Kolmogorov-Smirnov test. All statistical tests were performed at a 95% confidence level 
with a p < 0.05 indicating statistical significance. 

3. Results 
3.1. Descriptive Characteristics of Clinical and Environmental E. coli Strains 

A total of n = 980 samples were collected and subjected to microbial culture for E. coli 
using phenotypic methods. Of the n = 980 samples, n = 480 were from clinical sources, 
while n = 500 were from environmental sources (Figure 1); out of the total sample number, 
E. coli was isolated from n = 632 (64.5%) of samples, where the distribution was n = 332 
(69.2%) and n = 300 (60.0%) from clinical and environmental sources, respectively. 

 
Figure 1. A hierarchical diagram showing the summary of clinical and environmental samples 
processed for E. coli; ESBL-EC: ESBL-producing E. coli. 

Total sam ples 

collected:

n = 980

C linical 

sam ples: 

n = 480

Positive for

E. coli:

n = 332

ESBL-EC : 

n = 141

N on-ESBL-EC : 

n = 191

N egative for

E. coli:

n = 148

Environm ental 

sam ples: 

n = 500

Positive for 

E. coli:

n = 300

ESBL-EC : 

n = 60

N on-ESBL-EC : 

n = 240

N egative for 

E. coli:
n = 200

Figure 1. A hierarchical diagram showing the summary of clinical and environmental samples
processed for E. coli; ESBL-EC: ESBL-producing E. coli.

The characteristics of patients and specimens corresponding to positive clinical sam-
ples (n = 332) are summarised in Table 1. Most of the samples were from female participants
(58.7%), patients aged 0 to 14 years, urine (74.4%), and outpatient department (35.5%)
(Table 1).

The origins of the n = 300 environmental E. coli specimens are summarised in Table 2.
The majority of the samples were from medical equipment, meat and fruits/vegetables
(Table 2).

3.2. Antibiotic Susceptibility Patterns of E. coli Isolated from Clinical Samples

The majority of the clinical E. coli isolates were highly resistant to AMP, SXT, CIP, KZ,
and LEV (Table 3). However, the isolates were highly susceptible to ETP, IPM, NIT, and CN.
Higher rates of resistance in clinical E. coli strains were shown against penicillin-derivatives,
fluoroquinolones, cephalosporins, and SXT in specimens such as blood cultures, CSF, and
urine; additionally, only two that were resistant to carbapenems were from pus samples
(Supplementary Table S1). Most of the E. coli isolates with extensive resistance originated
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from general adults’ wards, the ICU (both adult and neonatal), surgical wards, and the
pediatric unit; the isolates that were resistant to CL were from the adult medical ward
(n = 1), the outpatient department (n = 1), and from paediatrics (n = 2); while the isolates
that were resistant to carbapenems were from the outpatient department (n = 1) and surgical
unit (n = 1), respectively (Supplementary Table S2).

Table 1. Descriptive characteristics of clinical samples positive for E. coli.

Variables Frequency (n) Percentages (%)

Sex
Female 195 58.7
Male 137 41.3

Age (years)
0–14 69 20.8
15–24 54 16.3
25–34 74 22.3
35–44 34 10.2
45–54 34 10.2
55 and above 67 20.2

Specimen Type
Blood 12 3.6
Cerebrospinal fluid (CSF) 11 3.3
Pus 60 18.1
Stool 2 0.6
Urine 247 74.4

Origin of the sample (hospital
department)

Admission 8 2.4
General adult 52 15.7
Intensive care unit (ICU) 21 6.3
Obstetrics and Gynaecology 38 11.4
Outpatient Department

(OPD) 118 35.5

Paediatrics and
Neonatology 45 13.6

Surgery 50 15.1

Table 2. Descriptive characteristics of samples positive for E. coli from environmental sources.

Environmental Samples Frequency (n) Percentages (%)

Chicken and eggs 9 3.0
Fish 29 9.7

Water 35 11.7
Meat 56 18.7

Fruits and Vegetables 65 21.7
Medical Equipment 106 35.3

3.3. Antibiotic Susceptibility Patterns of E. coli Isolated from Environmental Samples

Isolates of E. coli from environmental samples were highly resistant to SXT, followed
by LEV and KZ. However, the isolates were highly susceptible to ETP, IPM, CN, AMP,
and CRO (Table 4). Environmental E. coli showing higher rates of non-susceptibility was
isolated from water, fruits/vegetables and medical equipment (Supplementary Table S3).

3.4. Prevalence of ESBL-Producing, and MDR/XDR E. coli from Clinical and
Environmental Sources

Overall, 48.3% (n = 304/632) of E. coli were MDR (clinical: 67.4% [n = 205/304],
environmental 32.5% [n = 99/304]), while 13.2% (n = 40/304) were XDR (clinical: 32.5%
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[n = 13/40], environmental 67.5% [n = 27/40]); MDR isolates were more common among
E. coli from clinical sources (p = 0.021), while this association was not found for XDR isolates
(p = 0.729). The detailed distribution of MDR and XDR E. coli among environmental and
clinical samples is presented in Supplementary Figures S1–S3. The overall prevalence of
ESBL-EC was 31.8% (n = 201), out of which, 70.1% (n = 141) were of clinical, while 29.9%
n = 60 were of environmental origin; ESBL-EC were significantly more common in clinical
than environmental samples (p = 0.0328).

Table 3. Antibiotic susceptibility patterns of E. coli isolated from clinical samples.

Antibiotic
Categories Antibiotics

n (%)

Susceptible Intermediate Resistant

Aminoglycosides
CN 281 (84.6%) 7 (2.1%) 44 (13.3%)

Carbapenems ETP 326 (98.2%) 4 (1.2%) 2 (0.6%)
IPM 328 (98.8%) 2 (0.6%) 2 (0.6%)

Cephalosporins

KZ 113 (34%) 4 (1.2%) 215 (64.8%)
CXM 117 (35.2%) 8 (2.4%) 207 (62.4%)
CAZ 157 (47.3%) 9 (2.7%) 166 (50%)
CRO 123 (37%) - 209 (63%)
FEP 159 (47.9%) - 173 (52.1%)

Penicillin-
derivatives

AMP 55 (16.6%) - 277 (83.4%)
AMC 118 (35.5%) 98 (29.6%) 116 (34.9%)

Sulphonamides SXT 87 (26.2%) - 245 (73.8%)
Furans NIT 298 (89.8%) 18 (5.4%) 16 (4.8%)

Fluoroquinolones CIP 113 (34%) 1 (0.3%) 218 (65.7%)
LEV 119 (35.8%) - 213 (64.2%)

Abbreviations: AMC-Amoxicillin/clavulanic acid; FEP-Cefepime; CN-Gentamicin; AMP-Ampicillin;
IMP-Imipenem; CAZ-Ceftazidime; KZ-Cephazolin; CIP-Ciprofloxacin; LEV-Levofloxacin; NIT-Nitrofurantoin;
CRO-Ceftriaxone; CXM-Cefuroxime; SXT-Sulfamethoxazole/trimethoprim; ETP-Ertapenem.

Table 4. Antibiotic susceptibility patterns of E. coli isolated from environmental samples.

Antibiotic
Categories Antibiotics

n (%)

Susceptible Intermediate Resistant

Penicillin
AMP 241 (80.3%) - 59 (19.7%)
AMC 238 (79.3%) 9 (3%) 53 (17.7%)

Cephalosporins

KZ 215 (71.7%) - 85 (28.3%)
CXM 235 (78.3%) 4 (1.3%) 61 (20.4%)
CAZ 243 (81%) - 57 (19%)
CRO 241 (80.3%) - 59 (19.7%)
FEP 246 (82%) - 54 (18%)

Carbapenems ETP 300 (100%) - -
IPM 300 (100%) - -

Aminoglycosides CN 244 (81.3%) 2 (0.7%) 54 (18%)

Fluoroquinolones CIP 225 (75%) - 75 (25%)
LEV 200 (66.7%) 8 (2.7%) 92 (30.6%)

Furans NIT 237 (79%) 4 (1.3%) 59 (19.7%)
Sulphonamides SXT - - 300 (100%)

The largest number of ESBL-EC were from samples of patients aged between 0 and
14 years, females (54.6%), urine (56.7%), pus (34%), outpatient department (27.7%), and
medical equipment (43.4%) (Table 5). Statistical significance was found among isolates
from CSF, urine, surgical ward, and meat (Table 5).
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Table 5. Epidemiological characteristics of ESBL-positive and negative E. coli among clinical and
environmental isolates.

Variables
ESBL Positive

Total
(n)Negative

n (%)
Positive

n (%) OR 95%CI p-Value

Clinical Samples
Age (Years)

0–14 33 (17.3%) 36 (25.5%) 69 - - -
15–24 35 (18.3%) 19 (13.5%) 54 0.498 0.239–1.034 0.0615
25–34 41 (21.5%) 33 (23.4%) 74 0.738 0.382–1.425 0.3652
35–44 20 (10.5%) 14 (9.9%) 34 0.642 0.280–1.472 0.2950
45–54 22 (11.5%) 12 (8.5%) 34 0.500 0.214–1.167 0.1088

55 and above 40 (20.9%) 27 (19.1%) 67 0.619 0.314–1.220 0.1660

Sex
Female 118 (61.8%) 77 (54.6%) 195 - - -
Male 73 (38.2%) 64 (45.4%) 137 0.744 0.479–1.158 0.1901

Specimen Type
Blood 2 (1%) 10 (7.1%) 12 - - -

Cerebrospinal fluid (CSF) 8 (4.2%) 3 (2.1%) 11 0.075 0.010–0.563 0.0118
Pus 12 (6.3%) 48 (34%) 60 0.800 0.154–4.144 0.7904

Urine 169 (88.5%) 80 (56.7%) 249 0.095 0.021–0.448 0.0027

Origin of the sample (hospital
department)

Admission/Adult 40 (20.9%) 20 (14.2%) 60 - - -
Intensive care unit (ICU) 9 (4.7%) 12 (8.5%) 21 2.667 0.964–7.375 0.0588

Obstetrics and Gynecology 22 (11.5%) 16 (11.3%) 38 0.987 0.510–1.910 0.9698
Outpatient Department (OPD) 79 (41.4%) 39 (27.7%) 118 1.454 0.629–3.364 0.3811
Paediatrics and Neonatology 23 (12%) 22 (15.6%) 45 1.913 0.865–4.230 0.1091

Surgery 18 (9.4%) 32 (22.7%) 50 3.555 1.616–7.821 0.0061
Environmental Samples

Fish 23 (8.1%) 6 (8.7%) 29 - - -
Water 22 (7.7%) 13 (18.8%) 35 2.265 0.732–7.014 0.156
Meat 62 (21.8%) 3 (4.3%) 65 0.185 0.043–0.804 0.024

Fruits and Vegetables 48 (16.8%) 17 (24.6%) 65 1.358 0.473–3.900 0.570
Medical Equipment 130 (45.6%) 30 (43.5%) 160 0.885 0.331–2.362 0.807

Note: SE = Standard error; OR = Odds ratio; B = Beta Estimate; CI = Confidence interval.

This study found that isolates from samples of individuals aged between 45 and
54 years (AOR = 0.175, CI: 0.047–0.651) were less likely to be ESBL-EC compared to those
aged between 0 and 14 years. Additionally, isolates from CSF were less likely to be ESBL-EC
(AOR = 0.050, CI: 0.005–0.363) compared to those from blood. Finally, isolates from urine
were less likely to be ESBL-EC (AOR = 0.093, CI: 0.014–0.388) compared to those from blood
(Table 6).

Most MDR E. coli were isolated from samples of patients aged between 0 and 14 years
(24.9%), males (52.7%), urine (66.3%), outpatient department (29.3%), and fruits/vegetables
(44.4%). This study revealed that MDR E. coli isolates were significantly associated with
age, sex, specimen type, hospital department, and environmental samples (Table 7).
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Table 6. Risk factors associated with ESBL-producing E. coli.

Variables B (SE) p-Value AOR
95% CI for AOR

Lower Upper

Sex Male −0.6270 (0.5805) 0.280 0.534 0.171 1.666
Age 15–24 −0.4757 (0.7081) 0.5017 0.621 0.155 2.489

25–35 1.2354 (0.7572) 0.1028 3.440 0.780 15.173
35–44 0.2458 (0.7653) 0.7481 1.279 0.285 5.730
45–54 −1.7412 (0.6694) 0.0093 0.175 0.047 0.651
>55 −0.9926 (0.5248) 0.0586 0.371 0.132 1.037

Sample CSF −2.9888 (1.0846) 0.0059 0.050 0.005 0.363
Pus −0.0740 (0.880) 0.9336 0.929 0.123 0.4631

Urine −2.3720 (0.8148) 0.0036 0.093 0.014 0.388

Note: AOR = Adjusted Odds Ratio.

Table 7. Distribution of MDR E. coli isolates among clinical and environmental samples.

Variables
Total

(n)

MDR

Negative
n (%)

MDR
n (%)

XDR
n (%)

Chi-
Square p-Value

Clinical Samples
Age (Years) 22.900 0.004

0–14 69 (20.3%) 17 (14.9%) 51 (24.9%) 1 (7.7%)
15–24 54 (16.3%) 25 (21.9%) 26 (12.7%) 3 (23.1%)
25–34 74 (22.3%) 26 (22.8%) 47 (22.9%) 1 (7.7%)
35–44 34 (10.2%) 17 (14.9%) 14 (6.8%) 3 (23.1%)
45–54 34 (10.2%) 14 (12.3%) 18 (8.8%) 2 (15.4%)

55 and above 67 (20.2%) 15 (13.2%) 49 (23.9%) 3 (23.1%)

Sex 11.083 0.004
Female 137 (41.3%) 33 (28.9%) 97 (47.3%) 7 (53.8%)
Male 195 (58.7%) 81 (71.1%) 108 (52.7%) 6 (46.2%)

Specimen Type 41.905 <0.001
Blood 12 (3.6%) 0 (0.0%) 10 (4.9%) 2 (15.4%)

Cerebrospinal fluid (CSF) 11 (3.3%) 0 (0.0%) 10 (4.9%) 1 (7.7%)
Pus 60 (18.1%) 8 (7.0%) 49 (23.9%) 3 (23.1%)

Stool 2 (0.6%) 2 (1.8%) 0 (0.0%) 0 (0.0%)
Urine 247 (74.4%) 104 (91.2%) 136 (66.3%) 7 (53.8%)

Hospital Department 25.464 0.005
Admission 8 (2.4%) 6 (5.3%) 2 (1.0%) 0 (0.0%)

General adult 52 (15.7%) 13 (11.4%) 35 (17.1%) 4 (30.8%)
Intensive care unit (ICU) 21 (6.3%) 3 (2.6%) 18 (8.8%) 0 (0.0%)

Obstetrics and Gynecology 38 (11.4%) 15 (13.2%) 22 (10.7%) 1 (7.7%)
Outpatient Department (OPD) 118 (35.5%) 54 (47.4%) 60 (29.3%) 4 (30.8%)
Paediatrics and Neonatology 45 (13.6%) 12 (10.5%) 32 (15.6%) 1 (7.7%)

Surgery 50 (15.1%) 11 (9.6%) 36 (17.6%) 3 (23.1%)
Environmental Samples

Fish 18 (8.8%) 7 (5.7%) 4 (14.8%) 29 (8.2%) 18.037 0.001
Water 12 (5.9%) 17 (13.9%) 6 (22.2%) 35 (9.9%)
Meat 46 (22.4%) 16 (13.1%) 3 (11.1%) 65 (18.4%)

Fruits and Vegetables 37 (18.0%) 16 (13.1%) 12 (44.4%) 65 (18.4%)
Medical Equipment 92 (44.9%) 66 (54.1%) 2 (7.4%) 160 (45.2%)
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Table 8 summarises the results of the logistic regression analysis for the factors signifi-
cantly associated with MDR in E. coli isolates: notably, clinical isolates originating from pus
and male patients were significantly associated with the MDR phenotype; in the case of
environmental sources, isolates from water were significantly associated with the MDR
phenotype (Table 8).

Table 8. Risk factors for MDR E. coli isolates from both clinical and environmental sources.

Variables p-Value AOR
95% CI for AOR

Lower Upper

Clinical
Pus 0.001 4.6 1.9 11.3

Male sex 0.010 2.1 1.2 3.9

Environment
Water 0.019 2.6 1.2 5.8

AOR: adjusted odds ratio; CI: confidence intervals.

4. Discussion

AMR has become a rising global burden, endangering global public health and sus-
tainable healthcare for both developing and developed countries [6,7]. According to the
O’Neill report, AMR may become the second leading cause of death by 2050, responsible for
over 10 million deaths worldwide [96]. To establish effective regional, national, and global
strategies to curb AMR, it is essential to investigate the prevalence of this problem and to
develop empirical treatment strategies (local antibiograms). The objective of the present
study was to examine ESBL-producing E. coli and the antimicrobial susceptibility patterns
of isolates from various clinical and environmental sources to a wide range of antibiotic
groups. Production of β-lactamase enzymes—especially ESBLs, owing to their rapid and
successful spread across the globe, is one of the most significant mediators conferring
resistance to a wide range of β-lactams in E. coli [43,97]. These enzymes form a large class
of resistance determinants that are frequently encoded on plasmids and are a major driver
in the emergence of MDR that confers resistance to penicillins and cephalosporins. Due to
their considerable prevalence, clinicians are now often forced to use carbapenems (the last
of the β-lactams), or other antibiotics with more disadvantageous adverse effects [98].

This present study investigated the AMR profiles and risk factors associated with
ESBL-producing E. coli in hospital and environmental settings in Zambia. This study
found that the prevalence of E. coli was 64.5%, of which 52.5% were from clinical sources.
Additionally, 31.8% were ESBL, of which 70.1% were clinical isolates. Of the 632 isolates,
48.3% were MDR. Most clinical isolates were resistant to AMP (83.4%), SXT (73.8%), and
CIP (65.7%) while most environmental isolates were resistant to SXT (100%). The risk
factors associated with MDR of the tested E. coli isolates included pus, male sex, and water.
Finally, E. coli isolates from samples of patients aged from 45 to 54 years and urine were
less likely to be ESBL-producers.

The present study found the prevalence of E. coli to be 64.5%, of which 52.5% were
isolated from clinical samples and 47.5% from environmental samples. Our low prevalence
of E. coli isolated from the environment compared to the hospital setting could be due to the
challenges in isolation methods of E. coli from environmental samples [99]. The prevalence
of E. coli found in our study is higher than that reported in Pakistan where 23.75% of E. coli
were isolated from urine samples [100]. A study in Poland reported a higher E. coli isolation
rate of 78% (identified using 16S rRNA sequencing) and 82% (identified using MALDI
Biotype) from river water and wastewater [100]. However, our isolation rate of E. coli from
water samples was lower compared to that reported in Pakistan where the researchers
found an isolation rate of 26.7% [100]. These differences in isolation rates could be due to
technical differences and slight variability in methods. Interestingly, the isolation of E. coli
from environmental and clinical samples demonstrates the need for a One Health approach
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in the surveillance of infections and AMR [73,101]. Additionally, genomic surveillance of
priority pathogens should be promoted [102].

The current study found that most clinical E. coli isolates were highly resistant to AMP.
Our findings corroborate findings from other studies where E. coli isolates from clinical and
environmental samples were highly resistant to penicillins such as AMP [85,103–109]. The
high resistance of E. coli to ampicillin can be attributed to its potential to develop intrinsic
resistance against penicillins. Additionally, exposure to antibiotics such as penicillins also
contributes to the high resistance of E. coli reported in many studies [47,48,50,85,89,91,110].
Conversely, a lower resistance rate of E. coli to ampicillin has been reported in other studies’
findings. The lower resistance can be due to the low use of antibiotics in other settings.
Other studies found a high resistance of E. coli isolated from clinical and environmental
samples to SXT [103,109,111–113]. The high resistance of E. coli to SXT could be due to its
overuse and misuse in humans and animals [85,114–116]. However, a low resistance rate of
E. coli to SXT was reported in a study that was conducted in Turkey among outpatients [117].
Similarly, low resistance of E. coli to SXT was reported in Australia due to the restriction of
antibiotic use [118]. Hence, restricting the use of antibiotics may help curb AMR [119,120].

Our study also found high resistance of E. coli to quinolones such as CIP and LEV. The
high resistance of E. coli to quinolones has been reported in other studies [114,121–126].
This high resistance could be due to the overuse and misuse of quinolones in human
and animal health systems [114]. This is a huge problem because quinolones are largely
used to treat urinary tract infections, respiratory tract infections, and other infections.
However, lower resistance rates of E. coli to quinolones have been reported in similar
settings [103,127]. This low use could be due to the effective implementation of AMS
programmes in healthcare facilities. High resistance of E. coli to cephalosporins such as
cefuroxime was found in our study. This is similar to a study that was conducted in Uganda
and Nigeria, where E. coli isolates were 100% resistant to cefuroxime [109,125], and in South
Africa where high resistance of E. coli to cephalothin was reported [128]. High resistance to
Ceftriaxone [129,130], Ceftazidime [125], and Nalidixic acid [125] has also been reported.
In Zambia, there is an overuse and misuse of antibiotics such as cephalosporins, which
could be a driver of the high resistance [63,64,90,131].

The present study found that E. coli isolates were highly susceptible to CN, ETP,
IPM, and NIT. This was observed for both clinical and environmental isolates. These
findings corroborate reports from a meta-analysis where E. coli was highly susceptible
to antibiotics such as amikacin, IPM, and NIT [103]. High susceptibility of E. coli to
gentamicin was also reported in South Africa [128] and other similar studies [106,132]. The
high susceptibility of E. coli isolates to IPM was also reported in other studies [129,133,134].
The high susceptibility of E. coli to these antibiotics suggests that they are the most effective
drugs for the treatment of infections caused by E. coli, such as UTIs [132].

The current study found that 48.3% of E. coli isolates were MDR. A comparable E. coli
MDR prevalence of 49.48% was reported in Ghana [135]. However, the finding in our study
is lower than the 52% MDR reported in South Africa [128], 63.3% in Mexico [136], 68.3%
in Ethiopia [43], 80% in Brazil [137], 91.4% in the United Kingdom [133], 97% in another
Mexican study [138], and 98% in Bangladesh [139]. It is well known that susceptibility
patterns can change over time and can differ between geographical locations [140]. Further,
the high MDR among the E. coli isolates in hospital and environmental settings is partially
due to the misuse and overuse of antibiotics both in humans and the environment [141]. It
is also critical to note that MDR pathogens limit antibiotic treatment options, contributing
to increased morbidity and mortality globally [141]. Therefore, the study of bacterial
resistance to multiple antibiotics is essential for determining the most effective therapy for
the subsequent infection, as the rise of MDR bacterial strains poses a significant threat to
the health of people of all ages.

ESBL-producing E. coli may arise from interactions between ESBL type, strain ge-
netic background, and selective pressures in various ecologic niches [54,142–145]. ESBL-
producing E. coli is an important cause of both nosocomial and community-onset infections
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globally [146]. Additionally, ESBL-producing E. coli often shows resistance to multiple
drugs, which limits treatment options [56,147–149]. Commonly used treatments for severely
ill patients, such as fluoroquinolones, aminoglycosides, and trimethoprim, are often associ-
ated with co-resistance, resulting in higher rates of morbidity and mortality [150].

In this present study, the prevalence of ESBL-producing E. coli was found to be 31.8%.
A low prevalence of ESBL-producing E. coli was reported in other studies [58,151,152].
Consequently, a higher prevalence of ESBL-producing E. coli was reported in other studies,
including 38% in Sudan [124], 38.07% in China [153], 42.5% in Thailand [154], 50% in
Brazil [137], 55.5% in India [134], 57.7% in Ethiopia [43], 62% in Jordan [155], and 88.8% in
the United Kingdom [133]. The overuse and misuse of antibiotics, especially cephalosporins
and fluoroquinolones in humans, animals, and the environment, have contributed to the
emergence of ESBL-producing E. coli [153]. The increased ESBL-producing E. coli indicates
a greater extent of resistance to antibiotics. Consequently, increased rates of ESBL producers
limit treatment options [156].

The present study found that most ESBL producers were isolated from urine (56.7%).
This finding is different from a study that was conducted in India that found that most of
the ESBL-producing strains were isolated from blood (66.67%) [134]. Further, our study
revealed that most ESBL producers were isolated from the outpatient department, in
contrast with findings from a similar study where most ESBL producers were isolated
from in-patients [134]. A study in the United Arabs Emirates (UAE) reported that ESBL-
producing E. coli were responsible for 75% of UTIs in communities, indicating their high
prevalence in outpatients [157]. Our study revealed that E. coli isolates from samples of
patients aged between 45 and 54 years, CSF, and urine were less likely to be ESBL-producers.
Older age was found to be a risk factor for ESBL-producing E. coli [158]. Similar studies have
reported other risk factors of ESBL-producing E. coli, including previous hospitalisations,
and use of urinary catheters [155].

In this study, most MDR E. coli isolates were isolated from samples of patients aged
between 0 and 14 years, males, urine, outpatient department, and fruits/vegetables. The
isolation of MDR E. coli from similar samples has been reported in other studies [159].
Additionally, E. coli isolates from males were more likely to be MDR than those from female
patients. This is in line with other studies that reported similar results of males having
higher odds of harbouring MDR E. coli isolates than females [160,161]. The impact of sex
on the pattern of resistance was solely dependent on the clinical factors and location of
the samples within the clinical isolates. Further, the risk of isolating MDR E. coli in our
study was noted from pus samples. Our findings are similar to reports from previous
studies which reported a larger fraction of MDR E. coli from pus [162,163]. However, some
studies revealed that urine had a high prevalence of MDR E. coli [164–168]. Additionally,
the present study found that water (drinking water from the community taps, boreholes,
and wells) was significantly associated with MDR. This may be due to contaminated water
sources within the communities or poor water quality. This is similar to a study in Zambia
that reported that shallow water in peri-urban areas was significantly more contaminated
with E. coli [169]. Our findings conform to other studies that have demonstrated the
presence of high rates of MDR E. coli in water samples [170–175]. These findings indicate
the presence of MDR E. coli in various samples.

We are aware of the limitations of our study: This study was conducted in the Lusaka
province of Zambia; therefore, generalisation of the findings should be performed with
caution. Additionally, we did not collect equal numbers of clinical and environmental
samples, which may affect the comparison of results. However, we believe that the ob-
tained results on the AMR patterns of E. coli isolated from clinical and environmental
settings require heightened surveillance programs. Additionally, the identified risk factors,
including isolates from pus, male sex, and water samples, emphasise the need for a One
Health approach, which is critical to the surveillance of AMR across the human, animal,
and environmental sectors.
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5. Conclusions

This study reported a high prevalence rate of ESBL-producing E. coli among clinical
and environmental samples. Most of these E. coli strains showed multiple AMR patterns to
commonly used antibiotics, most of which were MDR and potential XDR strains. Signifi-
cantly, risk factors in ESBL strains were associated with pus and blood specimens, with
most isolates showing high resistance to cephalosporins, fluoroquinolones, ampicillin, and
colistin, and only a few isolates being sensitive to aminoglycosides and carbapenems. The
importance of these findings was the identification of ESBL-producing E. coli in humans,
animals, and the environment. This suggests that surveillance and routine screening for
MDR and ESBL-producing E. coli is important to control the spread of resistant strains as
part of a One Health approach.
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150. Serwecińska, L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water 2020, 12, 3313.
[CrossRef]

151. Tigabie, M.; Biset, S.; Belachew, T.; Amare, A.; Moges, F. Multidrug-resistant and extended-spectrum beta-lactamase-producing
Enterobacteriaceae isolated from chicken droppings in poultry farms at Gondar City, Northwest Ethiopia. PLoS ONE 2023,
18, e0287043. [CrossRef]

152. Ludden, C.; Coll, F.; Gouliouris, T.; Restif, O.; Blane, B.; Blackwell, G.A.; Kumar, N.; Naydenova, P.; Crawley, C.; Brown, N.M.; et al.
Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: A genomic surveillance study. Lancet
Microbe 2021, 2, e472–e480. [CrossRef] [PubMed]

153. Jia, P.; Zhu, Y.; Li, X.; Kudinha, T.; Yang, Y.; Zhang, G.; Zhang, J.; Xu, Y.; Yang, Q. High Prevalence of Extended-Spectrum
Beta-Lactamases in Escherichia coli Strains Collected From Strictly Defined Community-Acquired Urinary Tract Infections in
Adults in China: A Multicenter Prospective Clinical Microbiological and Molecular Study. Front. Microbiol. 2021, 12, 663033.
[CrossRef]

154. Siriphap, A.; Kitti, T.; Khuekankaew, A.; Boonlao, C.; Thephinlap, C.; Thepmalee, C.; Suwannasom, N.; Khoothiam, K. High
prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates: A 5-year
retrospective study at a Tertiary Hospital in Northern Thailand. Front. Cell. Infect. Microbiol. 2022, 12, 955774. [CrossRef]

155. Al-Jamei, S.A.; Albsoul, A.Y.; Bakri, F.G.; Al-Bakri, A.G. Extended-spectrum β-lactamase producing E. coli in urinary tract
infections: A two-center, cross-sectional study of prevalence, genotypes and risk factors in Amman, Jordan. J. Infect. Public Health
2019, 12, 21–25. [CrossRef]

156. Hays, J.P.; Safain, K.S.; Almogbel, M.S.; Habib, I.; Khan, M.A. Extended Spectrum- and Carbapenemase-Based β-Lactam
Resistance in the Arabian Peninsula—A Descriptive Review of Recent Years. Antibiotics 2022, 11, 1354. [CrossRef]

157. Ranjan Dash, N.; Albataineh, M.T.; Alhourani, N.; Khoudeir, A.M.; Ghanim, M.; Wasim, M.; Mahmoud, I. Community-acquired
urinary tract infections due to extended-spectrum β-lactamase-producing organisms in United Arab Emirates. Travel Med. Infect.
Dis. 2018, 22, 46–50. [CrossRef] [PubMed]

158. Ikram, R.; Psutka, R.; Carter, A.; Priest, P. An outbreak of multi-drug resistant Escherichia coli urinary tract infection in an elderly
population: A case-control study of risk factors. BMC Infect. Dis. 2015, 15, 224. [CrossRef]

159. Aabed, K.; Moubayed, N.; Alzahrani, S. Antimicrobial resistance patterns among different Escherichia coli isolates in the Kingdom
of Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 3776–3782. [CrossRef]

160. Shrestha, A.; Shrestha, R.; Koju, P.; Tamrakar, S.; Rai, A.; Shrestha, P.; Madhup, S.K.; Katuwal, N.; Shrestha, A.; Shrestha, A.;
et al. The Resistance Patterns in E. coli Isolates among Apparently Healthy Adults and Local Drivers of Antimicrobial Resistance:
A Mixed-Methods Study in a Suburban Area of Nepal. Trop. Med. Infect. Dis. 2022, 7, 133. [CrossRef]

161. Sahuquillo-Arce, J.M.; Selva, M.; Perpiñán, H.; Gobernado, M.; Armero, C.; López-Quílez, A.; González, F.; Vanaclocha, H.
Antimicrobial resistance in more than 100,000 Escherichia coli isolates according to culture site and patient age, gender, and
location. Antimicrob. Agents Chemother. 2011, 55, 1222–1228. [CrossRef]

162. Pariyar, M.; Adhikari, S.; Regmi, R.S.; Dhungel, B.; Banjara, M.R.; Rijal, B.P.; Rijal, K.R.; Ghimire, P. Beta-Lactamase-Producing
Gram-Negative Bacterial Isolates Among the Patients Attending a Tertiary Care Hospital, Kathmandu, Nepal. Microbiol. Insights
2023, 16, 117863612211507. [CrossRef]

163. Bora, A.; Sanjana, R.; Jha, B.K.; Narayan Mahaseth, S.; Pokharel, K. Incidence of metallo-beta-lactamase producing clinical isolates
of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res. Notes 2014, 7, 557. [CrossRef]

https://doi.org/10.1016/j.sjbs.2014.08.002
https://doi.org/10.3402/iee.v4.24555
https://doi.org/10.1186/s13756-017-0292-y
https://doi.org/10.1016/j.ijantimicag.2009.11.003
https://doi.org/10.1016/j.jinf.2021.06.004
https://doi.org/10.1186/s13756-015-0085-0
https://doi.org/10.7860/JCDR/2013/4990.2796
https://doi.org/10.1099/jmm.0.036806-0
https://www.ncbi.nlm.nih.gov/pubmed/21940649
https://doi.org/10.3390/w12123313
https://doi.org/10.1371/journal.pone.0287043
https://doi.org/10.1016/S2666-5247(21)00117-8
https://www.ncbi.nlm.nih.gov/pubmed/34485958
https://doi.org/10.3389/fmicb.2021.663033
https://doi.org/10.3389/fcimb.2022.955774
https://doi.org/10.1016/j.jiph.2018.07.011
https://doi.org/10.3390/antibiotics11101354
https://doi.org/10.1016/j.tmaid.2018.01.007
https://www.ncbi.nlm.nih.gov/pubmed/29409967
https://doi.org/10.1186/s12879-015-0974-0
https://doi.org/10.1016/j.sjbs.2021.03.047
https://doi.org/10.3390/tropicalmed7070133
https://doi.org/10.1128/AAC.00765-10
https://doi.org/10.1177/11786361221150761
https://doi.org/10.1186/1756-0500-7-557


Microorganisms 2023, 11, 1951 21 of 21

164. Bao, D.; Xu, X.; Wang, Y.; Zhu, F. Emergence of a Multidrug-Resistant Escherichia coli Co-Carrying a New mcr-1.33 Variant and
blaNDM-5 Genes Recovered from a Urinary Tract Infection. Infect. Drug Resist. 2022, 15, 1499–1503. [CrossRef]

165. Niranjan, V.; Malini, A. Antimicrobial resistance pattern in Escherichia coli causing urinary tract infection among inpatients.
Indian J. Med. Res. 2014, 139, 945–948.

166. Kourtis, A.P.; Sheriff, E.A.; Weiner-Lastinger, L.M.; Elmore, K.; Preston, L.E.; Dudeck, M.; McDonald, L.C. Antibiotic Multidrug
Resistance of Escherichia coli Causing Device- and Procedure-related Infections in the United States Reported to the National
Healthcare Safety Network, 2013–2017. Clin. Infect. Dis. 2021, 73, E4552–E4559. [CrossRef]

167. Mutters, N.T.; Mampel, A.; Kropidlowski, R.; Biehler, K.; Günther, F.; Bălu, I.; Malek, V.; Frank, U. Treating urinary tract infections
due to MDR E. coli with Isothiocyanates—A phytotherapeutic alternative to antibiotics? Fitoterapia 2018, 129, 237–240. [CrossRef]

168. Kaye, K.S.; Gupta, V.; Mulgirigama, A.; Joshi, A.V.; Scangarella-Oman, N.E.; Yu, K.; Ye, G.; Mitrani-Gold, F.S. Antimicrobial
Resistance Trends in Urine Escherichia coli Isolates From Adult and Adolescent Females in the United States From 2011 to 2019:
Rising ESBL Strains and Impact on Patient Management. Clin. Infect. Dis. 2021, 73, 1992–1999. [CrossRef]

169. Reaver, K.M.; Levy, J.; Nyambe, I.; Hay, M.C.; Mutiti, S.; Chandipo, R.; Meiman, J. Drinking Water Quality and Provision in Six
Low-Income, Peri-Urban Communities of Lusaka, Zambia. GeoHealth 2021, 5, e2020GH000283. [CrossRef] [PubMed]

170. Seguni, N.Z.; Kimera, Z.I.; Msafiri, F.; Mgaya, F.X.; Joachim, A.; Mwingwa, A.; Matee, M.I. Multidrug-resistant Escherichia coli
and Klebsiella pneumoniae isolated from hospital sewage flowing through community sewage system and discharging into the
Indian Ocean. Bull. Natl. Res. Cent. 2023, 47, 66. [CrossRef]

171. Farrell, M.L.; Chueiri, A.; O’Connor, L.; Duane, S.; Maguire, M.; Miliotis, G.; Cormican, M.; Hooban, B.; Leonard, A.;
Gaze, W.H.; et al. Assessing the impact of recreational water use on carriage of antimicrobial resistant organisms. Sci. To-
tal Environ. 2023, 888, 164201. [CrossRef]

172. Leonard, A.F.C.; Zhang, L.; Balfour, A.J.; Garside, R.; Hawkey, P.M.; Murray, A.K.; Ukoumunne, O.C.; Gaze, W.H. Exposure to
and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and
epidemiological study (Beach Bum Survey). Environ. Int. 2018, 114, 326–333. [CrossRef]

173. Lyimo, B.; Buza, J.; Subbiah, M.; Smith, W.; Call, D.R. Comparison of antibiotic-resistant Escherichia coli obtained from drinking
water sources in northern Tanzania: A cross-sectional study. BMC Microbiol. 2016, 16, 254. [CrossRef]

174. Chen, Z.; Yu, D.; He, S.; Ye, H.; Zhang, L.; Wen, Y.; Zhang, W.; Shu, L.; Chen, S. Prevalence of antibiotic-resistant Escherichia coli
in drinking water sources in Hangzhou City. Front. Microbiol. 2017, 8, 267763. [CrossRef]

175. Kalakonda, S.P.; Parameswarreddy, G.; Skariah, E.N.; George, B.; Suchithra, T.V.; Sindhu, T.K. Treatment of Escherichia coli contam-
inated water with different pulse-powered NTP configurations and analysis for post treatment efficacy. Sci. Rep. 2022, 12, 20380.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2147/IDR.S358566
https://doi.org/10.1093/cid/ciaa1031
https://doi.org/10.1016/j.fitote.2018.07.012
https://doi.org/10.1093/cid/ciab560
https://doi.org/10.1029/2020GH000283
https://www.ncbi.nlm.nih.gov/pubmed/33392423
https://doi.org/10.1186/s42269-023-01039-4
https://doi.org/10.1016/j.scitotenv.2023.164201
https://doi.org/10.1016/j.envint.2017.11.003
https://doi.org/10.1186/s12866-016-0870-9
https://doi.org/10.3389/fmicb.2017.01133
https://doi.org/10.1038/s41598-022-24248-9

	Introduction 
	Materials and Methods 
	Study Design and Site Location 
	Data Collection 
	Specimen Collection and Processing 
	Antibiotic Susceptibility Testing 
	Data Analysis 

	Results 
	Descriptive Characteristics of Clinical and Environmental E. coli Strains 
	Antibiotic Susceptibility Patterns of E. coli Isolated from Clinical Samples 
	Antibiotic Susceptibility Patterns of E. coli Isolated from Environmental Samples 
	Prevalence of ESBL-Producing, and MDR/XDR E. coli from Clinical and Environmental Sources 

	Discussion 
	Conclusions 
	References

