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Abstract: Livestock excrement is a major pollutant yielded from husbandry and it has been constantly
imported into various related environments. Livestock excrement comprises a variety of microorgan-
isms including certain units with health risks and these microorganisms are transferred synchronically
during the management and utilization processes of livestock excrement. The livestock excrement
microbiome is extensively affecting the microbiome of humans and the relevant environments and it
could be altered by related environmental factors as well. The zoonotic microorganisms, extremely
zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and
environmental safety. In this review, we highlight the main feature of the microbiome of livestock
excrement and elucidate the composition and structure of the repertoire of microbes, how these
microbes transfer from different spots, and they then affect the microbiomes of related habitants as a
whole. Overall, the environmental problems caused by the microbiome of livestock excrement and
the potential risks it may cause are summarized from the microbial perspective and the strategies
for prediction, prevention, and management are discussed so as to provide a reference for further
studies regarding potential microbial risks of livestock excrement microbes.

Keywords: livestock excrement; zoonotic pathogens; ARGs; virulence genes

1. Introduction

Livestock excrement is a major source of environmental pollution and poses signif-
icant risks to the environment and public health. As the livestock industries have been
increasing rapidly [1], unsurprisingly, the amount of livestock excrement has been increas-
ing accordingly. Reports showed that the annual production of livestock excrement in
Finland, the EU-27, China, the UK, Indonesia, the USA, and Iran reached 1.60 × 1010 (wet
weight, in 2011) [2], 1.50 × 109 tons (dry weight, in 2014) [3], 6.90 × 106 tons (dry weight, in
2015) [4], 8.34 × 1010 tons (dry weight, in 2016) [5], 7.00 × 1010 tons (dry weight, in 2016) [6],
3.50 × 1010 tons (dry weight, in 2016) [2], and 2.00 × 109 tons (dry weight, in 2017) [7],
respectively. The enormous amounts of livestock excrement cause various environmental
and health problems due to the diverse pollutants it contains.

Livestock excrement includes non-biological and biological pollutants. Non-biological
pollutants may cause environmental problems including odor emission and a contribution
to the greenhouse effect [8], fine particles or particulate matter with an aerodynamic diame-
ter less than 2.5 µm (PM 2.5) [9], enrichment of nitrogen (N), phosphorus (P), potassium
(K) in related water sites [10], transmission and enrichment of heavy metals, and pesticides
in related soil and water [11]. Due to the extensive expansion of livestock production, these
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environmental problems caused by livestock excrement pollutants have been increasing
dramatically [12,13].

Biological pollutants in livestock excrement mainly pertain to the microorganisms
and insects residing in the livestock excrement and their pathogenic/toxic products [14,15].
There are generally trillions of diverse microorganisms residing in the animal intestinal and
oral tract [16,17]; these microorganisms are introduced into the livestock excrement and
will further enter the relevant environment along with husbandry-related activities [18].
Undoubtedly, the health and environmental problems caused by these issues, in turn, cause
significant economic losses, hence, special attention needs to be paid to the risks caused by
livestock excrement.

Reports showed that cattle and poultry manures include a wide range of pathogenic
microorganisms and parasite eggs which may contribute to the spread of human and ani-
mal infectious illnesses [19,20]. Pathogenic strains of certain members of E. coli, Salmonella,
Bacillus anthracis, Shigella, and Clostridium botulinum are frequently found in cattle and poul-
try manures and may directly or indirectly endanger human health [21]. Those pathogens
residing in livestock excrement generally cause health risks due to their spread by direct
contact, droplet infection, or consumption of food and water contaminated by livestock
excrement-related pathogens [22].

Livestock excrement has been used as a fertilizer and even an agent to produce
biofuel. Owing to the related human activities, the microbiome of the livestock excrement
has been affected and changed accordingly and has also been affecting human health as
well. In addition, the distribution of pathogens, such as Bacillus anthracis [23], Francisella
tularensis [24], Yersinia pestis [25], Coxiella burnetii [26], and Burkholderia pseudomallei [27], may
cause various infectious diseases in livestock excrement-related samples raised concerns
globally [28–30]. Therefore, it is urgent to characterize the main features, driving forces,
and fate of the the microbiome of livestock excrement so as to predict and prevent any
related risks that may occur in the long run.

For the past decades, due to the rapid development of bioinformatics tools, we have
gained the general composition and function of animal microbiomes. Nevertheless, there
are a limited number of comprehensive reports on the microbial risks that may be caused
by livestock excrement. In this review, we highlight the main feature of the microbiome
of livestock excrement and elucidate the microbial repertoire and what risks it may cause
in humans, animals, and the environment. In summary, this review provides a microbial
perspective on the environmental issues arising from the microbiome of livestock excrement
and highlights the potential risks associated with it. Furthermore, it explores the prospects
of predicting and managing these risks, thereby offering valuable insights for future
research in the field of livestock excrement microbial hazards.

2. Features of the Microbiome of Livestock Excrement and Microbiome Cycling

The microorganisms observed in livestock excrements include viruses, prokaryotes,
and eukaryotes. Being the majority in terms of the total number of species and microorgan-
isms, prokaryotic microorganisms including bacteria and archaea accounting for over 95%
of the residing microorganisms, among which archaea comprise only 0.3% to 3% [31,32],
while eukaryotes include protozoa and fungi only account for less than 5% [33].

It is well-documented that the major prokaryotic phyla in livestock excrement gen-
erally include Bacillota, Bacteroidetes, Proteobacteria, and Actinobacteria [34–36], while the
major fungi phyla include Ascomycota, Basidiomycota, and Mucoromycota [35,37,38]. And
there also certain protozoa that reside in livestock manure, including Cryptosporidia and
Giardia [39–41], that cause infections in various hosts including humans. The proportion of
the major microbial components of livestock excrement are presented in Figure 1. These
microorganisms will sustain, transfer, and alter during the related processes of livestock
excrement management; it could be regarded as a microbial-cycling process.
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Figure 1. The major representative microbial components of the livestock excrement [33–38].

The cycling process of livestock microorganisms includes the input, output, and
forward and reverse transfer of microorganisms across related environments (they will be
detailed in the following sections). Moreover, the influencing factors and drivers of the
corresponding microbial cycling include human and animal activity and the surrounding
environment, which is a complex process with multiple factors. The key processes and
factors included are remarked as below (Figure 2).
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Figure 2. The key processes of livestock microorganisms and included factors. Major factors involved
in the livestock excrement microbiome cycling included: (1) contributors of microbiome input:
humans, livestock, both domestic and wild animals and insects, and other media of microbes such as
feedstock and (2) pathways of microbiome output: composting, livestock activity, airflow, and the
activity of humans, animals, and insects.

2.1. Input of the Livestock Excrement Microbiome

The input of the livestock excrement microbiome mainly includes the microbiome
intruded by the host intestinal microbiome, the microbes from the hosts, and the related
both living and non-living environmental components.
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The major contents of the livestock microbiome are from the animal intestinal mi-
crobiome [35]. In addition, human activity, such as general farm management, medical
treatment of farm animals, and the inclusion of human-related food residuals and food
waste as animal feed, also introduces human-related microbiomes into the livestock excre-
ment microbiome [42,43]. Food, water, and insects related to the livestock environment
are the second major contributors to the microbiome in livestock excrement [44]. A variety
of microorganisms are present in animal feed, including some anaerobic prokaryotic and
fungal taxa. On the one hand, along the food chain, these microorganisms are ingested
by domestic animals and reside in the intestinal tract and later enter the livestock excre-
ment [45]. On the other hand, feed residues directly become part of livestock excrement.
It is noteworthy that the activities of insects associated with domestic animals (such as
mosquitoes, flies, fleas, etc.), wild animals (such as mice, Marmota bobak, etc.), and birds
(such as sparrows, etc.) that live with domestic animals also continuously import microor-
ganisms from the environment and other sources into the livestock living environment,
eventually allowing these microorganisms to enter the livestock excrement [46–49]. In
addition, free-range livestock may introduce microorganisms carried by wild animals, espe-
cially potential pathogens (such as zoonotic viruses, bacteria, fungi, and parasites) [50–52],
into livestock niches and in the long run introduce these microorganisms into the livestock
excrement, resulting in the movement and enrichment of microorganisms with certain
health risks into the closely related environment of domestic animals and humans, which
eventually pose a threat to animal and human health.

2.2. Output of Livestock Excrement Microbiome

The output pathways of microorganisms in livestock excrement are diverse. Microor-
ganisms use excrement as the medium to survive and transmit, hence their fate is majorly
according to the movement of the excrement. For example, the excrement produced by
free-range livestock enters the natural environment directly so the relevant microorgan-
isms are also transferred to the natural environment [53,54]. In addition, the excrement
produced by livestock in semi-free-range and captivity models are often used as organic
fertilizer directly for agricultural production or composted and then used as an organic
fertilizer [55]. In recent years, livestock excrement has also been used as a base for biogas
digesters and fermentation to produce biogas, such as hydrogen and methane [56–59]. The
composition and structure of microorganisms in treated livestock excrement change during
the treatment process. In composting and biogas production, some functional microbial
taxa are enriched while the abundance of others decreases. In these processes, some mi-
croorganisms are introduced to the surrounding environment by air, related instruments,
etc., as the transmission media [60,61]. There are also some spore-producing bacteria
and fungi that remain and exist in the processing sites for a long time and may enter the
surrounding environment with human activities [62–64]. Therefore, if livestock waste is
not properly treated and managed, it is likely to cause the rapid spread and enrichment of
microorganisms, extremely these disease-causing microorganisms.

2.3. Factors Affecting Livestock Excrement Microbiome

Many factors affect the microbial composition of livestock excrement, the main factors
of which are the physiology of host animals, the type of feed, human activities, medical
interventions, and environmental factors such as the climate [65–67]. Different animals
have different microbiomes of different taxonomic richness and abundances of each taxon
and food plays an important role as the main driver of the animal gut microbe compo-
sition in addition to host physiology. Human activities and medical interventions, such
as antibiotics, insecticides, fungicides, and other drug treatments, also cause changes in
the livestock microbiome and also promote changes in the microbiome of livestock excre-
ment [68–70]. The activities of livestock-related wildlife can bring microorganisms from
other environments into the microbial niche of livestock waste. Therefore, the need to
control and manage the livestock microbiome requires the consideration of all relevant
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factors. Chemical agents also affect the microbiome composition of livestock excrement, in-
cluding veterinary drugs in livestock and poultry excrement [71,72]. Antibiotics, pesticides,
insecticides, and fungicides are often used to control animal diseases by killing pathogens
including parasites, mosquitoes, and flies. Many of these chemical agents remain to be
completely metabolized and in the long run will alert the composition of the livestock
excrement microbiome [73,74].

3. Microbial Risks of Livestock Excrement

The risks caused by microorganisms in livestock excreta are diverse, including di-
rect risks caused by microorganisms themselves and indirect risks caused by secondary
contamination generated by microbial processes. Therefore, limited exposure of humans
and domestic animals and the surrounding environment to livestock excrement may be
an effective strategy in avoiding the occurrence of associated microbial risks. An overall
portrait of the microbial risks of livestock excrement is remarked below.

3.1. Pathogens Residing in Livestock Excrement

Many pathogens capable of infecting humans can be found in animal feces yet the feces
from these animals pose a currently unquantified though likely substantial risk to human
health. The insufficient separation of animal feces from human domestic environments
can lead to the fecal–oral transmission of zoonotic pathogens through direct contact with
animal feces or soil or fecal contamination of fomites, food, or water sources (Table 1).

Table 1. Common zoonotic pathogens detected in livestock excrement.

Pathogen Host of Livestock Excrement Disease Caused References

Rotavirus Sheep, goat, cattle, pig Diarrhea, vomiting, fever, abdominal pain [75–78]

Echinococcus granulosus Camel, horse, sheep, pig Hydatidosis [79,80]

Pasteurella multocida Sheep, goat, deer, pig, cattle, chicken Fowl cholera [81–84]

Brucella melitensis Goat, sheep, cattle, camel Brucellosis [85]

Brucella abortus Camel, cattle Brucellosis [86,87]

Bordetella bronchiseptica Sheep, pig, goat Whooping cough [88,89]

Malassezia pachydermatis Horses, camel, cattle, poultry, sheep, goat, rabbit Dermosis [90]

Leptospira sp. Sheep, cattle, goat, horse, Reproductive failures and infertility [91–93]

Campylobacter sp. Sheep, chicken Infection, abortion [94]

Mycobacterium tuberculosis Sheep, cattle Tuberculosis [95,96]

Staphylococcus pseudintermedius Sheep, goat Dermatological disease, cow mastitis [97,98]

Clostridium difficile Cattle, sheep, horse, and goat, poultry Clostridium difficile infection [99]

Enterocytozoon bieneusi Sheep, goat, cattle, camel, pig, yak, chicken,
horse, rabbit Diarrhea [100–108]

Plasmodium falciparum Cattle, goat, pig, poultry Malaria [109]

Giardia lamblia Sheep, goat, cattle Giardiasis [39,40]

Giardia duodenalis Cattle, deer, pig, goat, horse, sheep, chicken, yak Giardiasis [110–116]

Salmonella spp. Sheep, cattle, chicken, horse Diarrhea, loss of appetite, fever, depressed
mentation, mortality [117–120]

Yersinia enterocolitica Sheep, cattle, pig Yersiniosis; Enteritis [39,121,
122]

Listeria monocytogenes Sheep, cattle, horse, chicken Listeriosis [123–126]

Legionella pneumophila Pig Legionnaires’ disease [127]

Staphylococcus saprophyticus Cattle Urinary tract infection [128]

Haemophilus ducreyi Pig Chancroid [129]

Toxoplasma gondii Sheep, goat, pig, chicken Toxoplasmosis [130]

Trichinella Cattle, sheep, horse Trichinellosis [131–133]
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There are some zoonotic viruses, including rotavirus, that were detected in livestock
excrement samples [134]. Rotavirus infection is a common gastrointestinal illness caused
by the rotavirus. It primarily causes diarrhea, vomiting, fever, and abdominal pain [135].
Rotavirus is highly contagious and spreads through the fecal–oral route, often through
contaminated food, water, or surfaces [136]. And generally, the lack of good hygiene
practices of livestock excrement accelerates the spread of rotavirus.

Being common opportunistic zoonotic pathogens, Isospora, Cyclospora, and Microsporidia
were also reported to be found in livestock excrement, which causes infection and diarrhea
in both humans and animals [137–140]. It was reported that sources of microsporidia
species, such as Enterocytozoon bieneusi, that infect humans included major domestic an-
imals such as horses [141], camels [142], goats [143], pigs [144], cows [144], rabbits [145],
chickens [146], and donkeys [144] and the microsporidia species were mostly found in the
faces of these animals; the vertical or transplacental transmission of microsporidiosis could
occur in related animals and humans through the distribution of livestock excrement or
related samples [147].

3.2. Transmission of Antibiotic-Resistant Genes

Antibiotic resistance is one of the serious threats to public health and food safety
globally. Being a modern pollutant, antibiotic resistance genes (ARGs) are determined to
be widely distributed in animal farms [148]. Antibiotic resistance bacteria and antibiotic-
resistance genes enter the environment along with animal excrement, accelerating the
spread of ARGs in the environment [149–151]. In the long run, antibiotic-resistant bacteria
could be transmitted to humans through the food chain, water, or air, posing a great threat
to public health.

Although it is very hard to obtain antibiotic use data in animal husbandry, these
estimates are conservative as they were based on the baseline values of the global average
annual consumption of antimicrobials per kilogram of animal produced. Every year
1.0 × 104 to 2.0 × 105 tons of antibiotics are used worldwide [4] of which their consumption
in agriculture, especially the animal industries, occupies a significant fraction. And common
antibiotic-resistant genes generally detected in livestock excrement were summarized in
Table 2.

Table 2. Antibiotic-resistant genes are generally detected in livestock excrement.

Gene Resistant Antibiotic Related Excrement Samples References

tet Tetracycline resistance Swine, cattle, poultry manure [152,153]
sul Sulfonamide resistance Swine manure [154]
erm Erythromycin resistance Swine wastewater [155]

fca Fluoroquinolone, quinolone, florfenicol, chloramphenicol,
and amphenicol (FCA) resistance Cattle manure, swine manure [156,157]

bla β-lactamase resistance Poultry manure [158]
mdr Aminoglycosides resistance Swine manure [159]

van Vancomycin resistance Poultry manure, swine
manure, cattle manure [158,160,161]

3.3. Toxic Chemicals Produced by Livestock Excrement Microbiome

Microorganisms in livestock excrement ferment substrates and produce numerous
compounds. It has been reported that microorganisms in excrement ferment amino acids
to produce toxic volatile substances such as indole, scatole, and a variety of alcohols
and aldehydes [162–164]. Bacteria produce highly potent neurotoxins and resistant en-
dospores [165,166] and these chemicals cause diseases in humans when exposed.

Candida albicans were generally detected in livestock excrement; strains of this taxon
could produce toxins such as candidalysin [167,168]. Candidalysin directly damages ep-
ithelial membranes, triggers a danger response signaling pathway, and activates epithelial
immunity [169]. Candidalysin is also reported to promote alcohol-associated liver dis-
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ease [170]. Pathogens like Candida albicans are prevalent in livestock excrements and during
the manufacturing of the excrements these pathogens may enter the human and animal
bodies as the food chain enters the human and animal bodies, causing related disease
including infections (Table 3).

Table 3. Toxic chemicals produced by livestock excrement microbiome.

Chemicals Health Risk Related Samples References

Indole Colorectal cancer, bipolar disorder Swine waste [171,172]
p-Cresol Kidney and liver damage Swine waste, sheep manure [173,174]

Skatole Respiratory distress Swine waste, goat, sheep and cattle
manure, poultry manure [175–177]

Phenols Skin irritation, respiratory disorder Swine waste, poultry manure [172,178]
Hydrogen sulfide Respiratory disorder Swine manure, poultry manure [179,180]

Ammonia Skin and eye irritation, respiratory
disorder

Swine manure, cattle manure, poultry
manure [181–184]

Heavy metals
(Cu, Pb, Hg, Cd, As) Liver and kidney damage Swine manure, cattle manure [185–188]

4. Strategies to Predict, Prevent the Microbial Risks of Livestock Excrement, and
Beyond
4.1. Prediction of Livestock Excrement Microbial Risks

Effective prediction is a key strategy to prevent risks caused by microorganisms.
Thanks to the rapid development of bioinformatics tools, such as next-generation sequenc-
ing (NGS) technology which includes 16S rRNA gene sequencing, shotgun metagenomic
sequencing, and RNA sequencing, it has advanced our understanding of the microbiome
by allowing for the discovery and characterization of microbes with the prediction of their
function [189] which as a whole aided the development of predictive microbiology as
well [190]. Notably, even though the microbial content of different environments is not
static, there may exist certain patterns of each and these patterns could be explored by fo-
cusing on the risk-related node microbes of the microbiome of the system to further predict
any potential microbial risks. Therefore, the relative microbial risk in animal excrement
can be quickly estimated by these bioinformatics tools by focusing on well-documented
pathogens and those taxa which contain any genes that code proteins with determined
pathogenic potential, ideally by using metagenomic sequencing of all microorganisms
(viruses, prokaryotes, and eukaryotes), amplicon sequencing to determine bacteria, and
ITS sequencing to determine fungi [191].

Moreover, target-specific primers can be designed for any well-documented pathogenic
microorganisms and the absolute abundances of target pathogenic microorganisms (includ-
ing viruses, bacteria, fungi, and parasites) can be quantified by the quantitative polymerase
chain reaction (qPCR). Reports showed that by using qPCR, Brucella melitensis and Brucella
abortus in different samples, including raw milk and cheese, could be determined accurately
so as to predict the potential health adversity of the corresponding samples [192–194]. And
zoonotic parasites including Toxoplasma gondii were also determined using qPCR so as to
prevent any potential risks that might be caused [195].

In addition, certain novel tools could be applied to predict the microbial risks that could
be caused by livestock excrements. Artificial intelligence tools including machine learning
and deep learning were generally considered useful aids to predict microbial pandemic
cases and the spread patterns of the microbes [196]. Reports find that machine learning
algorithms can be used to predict the host of the influenza virus and the identification
of influenza virus host range and zoonotic transmissible sequences [197,198]. Therefore,
these modern tools could also be applied to predict the threats that might be caused by the
microbiome of livestock excrement and the probable fate of the related risky microbes.
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4.2. Prevention and Management of Livestock Excrement Microbial Risks

Pathogens in livestock excrement cause diseases if they are not properly managed.
Therefore, preventing and managing microbial risks associated with livestock excrement
are essential for maintaining food safety and protecting public health.

To prevent microbial risks, the livestock and poultry environments should be fre-
quently and sufficiently sanitized and livestock should receive necessary vaccinations to
avoid the transmission of risky microorganisms [199]. When any unfortunate microbial risk
occurs, blocking the route of transmission is the most effective strategy for control [200].
An important part of this is protecting humans during farming activities. In addition,
free-range breeding of livestock can easily cause the rapid spread of risky microorganisms,
thereby increasing the risk of microorganisms. Therefore, captivity should be promoted
vigorously when grazing.

Secondly, appropriate disposal measures should be established for risks caused by
different microbial taxa. In the case of viral microbial risks, causative viruses should be erad-
icated by sanitizing with agents in livestock excreta and related environments. Risks posed
by pathogenic bacteria and fungal microorganisms can be eradicated through the use of
bactericides and fungicides which should be conducted under the supervision of qualified
veterinarians after a solid diagnosis regarding the occurring issue to determine the severity
of the event and design an efficient strategy or protocol. A series of N-aryl-pyridine-4-one
derivatives were reported to show fungicidal/bactericidal activities and their fungicidal
activities action against Colletotrichum were investigated [201]. The application of these
anti-pathogenic agents after careful selection and usage could aid the prevention of the
microbial threats that could be caused by livestock excrement microbes. Parasitic pathogens
can be sterilized through treatment with pesticides such as dihydroartemisinin and piper-
aquine [202]; bactericides and fungicides such as chlorhexidine and hydrogen peroxide can
also be used to kill pathogenic bacteria and fungi [203–205].

However, it should be kept in mind that the application of these anti-pathogenic agents,
pesticides and insecticides mentioned above should be considered carefully to prevent
potential secondary pollution. While these agents can be effective in combating various
pathogens and preventing infections, there are important factors to take into account.
The potential side effects and risks associated with the use of these agents should be
carefully evaluated. Some agents, including dichlorodiphenyltrichloroethane (DDT) [206],
organophosphate insecticides, carbamates, and pyrethroid insecticides [207] have adverse
effects on human health or the environment. Ultimately, a comprehensive risk-benefit
analysis should guide the decision-making process when considering the application of
these agents. Hence, certain well-documented safer agents, including plant-extracted anti-
insect agents (such as neem oil and canola oil) [208,209] and microbial pesticides (such as
the mosquitocidal agents from Bacillus sphaericus) [210] should be considered in livestock
excrement treatment.

Moreover, it is essential to sterilize the closely related components, such as water, by
chlorination for controlling harmful pathogens [211]. And the farming environments where
pathogenic bacteria occur could be sterilized by using high-concentration acid and alkali
treatments and high temperatures (such as burning). In addition, to prevent the spread of
pathogenic bacteria, safer and more effective disposal measures still need to be developed.
Moreover, insecticides should be used to prevent mosquito-borne or mosquito-transmitted
diseases [212,213] so as to significantly prevent the spread of pathogens and parasites.

5. Limitations of the Current Microbial Research of Livestock Excrement

Even though current microbial research on livestock excrement has already shown
a crucial role in understanding the ecological impact and their potential risks, microbial
research in livestock excrement faces several limitations, including the complexity and
diversity of microbial communities, spatial and temporal heterogeneity, the lack of stan-
dardization, and limited longitudinal studies.
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One significant limitation is the sheer complexity and diversity of microbial commu-
nities present in livestock excrement. The excrement microbiome is composed of a vast
array of microorganisms; studying these diverse communities and understanding their
interactions and functions is a challenging task due to technological and methodological
constraints. Generally, culture-dependent techniques may only capture a fraction of the
microbial diversity, leading to an incomplete understanding of the overall ecosystem [214].
Furthermore, sampling and spatial heterogeneity pose additional challenges in microbial
research [215]. Livestock excrement is inherently variable, with microbial communities
varying across animal species, diets, management practices, and environmental conditions.
Obtaining representative samples that accurately reflect the entire excrement microbial
population can be difficult, especially when considering the large-scale production systems
commonly found in the livestock industry. Additionally, temporal dynamics must be
accounted for as microbial populations can change over time, impacting our ability to form
a comprehensive understanding.

Another limitation is the lack of standardization in experimental design and method-
ologies across studies regarding the microbiome of livestock excrement. Inconsistent
sampling and analysis protocols lead to the comparability and reproducibility of the cor-
responding results [216,217]. This variability makes it challenging to draw meaningful
conclusions and make accurate comparisons between different research studies. Hence,
standardization efforts and collaborations among researchers are needed to establish the
best practices and to enhance the reliability and validity of microbial research in livestock
excrement. Moreover, there is a need for more longitudinal studies which can provide
valuable insights into the effects of management practices, interventions, and seasonal
variations to better understand the dynamic nature of microbial communities in livestock
excrement [218]. Many studies focus on short-term assessments, providing only a snapshot
of the microbial composition at a particular moment.

In conclusion, addressing these limitations through improved methodologies, stan-
dardization efforts, and collaborative research endeavors can enhance our understanding of
the microbial ecology of livestock excrement and help in developing effective management
strategies that minimize the environmental impact and mitigate associated risks.

6. Conclusions

Livestock excrement is a major pollutant yield from farming and is constantly im-
ported and transferred into every related environment. The livestock excrement micro-
biota comprises a variety of microorganisms of viruses, prokaryotes, and eukaryotes and
these microorganisms are activated and transferred synchronically during the processes
of livestock excrement production, transformation, and utilization. The livestock excre-
ment microbiome is extensively affecting and affected by the microbiome of humans and
the relevant environments. The zoonotic microbes, extremely zoonotic pathogens, and
antibiotic-resistant bacteria are posing threats to human health and environmental safety.

In this review, we highlighted the main features of the microbiome of livestock excre-
ment and elucidated the composition and structure of the repertoire of microbes, how these
microbes transfer from different spots, how they affect the microbiomes of the habitants
in any related environments, and what risks they may cause in humans, animals and the
environment as a whole. Overall, the environmental problems caused by the microbiome
of the livestock excrement and the potential risks it may cause were summarized from the
microbial perspective. In addition, the prevalence of antibiotic resistance and virulence
genes in major livestock excrement microbes were summarized so as to provide a reference
for further studies regarding potential microbial risks of livestock excrement microbes.
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