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Abstract: Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality
rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival
rates due to the regular occurrence of drug resistance and deleterious side effects render the need
for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota
imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer pro-
gression and response to anticancer therapy. Manipulation of the gut microbiota composition via
the administration of probiotic-derived bioactive compounds has gradually attained the interest of
scientific communities as a novel therapeutic strategy for CRC. These compounds encompass mis-
cellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids
(SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound
anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic
types and a comprehensive summary of the current state of research on their biological role against
CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper
function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it
discusses the future perspectives in precision-medicine approaches as well as the challenges of their
synthesis and optimization of administration in clinical studies.
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1. Introduction

Colorectal cancer (CRC) represents the third most prevalent form of cancer worldwide,
accounting for more than 1.9 million new incidents and 900,000 deaths in 2020 [1,2]. CRC
is a multifactorial and heterogeneous non-communicable disease. Approximately 65% of
CRC cases develop sporadically through the accumulation of acquired somatic mutations
and epigenetic modifications [3], while other cases are associated with CRC predisposition
genes (25%) and hereditary syndromes (5%) [4,5]. The development of sporadic CRCs is
usually a multistep and long-lasting process that involves progressive transformation of
normal intestinal epithelial cells (IECs) into malignant cells [2]. Based on the epithelial
lesion type and the specific molecular profile, two distinct carcinogenesis pathways have
been recognized [1]: the traditional adenoma–carcinoma pathway [6] and the serrated
neoplasia pathway [7].

Expedient options of CRC treatment, including surgery, radiotherapy, targeted therapy,
immunotherapy, and chemotherapy [1], are based on tumor-related features [8]. Chemother-
apeutic intervention with palliative purposes is often selected to enhance the survival rate
of CRC patients [3]. However, the efficacy of current strategies is usually imperiled, due to
drugs’ inadequate capacity to discriminate between healthy and cancer cells, thus causing
intensified toxicity and undesirable effects to the human body [2]. Additionally, chemother-
apy rarely accomplishes the complete eradication of malignant cells, while it can promote
drug-resistance development [9]. Cancer cells display a variety of remarkable changes in
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their physiology [10]. Recently, this list has been expanded to incorporate the effects of gut
microbiota composition on the initiation and/or progression of tumorigenesis [11].

Gut microbiota, the complex microbial population inhabiting the gastrointestinal
tract (GIT), can shape oncologic outcomes in several ways [12]. Global epidemiological
studies suggest that variations in gut microbiota composition and diversity, known as
gut dysbiosis, can influence CRC initiation and progression [13]. The involvement of gut
microbes in modulating physiological processes could be reversed in case of dysbiosis
towards chronic inflammation and CRC induction [14]. Depending on the predominant gut
microbiota-induced fermentation pathway, dietary patterns reflect on the enrichment of on-
cometabolites or tumor-suppressing metabolites [15]. Gut microbiota metabolism is closely
associated with the efficacy and toxicity of traditional chemotherapeutic treatments [16]. In
some cases, gut metabolites induce an immunostimulatory tumor microenvironment (TME)
that advocates drugs toxicity on tumor cells [17]. However, a substantial number of patients
experience treatment-associated adverse effects or even mortality due to these medications,
a fact attributed to their intestinal microbial diversity [16]. Deciphering the synergistic or
contradictory action of gut microbiota with anticancer agents remains a conundrum.

In recent years, probiotics have been utilized to attenuate postoperative gastrointestinal
complications in eligible CRC patients undergoing chemotherapy [18]. Lactic acid bacteria
(LAB), a ubiquitous group of Gram-positive microorganisms, comprise the most common
type of probiotics due to their beneficial health effects on the host and their “generally recog-
nized as safe” (GRAS) status [19]. The anticancer activity of probiotics is predicated on their
ability to suppress tumor growth as well as induce cell cycle arrest and apoptosis [20,21].
Nevertheless, probiotics have been reported to biotransform chemical compounds [22] and
anticancer agents [23], thus affecting drugs’ bioavailability and therapeutic outcomes, or
even leading to disease exacerbation [24]. In this regard, administration of probiotic-derived
bioactive compounds with profound anti-inflammatory and antiproliferative properties is
now being leveraged as a novel personalized therapeutic approach in CRC treatment [25].
These secreted metabolic products purified from the probiotic cell-free supernatant (CFS)
comprehend short-chain fatty acids (SCFAs), bacteriocins, exopolysaccharides (EPSs), nonri-
bosomal lipopeptides, and other bacterial peptides [26] (Figure 1).

This review provides a concise summary of the most prominent probiotic-derived
compounds and emphasizes the current knowledge regarding their biological roles in CRC
treatment. Additionally, it focuses on the underlying mechanisms that configure their
antiproliferative effects on malignant cells, as well as how their intricate interaction with
the gut microbiota can lead to the elimination of dysbiosis. Finally, it discusses the future
perspectives and challenges of their administration to individuals.
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2. The Role of Gut Microbiota in CRC Development and Treatment

The human gut microbiota encompasses about a hundred trillion microorganisms, a
number three times greater than the total number of human cells [5,27], while it encodes
more than three million genes [28]. This diverse microbial community harbors between 500
to 1000 bacterial species, mostly belonging to the Bacteroidetes and Firmicutes phyla [29],
and is strictly compartmentalized to the intestinal lumen of the GIT. The establishment of
the gut microbiota occurs during infancy [30], while it stabilizes and reaches its peak com-
plexity in adulthood [31]. Its composition varies among individuals and is predominantly
shaped by various factors including nutrition [32], antibiotic treatment [33], age, and ethnic-
ity [34]. A healthy gut microbiota plays a fundamental role in host nutrient metabolism, [35],
immunomodulation [36,37], maintenance of the mucosal barrier integrity [38], produc-
tion of antimicrobial and anti-inflammatory compounds [39,40], and protection against
intruding pathogens [5].

The qualitative and quantitative alterations in the gut microbiota composition, namely
dysbiosis, are often associated with increased susceptibility to gastrointestinal malignan-
cies [41]. Gut dysbiosis is characterized by the overgrowth of proinflammatory bacterial
species at the expense of beneficial microbes [42], thus leading to disturbance of epithelial
barrier function, chronic inflammation, oxidative stress [43], and colorectal tumorigene-
sis [44]. In fact, approximately 20% of cancers, including CRC, are hypothesized to be
attributed to microbes [45]. Several studies have indicated the association between gut
microbiota dysbiosis and cancer development [46–49]. CRC occurrence is generally associ-
ated with the prevalence of specific bacterial species [50,51], such as Fusobacterium nuclea-
tum [52], Bacteroides fragilis [53,54], Escherichia coli [55], Streptococcus bovis and Streptococcus
gallolyticus [56], Helicobacter pylori [57], Salmonella typhimurium [58], Clostridium sp. [59], and
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Citrobacter rodentium [60]. These microorganisms induce carcinogenesis via activation of
signaling pathways, toxic metabolites production, and extensive DNA damage [41].

The role of the gut microbiota in CRC development is supported by multiple stud-
ies [61–66] and explained by the “Driver-Passenger” model [67]. According to this model,
“driver” pathogenic bacteria can induce colorectal tumorigenesis via the production of tox-
ins and digestion of the protective mucus layer shielding the intestinal epithelium. The CRC
microenvironment stimulates the overgrowth of specific “passenger” opportunistic bacteria
that further promote dysbiosis, epithelial cell hyperproliferation, and chronic inflammation,
thus leading to CRC progression [68]. In vivo studies confirmed that fecal microbiota
transplantation (FMT) from CRC patients into germ-free [69] and Adenomatous polyposis
coli (APC) gene knockout mice [70] facilitated intestinal tumorigenesis. Furthermore, sig-
nificant differences regarding gut microbiota composition were detected between healthy
individuals and CRC patients, which were correlated with the expression of genes known
to promote inflammatory responses [71,72]. The gut microbiota may be harnessed through
establishing microbial therapeutics as chemopreventive agents [73–80], as adjuvants to
augment drug efficacy [81,82], or as diagnostic biomarkers for CRC screening [83–87].

Several studies have indicated that medications can significantly affect the gut mi-
crobiota, thus playing a pivotal role in disease development and therapy [85,88,89]. At
the same time, gut microbes are implicated in drug pharmacokinetics [90], pinpointing
this as one of the most challenging aspects of developing individual-specific anticancer
agents to improve therapeutic outcomes. Surprisingly, the role of the gut microbiota in CRC
therapy is rather supported by conflicting results. The contribution of the gut microbiota
in enhanced therapeutic efficacy has been reported, while, concomitantly, the metabolic
activity of gut bacteria is a critical trait in side effect exacerbation. For instance, irinotecan
is mostly used intravenously to treat CRC. However, it commonly causes severe diarrhea
upon its conversion into the active metabolic form by microbial β-glucuronidase enzymes.
Those side effects are mitigated via the utilization of β-glucuronidase inhibitors [90]. Addi-
tionally, 5-Fluorouracil (5-FU) was found to inhibit the growth of CRC-related F. nucleatum,
while specific intratumoral microbiota members can covert 5-FU into a nontoxic form, thus
resulting in increased cancer epithelial cell growth [91].

3. Probiotic Derived Bioactive Compounds and CRC
3.1. Cell-Free Supernatant

The cell-free supernatant (CFS) encompasses diverse bioactive metabolites secreted
by probiotics during microbial growth [25,92] as well as the remains of the culture
medium [93]. The typical procedure for CFS preparation involves two main steps: the
removal of bacterial cells via centrifugation and the filtration of the emerged mixture
to obtain a sterile, transparent liquid medium [94,95] (Figure 1). Optionally, the CFS
can be subjected to lyophilization prior to use [96]. The compositional profile of CFS-
derived compounds, ranging from proteinaceous molecules to organic acids, is generally
altered by individual nutrients in the growth medium [96], thus endowing the CFS with
variegated health-promoting effects [92,93].

The antiproliferative properties of CFSs against CRC cells originate from probiotics,
mainly of the genus Lactobacillus [97–107], Bacillus [108,109], Enterococcus [110], Bifidobac-
terium [111], Leuconostoc [112], or commensal bacteria [113,114] and have been accredited
in vitro (Table 1). The CFS can promote the activation of the intrinsic apoptotic pathway as
indicated by increased caspase expression [115–120] and other major biochemical changes,
including the loss of mitochondrial membrane potential and cytochrome c release, down-
regulation of the anti-apoptotic BCL2 gene, and the up-regulation of the pro-apoptotic BAK,
BAD, and BAX genes [121,122]. Moreover, apoptosis-associated morphological alterations
such as the formation of cytoplasmic blebs, chromatin condensation, and DNA fragmenta-
tion have been observed [123–126]. In addition, the potent anti-inflammatory properties of
Pediococcus acidilactici supernatant in LPS-pretreated CRC cells [127], as well as the suppres-
sion of pro-inflammatory cytokine production in pathogen-stimulated Caco-2 cells by the
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CFS from Lacticaseibacillus sp. [128] have been reported. Interestingly, Clostridium butyricum
TO-A supernatant significantly down-regulates Toll-like receptor-4 (TLR4) expression and
this effect is attributed to the high content of butyrate [129].

The anti-metastatic effects of various CFS have been previously observed [130–135].
For instance, CFS derived from Lactobacillus rhamnosus GG was found to prevent CRC cell in-
vasion via reduction of matrix metalloproteinase-9 (MMP-9) expression and increased tight
junction protein zona occludens-1 (ZO-1) and tissue inhibitor of metalloproteinase (TIMP)
levels [130,131], whereas it exhibits synergistic action with 5-FU [136]. Lactiplantibacillus
plantarum and Lactobacillus fermentum CFS induced a dramatic increase in apoptosis marker
levels in three-dimensional (3D) spheroids of CRC cells in vitro [137,138]. In addition, vari-
ous CFSs have been reported to suppress the expression of cyclin genes, thus affecting cell
cycle progression [139,140]. A CFS derived from Lactobacillus plantarum CCARM 0067 re-
sulted in Wnt/β-catenin suppression when combined with 5-FU [141], while it contributed
to the restoration of sodium-coupled monocarboxylate transporter 1 (SMCT1) expression
leading to butyrate-induced antiproliferative effects in 5-FU resistant CRC cells [142]. The
inhibition of autophagy-related proteins and synergistic effects with chloroquine were
observed in the case of Lactobacillus plantarum CFS-treated CRC cells [143]. Lastly, there is
also evidence of the beneficial effects of CFSs derived from yeast cultures [144,145].

Table 1. In vitro effects of cell-free supernatants on CRC cells.

Probiotic Strain CRC Cell Line Effect/Mechanism of Action Reference

Bacillus coagulans
Unique IS2 COLO 205 cytotoxic effect, apoptosis induction (↑ Bax/Bcl-2 ratio/

MtMP loss/cyt c release/↑ caspase-3/PARP cleavage) [116]

Bacillus polyfermenticus HT-29, DLD-1,
Caco-2 antiproliferative activity, ErbB-2 and ErbB-3 inhibition [108]

Bacillus polyfermenticus KU3 LoVo, HT-29 anti-inflammatory and cytotoxic activity [109]

Bifidobacterium adolescentis
SPM0212 HT-29, SW-480, Caco-2

dose-dependent anticancer activity, changes in cellular
morphology, ↓ TNF-α, inhibition of harmful

fecal enzymes
[124]

Bifidobacterium bifidum SW742 cytotoxic effect [111]

Clostridium butyricum TO-A HT-29 TLR4 down-regulation [129]

Enterococcus faecium 12a
E. faecium L12b

E. hirae 20c
HCT-15 dose-dependent cytotoxic effect,

apoptosis-related morphological changes [125]

E. lactis IW5 HT-29,
Caco-2

time- and dose-dependent cytotoxic activity,
extrinsic apoptotic pathway [110]

Faecalibacterium prausnitzii HCT 116 time- and dose-dependent cytotoxic activity [113]

Lacticaseibacillus paracasei
SD1, Lacticaseibacillus

rhamnosus SD4,
SD11 and GG

Caco-2 dose-dependent cytotoxic effect, pro-inflammatory
cytokine suppression after stimulation with pathogens [128]

Lactiplantibacillus
plantarum 0991 Caco-2 dose-dependent antiproliferative activity,

↑ oxidative stress, intrinsic apoptotic pathway [120]

Lactiplantibacillus plantarum
L125 HT-29 antiproliferative, anti-clonogenic and

anti-migration activity [135]

Lactiplantibacillus plantarum
OC01

HCT 116,
HT-29

dose-dependent cell toxicity (2D/3D-spheroid cultures),
mTOR and ERK pathways suppression,

E- to N-Cadherin switch inhibition
[138]

Levilactobacillus brevis 0983 Caco-2 dose-dependent antiproliferative activity,
↑ oxidative stress, intrinsic apoptotic pathway [120]
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Table 1. Cont.

Probiotic Strain CRC Cell Line Effect/Mechanism of Action Reference

Lactobacillus spp.

L. acidophilus ATCC 43121 HT-29 antiproliferative and antioxidant properties,
apoptosis induction (↑ caspase-3,-9/↑ Bax/Bcl-2 ratio) [121]

L. acidophilus CICC 6074 HT-29

time- and dose-dependent cytotoxic activity,
cell cycle arrest (G0/G1), intrinsic apoptotic pathway

(MtMP loss/cyt c release/↑ BAX, CASP3,
CASP9/↓ BCL2)

[117]

L. acidophilus IIA-2B4 WiDr dose-dependent anticancer activity [106]

L. brevis PM177 HT-29 dose-dependent cytotoxic effect [101]

L. casei ATCC 334 HCT 116 anti-metastatic effects (↓ MMP-9/↑ ZO-1) [130]

L. casei ATCC 393 HT-29 antiproliferative effect [100]

L. casei M3 HT-29,
Caco-2

antiproliferative and anti-migration activity,
VEGF/MMPs signaling pathway down-regulation [134]

L. casei strains Caco-2 dose-dependent cytotoxic effects, apoptosis induction [107]

L. crispatus SJ-3C-US HT-29 anti-metastatic effects (↓ MMP2 and MMP9/
↑ TIMP1 and TIMP2) [131]

L. delbrueckii SW-620
dose-dependent anticancer activity,

anti-metastatic effects,
cell cycle arrest (G1), intrinsic apoptotic pathway

[115]

L. delbrueckii ATCC 11842 HT-29 antiproliferative and antioxidant properties,
apoptosis induction (↑ caspase-3,-9/↑ Bax/Bcl-2 ratio) [121]

L. fermentum DLD-1, HT-29,
WiDr

dose-dependent cytotoxic activity (2D/3D-spheroid
cultures), apoptosis markers, NF-κB pathway inhibition [137]

L. fermentum NCIMB 5221 SW-480, Caco-2 time-dependent antiproliferative effect,
apoptosis induction [98]

L. johnsonii LC1 HT-29,
HT29-dx

↓ cell viability, ↑ mitochondrial ROS production [103]
L. pentosus S3

L. pentosus B281 Caco-2, HT-29 ↓ cell proliferation, cell cycle arrest (G1), ↓ cyclin genes [139]

L. plantarum A7 Caco-2, HT-29 antiproliferative effect [97]

L. plantarum ATCC 14,917 Caco-2
time- and dose-dependent cytotoxic activity,

intrinsic apoptotic pathway (↓ BCL2/
↑ caspase-3, -9, BAK, BAD, and BAX)

[122]

L. plantarum B282 Caco-2, HT-29 ↓ cell proliferation, cell cycle arrest (G1), ↓ cyclin genes [139]

L. plantarum CCARM 0067

HT-29/5-FUR,
HCT 116/5-FUR

↓ CSCs markers, caspase-3 dependent apoptosis and
Wnt/β-catenin suppression in combination with 5-FU [141]

HCT 116/5-FUR anti-metastatic effects, ↓ CLDN-1 [132]

HCT 116,
HCT 116/5-FUR

restoration of SMCT1 expression leading to
butyrate-induced antiproliferative effect and apoptosis [142]

L. plantarum IIA-1A5 WiDr dose-dependent anticancer activity [106]

L. plantarum KCTC 3108 Caco-2
↓ cell viability, ↓ autophagy-related proteins,

induction of mitochondrial dysfunction,
synergistic effect with chloroquine

[143]

L. plantarum S2 and O2 HT-29,
HT29-dx ↓ cell viability, ↑ mitochondrial ROS production [103]

L. plantarum strains HT-29 antiproliferative effect, induction of apoptosis [102]
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Table 1. Cont.

Probiotic Strain CRC Cell Line Effect/Mechanism of Action Reference

L. plantarum YYC-3 HT-29,
Caco-2

antiproliferative and anti-migration activity,
VEGF/MMPs signaling pathway down-regulation [134]

L. reuteri BCRC14625 HT-29 cell membrane damage, LDH release,
Bcl-2 inhibition via ↑ NO production [101]

L. reuterii DSM 17938 HT-29,
HT29-dx ↓ cell viability, ↑ mitochondrial ROS production [103]

L. reuteri NCIMB 701359 SW-480, Caco-2 apoptotic and antiproliferative activity [99]

L. reuteri PTCC 1655 HT29-ShE anti-metastatic properties, apoptosis induction,
↓ MMP-9 and COX-2, ↑ TIMP-1 [133]

L. rhamnosus ATCC 7469 Caco-2
time- and dose-dependent cytotoxic activity,

intrinsic apoptotic pathway (↓ BCL2/
↑ caspase-3, -9, BAK, BAD, and BAX)

[132]

L. rhamnosus GG

HCT 116 anti-metastatic effects (↓ MMP-9/↑ ZO-1) [130]

HT-29 anti-metastatic effects (↓ MMP2 and MMP9/
↑ TIMP1 and TIMP2) [131]

HT-29,
Caco-2

antiproliferative and anti-migration activity,
VEGF/MMPs signaling pathway down-regulation [134]

HT-29,
HT29-dx ↓ cell viability, ↑ mitochondrial ROS production [103]

HCT 116,
Caco-2, HT-29

dose-dependent antiproliferative activity, mitotic arrest,
synergistic action with 5-FU [136]

L. rhamnosus MD 14 Caco-2,
HT-29

antigenotoxic and cytotoxic activity,
cell cycle arrest (G0/G1) [105]

L. rhamnosus Y5 HT-29
time- and dose-dependent cytotoxic effect,

cell cycle arrest (G0/G1), ↓ CCND1, CCNE1 and ERBB2,
apoptosis induction (↑ CASP3, CASP9 and BAX/↓ BCL2)

[118]

L. salivarius Ren HT-29
antiproliferative activity, apoptosis induction,

AKT pathway inhibition, cyclin D1 and COX-2
suppression

[140]

Lactobacillus spp. HT-29, Caco-2 cytotoxic activity, ↓ ERBB2 and ERBB3 [104]

Lactobacillus spp. HT-29
dose-dependent antiproliferative activity,

irregular morphology and cell condensation,
↑ caspase-3,-8 and Bax

[119]

Leuconostoc
pseudomesenteroides strains Caco-2, HT-29 antioxidant and anticancer properties [112]

Pediococcus acidilactici
TMAB26

HT-29,
Caco-2

cytotoxic effects, anti-inflammatory properties in
LPS-pretreated cells (↓ TNF-α, IL-6/↑ IL-10) [127]

Propionibacterium
acidipropionici

Propionibacterium
freudenreichii

HT-29,
Caco-2

cytotoxic activity, induction of apoptosis (MtMP
loss/↑ ROS/↑ caspase-3/chromatin condensation) [123]

Propionibacterium
freudenreichii

DSM 2027
HCT 116 dose-dependent cytotoxic activity at 72 h [114]

Steptococcus salivarius
CP163

Streptococcus salivarius
CP208

HT-29 antiproliferative activity, apoptosis induction
(↑ caspase-2, DNA fragmentation) [126]
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Table 1. Cont.

Probiotic Strain CRC Cell Line Effect/Mechanism of Action Reference

Yeasts

Kluyveromyces marxianus
PCH397 SW-480 cytotoxic and antioxidant properties, cell cycle arrest [145]

Pichia kudriavzevii AS-12 HT-29,
Caco-2

antiproliferative effect, apoptosis-related morphological
changes, apoptotis induction

(↑ BAD, CASP3, CASP8, CASP9 and Fas/↓ BCL2)
[144]

↑: increase or up-regulation, ↓: decrease or down-regulation. Colon cancer cell lines: COLO 205, HT-29, DLD-1,
Caco-2, LoVo, SW-480, SW742, HCT-15, HCT 116, WiDr, SW-620, HT29-dx (doxorubicin-resistant HT-29 cells), HT-
29/5-FUR (5-Fluorouracil-resistant HT-29 cells), HCT 116/5-FUR (5-Fluorouracil-resistant HCT 116 cells), HT29-
ShE: E-cadherin shRNA engineered HT-29. MtMP: Mitochondrial membrane potential, cyt c: cytochrome c, PARP:
Poly (ADP-ribose) polymerase, TNF-α: Tumor necrosis factor-α, TLR4: Toll-like receptor 4, mTOR: mammalian
target of rapamycin, CASP: caspase gene, MMP-9: Matrix metalloproteinase-9, ZO-1: Zonula occludens-1 protein,
VEGF: Vascular endothelial growth factor, MMPs: Matrix metalloproteinases, MMP: Matrix metalloproteinase
gene, TIMP: Tissue inhibitor of metalloproteinase gene, NF-κB: Nuclear factor-κB, ROS: Reactive oxygen species,
CSCs: Cancer stem cells, 5-FU: 5-Fluorouracil, CLDN-1: Claudin-1, SMCT1: Sodium-coupled monocarboxylate
transporter 1, LDH: Lactate dehydrogenase, NO: Nitric oxide, COX-2: Cyclooxygenase-2, CCND1: cyclin D1
gene, CCNE1: cyclin E1 gene, ERBB2: ErbB-2 receptor tyrosine kinase 2 gene, LPS: Lipopolysaccharide, IL-6:
Interleukin-6, IL-10: Interleukin-10, Fas: Fas cell surface death receptor gene.

3.2. Exopolysaccharides

Exopolysaccharides (EPSs) have gained scientific interest in recent years due to their
diverse health-promoting properties [146], including the inhibition of pathogens’ adhesion
to the intestinal epithelium, the enhancement of gut barrier integrity, and the regulation
of mucosal immune responses [147]. Bacterial EPSs are extracellular, long-chain, high-
molecular-weight polysaccharides, distinguished by their complex structures, which are
strain-dependent and attributed to their distinct functions [92,96]. EPSs could be struc-
turally divided into homopolysaccharides (HoPSs) containing a single type of monosac-
charide and heteropolysaccharides (HePSs) composed of repeating units of numerous
monosaccharides [25,148].

Their anticancer activity has been extensively studied [149–151], especially in the case of
Lactobacillus-retrieved EPSs [152]. The majority of studies have designated the dose- or/and
time-dependent cytotoxic effect of EPSs on CRC cell lines in vitro (Table 2) [153–160]. In
several cases, EPSs trigger the intrinsic apoptotic pathway activation, indicated by the
increased expression of Bax, caspase-3, and caspase-9 [161,162] and decreased levels of
Bcl-2 [163–165]. EPSs from L. plantarum NCU116 activate the c-Jun dependent Fas/FasL-
mediated apoptotic pathway through TLR2 in mouse intestinal epithelial cancer cells [166].
Additionally, apoptosis induction in EPS-treated CRC cells was confirmed by distinct
apoptosis-related morphological features, such as cell shrinkage, nuclear fragmentation,
and chromatin condensation [167–170]. EPSs from Lactobacillus acidophilus 10307 can inhibit
the expression of genes involved in tumor angiogenesis and survival, including vascular
endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α), while they
up-regulate antiangiogenic gene expression, such as tissue inhibitor of metalloproteinase-
3 (TIMP-3) [171]. They can also enhance peroxisome proliferator-activated receptor-γ
(PPAR-γ) expression, thus contributing to the suppression of CRC cellular growth [172].
Interestingly, cell-bound EPSs (cb-EPSs) isolated from L. acidophilus 606 were found to
promote cell death via autophagy in HT-29 cells [173], while EPSs from Lactobacillus casei 01
can repair 4-nitroquinoline 1-oxide (4-NQO)-damaged IECs [174]. Probiotic yeast-derived
EPSs can hinder the AKT-1, mammalian target of rapamycin (mTOR), and JAK-1 pathways
to induce apoptosis in several CRC cell lines [175].
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Table 2. In vitro effects of exopolysaccharides on CRC cells.

Probiotic Strain CRC Cell Line Effect/Mode of Action Reference

Lactobacillus spp.

L. acidophilus 10307

Caco-2
dose-dependent anticancer activity (in both

normoxic and hypoxic conditions), ↑ PPARG,
↑ EPO under normoxia

[172]

HCT-15,
Caco-2

↓ cell proliferation, reduction of membrane integrity,
antioxidative properties (↑ HMOX1),

↓ VEGF and HIF1A, ↑ TIMP3 and HIF2A, ↑ PAI-1 gene
[171]

L. acidophilus 606 HT-29 activation of autophagic cell death via
Beclin-1, GRP78, and Bak induction [173]

L. acidophilus DSMZ 20079 Caco-2

↓ cell proliferation, cell cycle arrest (G0/G1),
morphological changes related to apoptosis

(shrinkage, membrane blebbing),
NF-κB inflammatory pathway inactivation

[168]

L. brevis LB63 HT-29 time-dependent antiproliferative effect, apoptosis
induction (↑ Bax, caspase-3, -9/↓ Bcl-2 and survivin) [163]

L. brevis TD4 HT-29 dose and time-dependent cytotoxic activity,
apoptosis induction (↑ DNA fragmentation) [169]

L. casei 01 HT-29 dose-dependent antiproliferative effect,
reduction of pro-mutagen’s 4-NQO cytotoxicity [174]

L. casei SB27 HT-29 ↓ cell proliferation, apoptotic morphological changes,
↑ BAD, BAX, CASP3, CASP8 [161]

L. casei strains
(K11, M5, SB27, and X12) HT-29

dose-dependent antiproliferative effects,
cell cycle arrest (G0/G1), apoptotic bodies

formation, ↑ caspase-3
[167]

L. delbrueckii ssp.
bulgaricus B3 HT-29 time-dependent antiproliferative effect, apoptosis

induction (↑ Bax, caspase-3, - 9/↓ Bcl-2 and survivin) [163]

L. delbrueckii ssp. bulgaricus
DSM 20080 Caco-2

antioxidative and antitumor properties,
apoptosis induction (↑ BAX, CASP3, CASP8, p53/

↓ BCL2, MCL1, Vimentin)
[165]

L. fermentum YL-11 HT-29,
Caco-2

dose-dependent antitumor effect,
nuclear condensation related to apoptosis [170]

L. helveticus MB2-1 Caco-2 dose and time-dependent anticancer effect [155]

L. kefiri MSR101 HT-29 dose-dependent anticancer activity, apoptosis induction
(↑ cyt c, Bax, Bad, and caspase-3, -8, -9) [162]

L. paracasei TD3 HT-29 dose and time-dependent cytotoxic activity,
apoptosis induction (↑ DNA fragmentation) [169]

L. plantarum-12 HT-29
↓ cell proliferation, ↑ ROS production, intrinsic apoptotic

pathway (↑ Bax, caspase-3, -8, -9/↓ Bcl-2), PCNA
inhibition in dose-dependent manner

[164]

L. plantarum 70810 HT-29 dose and time-dependent antitumor effect [154]

L. plantarum GD2 HT-29 time-dependent antiproliferative effect, apoptosis
induction (↑ Bax, caspase-3, -9/↓ Bcl-2 and survivin) [163]

L. plantarum NCU116 CT26 ↓ cell proliferation, ↑ TLR2, c-Jun dependent
Fas/FasL-mediated apoptotic pathway [166]

L. plantarum NRRL B- 4496 HCT 116,
Caco-2 dose-dependent antitumor activity [153]

L. plantarum WLPL04 HT-29 dose and time-dependent antitumor effect,
inhibition of E. coli adhesion to HT-29 cells [157]
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Table 2. Cont.

Probiotic Strain CRC Cell Line Effect/Mode of Action Reference

L. plantarum YW32 HT-29 dose and time-dependent anticancer activity [156]

L. rhamnosus E9 HT-29 time-dependent antiproliferative effect, apoptosis
induction (↑ Bax, caspase-3, -9/↓ Bcl-2 and survivin) [163]

Others

Lactococcus garvieae C47 Caco-2 antioxidant and antitumor activity [158]

Pediococcus acidilactici
NCDC 252 HCT 116 dose-dependent antiproliferative activity [160]

Pediococcus pentosaceus M41 Caco-2 antioxidant and antitumor activity [159]

Yeasts

Kluyveromyces marxianus,
Pichia kudriavzevii SW-480, HT-29, HCT 116

↓ cell proliferation, suppression of AKT-1, JAK-1 and
mTOR pathways, apoptosis induction (↓ BCL2/↑ BAX,

CASP3, CASP8)
[175]

↑: increase or up-regulation, ↓: decrease or down-regulation. Colon cancer cell lines: Caco-2, HCT-15, HT-
29, CT26 (mouse epithelial colorectal cell line), HCT 116, SW-480. PPARG: Peroxisome proliferator-activated
receptor-gamma gene, EPO: Erythropoietin gene, HMOX1: Hemeoxygenase-1 gene, VEGF: Vascular endothelial
growth factor gene, HIF: Hypoxia-inducible factor gene, TIMP3: Tissue inhibitor of metalloproteinase-3 gene,
PAI-1: Plasminogen activator inhibitor-1, GRP78: G-protein coupled receptor, NF-κB: Nuclear factor-κB, 4-NQO:
4-nitroquinoline 1-oxide, CASP: caspase gene, MCL1: Myeloid leukemia 1 gene, cyt c: cytochrome c, ROS:
Reactive oxygen species, PCNA: Proliferating cell nuclear antigen, TLR2: Toll-like receptor 2, c-Jun: transcription
factor, FasL: Fas ligand, AKT-1: AKT serine/threonine kinase 1, JAK-1: Janus kinase, mTOR: mammalian target
of rapamycin.

3.3. Bacteriocins

Bacteriocins encompass a heterogeneous group of extracellular, ribosomally synthe-
sized antimicrobial peptides (AMPs) [176]. Harnessing their multifaceted functions, includ-
ing the elimination of CRC-associated bacterial pathogens while avoiding disruption of the
commensal microbiota [25,177], the regulation of the host’s immune responses contributing
to gut homeostasis [37], and cancer-cell-specific targeting ability [178], bacteriocins possess
unique features as potential anticancer agents [179,180]. Salivaricin was found to display
potent antimicrobial activity against F. nucleatum in an ex vivo model of the human colon,
thus reducing CRC development risk [181]. Interestingly, a recent in vitro study divulged
that bacteriocins can migrate across epithelial monolayers [182], supporting their ability to
disseminate across the GIT to exert their beneficial effects [183].

The selective cytotoxicity of bacteriocins against cancer cells is rather attributed to
three dominant dissimilarities between cancer and normal cells. Firstly, the negatively
charged plasma membrane of cancer cells, due to anionic compound overexpression,
facilitates the electrostatic interactions of cationic bacteriocins with higher affinity to can-
cer than normal cells [178]. With regard to the fact that premalignant cells undergoing
transformation into metastatic CRC forms are characterized by changes in phospholipid
content [184], bacteriocins could be utilized as selective cytotoxic agents without affecting
healthy cells. For instance, duramycin decreases CRC cells proliferation through binding
to phosphatidylethanolamine (PE) [185]. Additionally, high membrane fluidity, a feature
known to confer metastatic capability to malignant cells, enables bacteriocins to debilitate
cancer cells’ membrane stability [186]. Lastly, the existence of abundant microvilli on the
cancer cell surface allows a greater amount of bacteriocins to penetrate tumor cells [187].

Nisin is the prominent lantibiotic produced by Lactococcus lactis subsp. lactis, existing
in four natural variants (A, Z, Q, and F), which differ in one or two amino acids [188].
Nisin variants A and Z have been extensively examined for their potential anticancer
properties against CRC cells in vitro. Nisin A induces pore formation on the target cell
membrane with subsequent loss of plasma membrane integrity [189] and calcium influx,
thus causing cell death [190]. Nisin Z presents selective toxicity against colon cancer
HT-29 cells [191]. However, nisin Z failed to affect Caco-2 cells’ membrane integrity, and
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this discrepancy has been attributed to the purity of the nisin samples as well as to the
nisin variant employed in each study, pointing out the need to take both factors under
consideration in future studies [192]. Regarding nisin’s mode of action, it induces the
intrinsic apoptotic pathway in CRC cells as indicated by CASP3 and CASP9 gene up-
regulation [193] as well as the increased apoptotic index (Bax/Bcl-2 ratio) in two different
studies [194,195]. Additionally, nisin down-regulates the expression of metastasis-related
genes such as MMPs, carcinoembryonic antigen (CEA), and carcinoembryonic cell adhesion
molecule 6 (CEAM6) [196]. Following nisin treatment, decreased expression of the cyclin
D1 gene in CRC cells was observed, thus unveiling its crucial role in CRC progression [195].
Information pertaining to nisin’s in vivo antitumor effects is only limited to xenograft
mouse models with head and neck squamous cell carcinoma (HNSCC) [190,197].

A plethora of other bacteriocins exert antiproliferative activity against CRC cells, with
a negligible effect against non-cancerous cells [198–200]. The in vitro cytotoxic effects of
bacteriocins on CRC cells are shown in Figure 2 and summarized in Table 3. A recent meta-
analysis study provided insight into the intervention of bacteriocins in various signaling
cascades. For instance, they activate apoptosis via the regulation of the PI3K/AKT pathway,
while they directly inhibit cyclooxygenase-2 (COX-2) expression and down-regulate the
inflammatory NOD-like receptor family pyrin domain containing 3 (NLRP3) and nuclear
factor-κB (NF-κB) pathways to diminish CRC-related inflammation [201]. Pediocin PA-1
induces cytotoxicity in HT-29 cells [202], possibly via interaction with TLRs based on 3D
modeling approaches [203]. Plantaricin BM-1 triggers the caspase-dependent apoptotic
pathway [204], while plantaricin P1053 increases the viability of normal CCD 841 cells via
the activation of the epidermal growth factor receptor (EGFR) pathway [205]. Enterocin-
treated cancer cells display apoptosis-like morphological changes [200,206].
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Table 3. In vitro effects of bacteriocins on CRC cells.

Bacteriocin CRC Cell Line Effect/Mode of Action Reference

Duramycin
(Streptomyces sp.)

Caco-2,
HCT 116,

LoVo

detection of PE on cell surface,
dose- and time-dependent Ca2+ release [185]

Enterocin 12a
(Enterococcus faecium 12a) HCT-15 dose-dependent antiproliferative activity,

morphological changes related to apoptosis [200]

Enterocin-A
(Enterococcus faecium por1)

HT-29,
Caco-2

dose-dependent cytotoxic effect, morphological
changes related to apoptosis, cell cycle arrest (G1) [198]

Heterodimer Enterocin-A + B
(Enterococcus faecium) HT-29 improved cytotoxicity compared to enterocin-B alone,

apoptosis related morphological changes [199]

Enterocin OE-342
(Enterococcus faecalis OE-342) HCT 116

dose-dependent cytotoxic effect, immunomodulatory
activity, cell cycle arrest (G2/M), morphological

changes related to apoptosis
[206]

Nisin A
(Lactococcus lactis subsp. lactis)

Caco-2,
HT-29

↓ cell proliferation,
loss of plasma membrane integrity [189]

SW-480 dose-dependent cytotoxic effect, intrinsic apoptotic
pathway (↑ Bax/Bcl-2 ratio) [194]

LS 180, HT-29,
SW48, Caco-2

↓ cell proliferation, anti-metastatic effects
(↓CEA, CEAM6, MMP2F, and MMP9F) [196]

SW-480
dose-dependent cytotoxic effect,

↑ BAX/BCL2 ratio, ↑CASP3, CASP9 [193]

dose-dependent cytotoxic effect, ↓ CCND1 [195]

Pediocin PA-1
(Pediococcus acidilactici K2a2-3) HT-29 ↓ cell proliferation [202]

Plantaricin BM-1
(Lactobacillus plantarum BM-1)

SW-480,
Caco-2,

HCT 116

dose-dependent cytotoxic effect, morphological
changes related to apoptosis, caspase-dependent

apoptosis pathway (PARP-1 cleavage, dysregulation
of TNF, NF-κB, and MAPK signaling pathways)

[204]

Plantaricin P1053
(Lactobacillus plantarum

PBS067)
E705 dose-dependent cytotoxic effect [205]

↑: increase or up-regulation, ↓: decrease or down-regulation. Colon cancer cell lines: Caco-2, HCT 116, LoVo, HCT-
15, HT-29, SW-480, LS 180, SW48, E705. PE: Phosphatidylethanolamine, CEA: Carcinoembryonic antigen gene,
CEAM6: Carcinoembryonic cell adhesion molecule 6 gene, MMP2F: Matrix metalloproteinase-2F gene, MMP9F:
Matrix metalloproteinase-9F gene, CASP: caspase gene, CCND1: cyclin D1 gene, PARP-1: Poly (ADP-ribose)
polymerase-1, TNF: Tumor necrosis factor, NF-κB: Nuclear factor-κB, MAPK: Mitogen-activated protein kinase.

3.4. Nonribosomal Lipopeptides

Nonribosomal lipopeptides derived from Bacillus subtilis are secondary bioactive
molecules, synthesized by enzyme complexes, namely nonribosomal peptide synthetases
(NRPS) [207]. These lipopeptides, mainly surfactin, iturin, and fengycin, exhibit significant
cytotoxic activity against various CRC cell lines, thus contributing to elimination of cancer
progression and metastasis [208] (Figure 2, Table 4). The underlying mechanisms involved
in surfactin’s anticancer properties have recently been reviewed [209]. Surfactin can forcibly
suppress CRC cell proliferation [210] via the induction of the caspase-dependent apoptotic
pathway and cell cycle arrest at a certain concentration [211]. However, the major imped-
iment to surfactin utilization as an anticancer agent is its hemolytic activity, leading to
red blood cell (RBC) rupture and hemoglobin dissemination into the blood [211]. Iturin A
can efficiently induce cytotoxic effects against CRC cells via multiple pathways, including
initiation of paraptosis, apoptosis induction through the mitochondrial-mediated pathway,
or activation of autophagy process [212]. Upon fengycin treatment in HT-29 cells, the ex-
pression of BAX, CASP3, and CASP6 genes increases, while decreased levels of Bcl-2 protein
are observed, indicating that the mitochondrial pathway of apoptosis is triggered [213].
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3.5. Other Bacterial Peptides

Miscellaneous bacterial peptides of probiotic origin have emerged as novel promising
treatment strategies for CRC (Table 4) [214,215]. Enterococcal antiproliferative peptide
(Entap) demonstrates cytotoxic activity against HT-29 cells via the induction of apoptosis
and cell cycle arrest in the G1 phase [216]. Mixirins, cyclic acyl-peptides derived from the
marine bacterium Bacillus sp., can inhibit the proliferation of human HCT 116 cells [217].
AMPs and bacterial-derived protein-based therapeutics for tackling increasing CRC mor-
bidity rates have been well documented [218,219]. For instance, LHH1, a novel AMP
produced by Lactobacillus casei HZ1, increases CRC cell membrane susceptibility, causing
irreversible damages [220]. Two other peptides, namely m2163 and m2386, can penetrate
the cell cytoplasm to induce apoptosis in SW-480 cancer cells [221]. Additionally, KL15, the
conjugated form of m2163 and m2386 peptides resulting from in silico modifications in
their sequences, not only possesses potent antimicrobial activity against pathogens but also
induces necrotic cell death [222]. Probiotic-derived ferrichrome acts as a tumor-suppressive
molecule via the c-Jun N-terminal kinase (JNK) signaling pathway against cancerous IECs
to a greater extent than conventional chemotherapeutic drugs, including cisplatin and
5-FU [223]. The probiotic-derived P8 protein was found to eliminate metastasis [224] and
suppress CRC growth via the inhibition of the Wnt signaling pathway [225], whereas
mucin binding protein (MucBP) exhibits dose-dependent antiproliferative effects against
HT-29 cells [226].

Table 4. In vitro effects of nonribosomal and other bacterial peptides on CRC cells.

Class Bioactive Compound CRC Cell Line Effect/Mode of Action Reference

Nonribosomal
peptides

Surfactin
(Bacillus subtilis)

LoVo

dose- and time-dependent cytotoxic activity,
caspase-dependent apoptosis induction,

ERK and PI3K/AKT pathways suppression,
cell cycle arrest (G0/G1)

[211]

HCT-15,
HT-29 dose-dependent cytotoxic activity [210]

Iturin A
(Bacillus subtilis) Caco-2

antitumor activity via multiple pathways:
1. intrinsic apoptotic pathway

(↑ Bax, Bad/↓ Bcl-2),
2. paraptosis induction (ER dilatation, ↑ ROS

production, ↑ Ca2+ levels,
mitochondrial dysfunction),

3. autophagy (↑ LC3-II/↓ LC3-I)

[212]

Fengycin
(Bacillus subtilis)

HCT-15,
HT-29 dose-dependent cytotoxic activity [210]

HT-29

↓ cell proliferation, cell cycle arrest (G1),
apoptosis induction, ↑ ROS production,
↑ Bax and caspase-3, -6/↓ Bcl-2 and

CDK4/cyclin D1

[213]

Other bacterial
peptides

Entap (Enterococcus sp.) HT-29 apoptosis induction, cell cycle arrest (G1) [216]

Ferrichrome
(Lactobacillus casei

ATCC 334)

Caco-2, SW-620,
SK-CO-1

tumor-suppressive effect, apoptosis
induction via inhibition of JNK pathway [223]

KL15 peptide
(Lactobacillus casei

ATCC 334)

SW-480,
Caco-2

antiproliferative effect, increased membrane
permeability, necrotic cell death [222]

LHH1 peptide
(Lactobacillus casei HZ1) HCT 116

dose-dependent cytotoxic effect, apoptosis
induction,

membrane damage
[220]



Microorganisms 2023, 11, 1898 14 of 28

Table 4. Cont.

Class Bioactive Compound CRC Cell Line Effect/Mode of Action Reference

Other bacterial
peptides

m2163 and m2386 peptides
(Lactobacillus casei

ATCC 334)
SW-480

↓ cell proliferation, extrinsic and intrinsic
apoptosis induction, ↑ FasR and TRAILR1

expression (m2163)/
↑ FasR, TNFR1, and TRAILR1 (m2386)

[221]

Mixirins (Bacillus sp.) HCT 116 ↓ cell proliferation [217]

MucBP
(Lactobacillus casei) HT-29 dose-dependent antiproliferative effect [226]

Probiotic-derived P8 protein
(Lactobacillus rhamnosus

KCTC 12202BP)

DLD-1

antiproliferative and anti-migration activity,
cell cycle arrest (G2),

p53-p21-Cyclin B1/CDK1 pathway
inhibition

[224]

Wnt pathway suppression (dysregulation of
GSK3β transcription), cell cycle arrest [225]

↑: increase or up-regulation, ↓: decrease or down-regulation. Colon cancer cell lines: LoVo, HCT-15, HT-29, Caco-2,
SW-620, SK-CO-1, SW-480, HCT 116, DLD-1. ER: Endoplasmic reticulum, ROS: Reactive oxygen species, LC3-II:
Microtubule-associated protein 1A/1B-light chain 3-II, LC3-I: Microtubule-associated protein 1A/1B-light chain
3-I, CDK4: Cyclin-dependent kinase 4, JNK: c-jun N-terminal kinase, FasR: Fas receptor, TRAILR1: TRAIL receptor
1 gene, TNFR1: Tumor necrosis factor receptor-1, MucBP: Mucin binding protein, CDK1: Cyclin-dependent
kinase 1, GSK3β: Glycogen synthase kinase β.

3.6. Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs) constitute a group of metabolic products originating
from the microbial fermentation of non-digestible carbohydrates [227]. The intestinal ep-
ithelium absorbs almost 95% of SCFAs synthesized by the gut microbiota [228]. SCFAs
contribute to the maintenance of homeostasis, enhance gut barrier integrity, and participate
in the energetic metabolism [229]. Upon their production, SCFAs are transported into the
IECs via the SMCT1 [230]. Apart from the intestinal environment, a small amount of SCFAs
that are not metabolized by colonocytes can reach systemic circulation and disseminate
to distant tissues and organs [229], acting as signaling molecules with profound health
benefits to the host [231].

SCFAs effects are mediated by two main pathways: the inhibition of histone deacety-
lases (HDACs) and the activation of cell surface G-protein-coupled receptors (GPRs),
namely GPR41, GPR43, and GPR109A [232] (Figure 3). The administration of a mix of
SCFAs (acetate, butyrate, and propionate) in a mouse model of colitis-associated CRC sig-
nificantly reduced tumor incidence and attenuated colonic inflammation [233]. GPR43 defi-
ciency was found to promote the progression of adenoma to adenocarcinoma in vivo [234].
SCFA administration suppressed intestinal inflammation and carcinogenesis in GPR43-
deficient mice [235].

The pivotal role of SCFAs in the elimination of colorectal malignancy has already
been reviewed [236–238]. A recent meta-analysis study demonstrated that lower fecal
concentrations of the major SCFAs are correlated with increased CRC incidence [239]. The
prominent mechanisms of SCFA action involve the down-regulation of genes related to
DNA replication [240], the promotion of cell-cycle arrest and apoptosis [241], and the
regulation of complex immune responses [242,243]. SCFAs provide resistance toward
enteric bacterial pathogens associated with CRC development and progression [244].

Among the three aforementioned SCFAs, the anticancer effects of butyrate on CRC
cells are most well-documented [245–247]. Butyrate can inhibit CRC proliferation via
multiple mechanisms, such as the induction of the autophagy-mediated degradation of
β-catenin [248], epigenetic reprogramming [249], the up-regulation of TLR4 expression, and
the activation of the mitogen-activated protein kinase (MAPK) and NF-κB pathways [250].
Furthermore, it induces CRC cell ferroptosis via the CD44/Solute Carrier Family 7 Member
11 (SLC7A11) pathway and exhibits a synergistic therapeutic effect when combined with
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erastin, a ferroptosis-positive drug [251]. Interestingly, butyrate restores cytokine-induced
barrier disruption, contributing to the maintenance of intestinal homeostasis [252].
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Acetate was shown to reduce CRC proliferation and induce apoptosis, as indicated by
several features such as loss of mitochondrial membrane potential, nuclear chromatin
condensation, and ROS generation [253]. Upon acetate treatment, CRC cells exhibit
apoptosis-related morphological features, while lysosomal membrane permeabilization
with subsequent cathepsin D release in the cytosol takes place [254]. Another study sug-
gests that acetate’s antiproliferative effect is a consequence of its impact on mitochondrial
metabolism [255]. Propionate was found to down-regulate the protein arginine methyltrans-
ferase 1 (PRMT1) and regulate the mTOR pathway in HCT 116 cells [256]. Furthermore,
it can suppress CRC tumorigenesis through promoting the proteasomal degradation of
euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3
ubiquitin protein ligase 2 (HECTD2) up-regulation [257].

4. Challenges and Future Perspectives

Accumulating evidence has elucidated that gut microbiota dysbiosis contributes per-
ilously to CRC occurrence and progression. Detrimental opportunistic pathogens can
reconstruct the composition of colonic commensal bacteria, thus favoring the creation
of a microenvironment susceptible to carcinogenesis. Conventional CRC treatments are
characterized by the insufficient ability to specifically target cancer cells, while they are
accompanied by chemoresistance development and numerous side effects in the host. Pro-
biotic supplementation has been recommended as an effective complementary therapy for
the elimination of gastrointestinal discomfort and the attenuation of gut dysbiosis in CRC
patients undergoing chemotherapy [18]. However, despite probiotics’ accredited beneficial
health effects, including epithelial colonization, the restoration of microbial diversity, and
the detoxification of carcinogens, a few studies have highlighted impediments to their
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utilization [20]. In that context, miscellaneous bioactive compounds of probiotic origin with
antiproliferative properties, such as bacteriocins, SCFAs, and EPSs could be exploited as
conceivable anticancer agents [258]. Bacteriocins have been predominantly used as natural
biopreservatives in the food industry, with nisin being the only bacteriocin licensed by
the Food and Drug Administration (FDA) as a “GRAS” additive [259]. Apart from food
applications, bacteriocins are now receiving increased attention as promising anticancer
agents due to their specificity against cancer cells with limited or no effect on healthy
cells [178]. Nevertheless, despite their advantageous properties of relevance to medical
use, including biocompatibility, biodegradability, and lack of immunogenicity [180], they
display some fundamental shortcomings, such as decreased bioavailability and susceptibil-
ity to proteolytic enzymes during exposure in the GIT, when orally administrated [259].
To overcome such limitations, multiple strategies varying from encapsulation technolo-
gies to bioengineering and semi-synthetic techniques could be recruited to improve their
physicochemical characteristics and biological activity, while high-throughput sequencing
may enhance the discovery of new bacteriocins [260]. Additionally, the costly production
pertaining to bacteriocins’ efficient purification [261] as well as their high complexity due to
extended posttranslational modifications [260] remain important hindrances towards their
large-scale manufacturing. Interestingly, as progressive increases in multidrug-resistant
infections have been declared a global health emergency [262], bacteriocins are considered
as next-generation antibiotics [259], as well as feasible microbiome- editing tools [263]
due to their potent antimicrobial activity. In fact, bacteriocins’ antimicrobial and toxic
effects, as well as their biosafety in in vivo systems have been recently addressed [262,264].
They were found to act as immunostimulatory molecules contributing to the reduction
of infection-associated parameters, including biochemical and histopathological biomark-
ers [262]. Furthermore, the anticancer effects of microcin E492 were tested in zebrafish
xenografts, showing significant reduction in tumor growth [265], while nisin was found
to act synergistically with the chemotherapeutic 5-FU in murine skin cancer models [266].
However, there is still inadequate research regarding their toxicity and therapeutic efficacy
in vivo, a crucial prerequisite towards clinical trials. Indeed, in vitro experiments may not
necessarily align with in vivo studies. Hence, further investigations should be conducted to
decipher the delivery strategies, route of administration, and pharmacokinetic parameters
of bacteriocins.

EPSs are complex, multifunctional carbohydrates excreted from probiotic bacteria,
which have recently gained research attention with regard to pharmaceutical and therapeu-
tic applications [150] due to their favorable health-promoting properties, such as immune
system modulation, free radicals scavenging, and inhibition of cancer cell growth [267].
They are considered promising substitutes for synthetic anticancer drugs owing to their
unique features, including biocompatibility, thermal stability, biodegradability, and non-
toxic nature. The diverse physicochemical characteristics of EPSs (e.g., monosaccharide
composition, branching degree, electric charge, molecular weight) are directly associated
with their functionality [268]. Therefore, specific methodologies should be implemented
to elucidate their chemical structure and provide an insight on their structure-dependent
functional benefits [267–270]. Additionally, the high production costs and low polysaccha-
ride yields as well as the time-consuming processes required for EPS purification currently
restrict their commercialization [269]. Regarding this aspect, genetic and metabolic engineer-
ing could facilitate EPS production yield [268]. Detailed studies should also be performed
to evaluate their safety via the application of targeted high-throughput screening strate-
gies [271]. Only limited research has been performed in vivo, supporting probiotic EPSs’
ability to alleviate intestinal inflammation via gut microbiota modulation [272–274], con-
tribute to the maintenance of the epithelial barrier [275], exert anticancer effects [276,277],
and attenuate 5-FU-induced toxicity in animal models [278]. Nevertheless, there is still a
lack of clinical evidence to proceed into human administration.

SCFAs represent the largest group of bioactive compounds residing in the intesti-
nal lumen with a profound contribution to gut immunity stimulation. SCFAs also act
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as signaling molecules upon their dissemination into the bloodstream, thus promoting
health benefits for the host [37]. Given their protective anti-inflammatory and antioxidant
features [279], SCFAs have been found to eliminate the severity of conventional anticancer
drugs’ GIT toxicities [280]. They can also exert anticancer properties via the regulation
of immune response, a reduction in HDAC activity [281], and the repairment of intesti-
nal microecology [282], thus promoting chemosensitivity and cell growth inhibition, or
they can act as antitumor adjuvant drugs [283]. Patients responding to chemotherapy,
immunotherapy, and radiotherapy treatments were found to exhibit a higher abundance
of SCFA-producing microbes and higher levels of fecal and plasma SCFAs. Furthermore,
recent studies suggest that SCFA-based interventional strategies could be implemented to
promote cancer treatment efficacy and decrease the adverse side effects commonly caused
by chemotherapeutics [284,285]. However, the majority of them focus on defining the
correlation between SCFAs levels and therapeutic outcomes rather than assessing SCFAs’
utilization for medical purposes. Inconsistent results derived from in vitro and in vivo
studies may be attributed to different methodological approaches as well as interindividual
variations in SCFA production [284]. These limitations should be taken under consideration
prior to experimental designs. Hence, the lack of pre-clinical and clinical evidence still
impedes the evaluation of SCFAs’ local and systemic effects and the determination of the fa-
vorable route of administration to the host. In this context, more elaborative investigations
are required to extrapolate conclusions regarding the multifaceted interactions occurring
in the gut and configure the criteria of SCFA utilization based on the distinctiveness of
each individual.
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