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Abstract: The recent global emergence of the SARS-CoV-2 pandemic has accelerated research in
several areas of science whose valuable outputs and findings can help to address future health chal-
lenges in the event of emerging infectious agents. We conducted a comprehensive shotgun analysis
targeting multiple aspects to compare differences in bacterial spectrum and viral presence through
culture-independent RNA sequencing. We conducted a comparative analysis of the microbiome
between healthy individuals and those with varying degrees of COVID-19 severity, including a
total of 151 participants. Our findings revealed a noteworthy increase in microbial species diversity
among patients with COVID-19, irrespective of disease severity. Specifically, our analysis revealed
a significant difference in the abundance of bacterial phyla between healthy individuals and those
infected with COVID-19. We found that Actinobacteria, among other bacterial phyla, showed a notably
higher abundance in healthy individuals compared to infected individuals. Conversely, Bacteroides
showed a lower abundance in the latter group. Infected people, regardless of severity and symptoms,
have the same proportional representation of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes,
and Fusobacteriales. In addition to SARS-CoV-2 and numerous phage groups, we identified sequences
of clinically significant viruses such as Human Herpes Virus 1, Human Mastadenovirus D, and Rhinovirus
A in several samples. Analyses were performed retrospectively, therefore, in the case of SARS-CoV-2
various WHO variants such as Alpha (B.1.1.7), Delta (B.1.617.2), Omicron (B.1.1.529), and 20C strains are
represented. Additionally, the presence of specific virus strains has a certain effect on the distribution
of individual microbial taxa.

Keywords: metatranscriptome; microbiome; SARS-CoV-2; virome

1. Introduction

At every breath, we inhale an airborne cocktail containing thousands of microbial
particles. The upper respiratory tract is a major gateway for a large number of viruses
during infection, not just respiratory ones. At the same time, the mucosa of the nasal
cavity is colonized by a wide spectrum of microorganisms whose specific importance is
not well elucidated. Although this massive burden may sound frightening, it is undoubt-
edly essential in building the immunity of individual hosts. A healthy upper respiratory
tract microbiota works in tandem with its host, mainly colonizing the anterior nares and
nasopharynx to provide an innate barrier that defends against pathogens and modulates
the immune responses that occur when exposed to external triggers such as smoke, dust,
allergens, chemicals, temperature changes, and microorganisms [1]. Under the influence
of the recent COVID-19 pandemic, interest in how viral infection affects/modifies the
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overall microbiome of the airways, particularly the well-accessed upper respiratory tract,
has gained prominence. Currently, many scientific reports explore microbial diversity
in the context of COVID-19 disease severity [2–4] unfortunately often with controversial
outcomes. Besides COVID-19, many studies have demonstrated that unique microbial
communities have complex interactions with the host to maintain balance with the host
immune system [5,6].

The nasal microbiome of healthy humans is composed primarily of Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria phyla, with a predominance of representatives of
the genera Bifidobacterium, Corynebacterium, Staphylococcus, Streptococcus, Dolosigranulum,
and Moraxella [7,8]. Archaea are not typically found in the upper respiratory tract of humans,
as they are not known to be part of the normal microbiota. However, there have been some
studies that have identified the presence of archaea (Methanoarchaea) in the nasal cavity and
other parts of the body [9].

Among the bacteria, Bacteroidetes and Firmicutes predominate in most of the anatomical
regions studied, including the upper respiratory tract (URT), and are the most investigated
components of the human microbiota [10].

A somewhat less well-known fact is that humans are colonized by a remarkable num-
ber of DNA and RNA viruses that are referred to as the virome, capable of causing acute,
persistent, or latent infection, and retroviral elements integrated to host chromosomes. The
human virome consists of bacteriophages (phages) that infect bacteria, archaeal viruses,
eukaryotic viruses that infect human cells, and viruses transient in food [11,12]. Among
the viral genomes identified, Picornaviruses, Anelloviruses, and bacteriophages of the fam-
ily Siphoviridae were the most prevalent in the upper respiratory tract [13]. The human
virome comprehends commensals and opportunistic pathogens. The balance between
being a commensal or becoming a pathogen is determined by different factors of the viral
community itself and the host, such as genetic factors and immune status [14]. It has
been well-documented that resident viruses can cause exacerbation of chronic pulmonary
diseases, cystic fibrosis, and asthma. Moreover, they may contribute to the pathogenesis of
community-acquired respiratory virus infections [15].

Generally, there are two major approaches to detecting microbial spectra: 16S rRNA
amplicon sequencing and metagenomic shotgun sequencing. The former is attractive at
lower cost, is preferred in environments with lower microbial diversity, and identifies
mainly dominant microorganisms [16]. The latter is characterized by a more robust res-
olution and covers the metagenome community including the human genome, viruses,
and fungi, which cannot be captured by 16S amplicon sequencing [17]. In our approach,
we replace the analysis of metagenome with the metatranscriptome to cover also RNA
viruses, which include SARS-CoV-2. However, we actually did not sequence the total RNA
but depleted the dominating human 18S rRNA in the initial steps of library preparation to
increase the relative abundance of other RNA belonging to humans and other microbial
agents. In general, 18S rRNA is estimated to make up around 80–90% of the total RNA in a
typical mammalian cell [18].

2. Material and Methods
2.1. Patients and Samples

The study was conducted in accordance with the approval of the Ethics Committee
of the Bratislava Self-Governing Region under the identification number 03228/2021/HF,
dated 12 January 2021. All patients signed informed consent and received questionnaires
with relevant information regarding their medical history and health status in relation
to COVID-19. All 151 patients were from Slovakia and were divided into four groups:
asymptomatic (n = 24), patients with mild/moderate (n = 25), severe COVID-19 (n = 30),
and a negative control group (n = 72). The group of patients with severe COVID-19 was
recruited from two university hospitals in Bratislava: Ruzinov and Kramare (Slovakia).

The timeframe of sampling in hospitalized patients was different in the two hospitals. At
Ruzinov Hospital, patients were enrolled in the study at approximately day 7–8 (median 7)
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after admission to the hospital, while at Kramare Hospital it was day 3–4 (median 3.5). The
treatment regimen was also different in the two hospitals. In Ruzinov Hospital, 100% of
patients received antibiotic treatment and corticotherapy (corticosteroid treatment) (18/18),
more than 60% of patients received immunomodulatory therapy (20/28), and no patient re-
ceived antiviral treatment. In the second hospital, on the other hand, less than 20% received
antibiotic therapy (2/12) in combination with corticosteroids (8/10), immunomodulatory
and antiviral therapy (5/10). Mild and asymptomatic patients were recruited from mobile
collection sites operated by Medirex, the second largest provider of laboratory diagnostics
in Slovakia. Negative controls were recruited among Medirex employees and their family
members. A negative RT-PCR test and asymptomatic status were prerequisites. Randomly
captured RT-PCR-positive but asymptomatic patients were reassigned to the asymptomatic
group. Age and sex characteristics are summarized in Table 1. Samples were analyzed in
the order in which they arrived, in proportional representation, and no preference was
given to age, sex, or disease severity when selecting for sequencing. Nasopharyngeal
swabs were collected from March 2021 to October 2022 in viRNAtrap transport medium
(GeneSpector Innovations, Prague, Czech Republic) and stored at 4 ◦C in a refrigerator
until processed.

Table 1. Study cohort, Ct mean values (only severe, mild, asymptomatic).

Number Median (Years)

Age 151 39.5 (17–90)

Negative controls 72 37 (25–75)

male 26 42 (25–58)

female 46 35 (25–75)

Severe 30 68 (32–90)

male 16 69.5 (32–90)

female 14 64 (41–77)

Mild 25 37 (17–57)

male 13 38 (17–57)

female 12 32.5 (19–57)

Asymtomatic 24 42 (20–49)

male 14 39 (21–49)

female 10 43 (36–48)

BMI 132

Negative controls 57 24.48 (17.2–42.4)

male 25 28.4 (19.7–42.4)

female 32 21 (17.2–32.6)

Severe 19 30.39 (23.33–49.21)

male 8 30 (23.66–34.60)

female 11 30 (23.33–49.21)

Mild 25 25.64 (18.62–33.46)

male 13 28.27 (21.32–33.46)

female 12 21.71 (18.62–29.15)

Asymtomatic 24 25.72 (16.9–32.5)

male 14 28.10 (23.54–32.50)

female 10 20.73 (16.9–30.11)
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Table 1. Cont.

Number Median (Years)

Associated diseases 38/151 25.16%

Diabetes 12/151 7.94%

severe 10 33.33%

mild 1 4%

negative controls 1 1.30%

Arterial hypertension 21/151 13.90%

severe 15 50%

asymtomatic 3 12.50%

negative controls 2 2.70%

mild 1 4%

Ischaemic heart disease 7/151 4.63%

only severe 7 23.33%

Oncological disease 4/151 2.64%

severe 3 10%

negative controls 1 1.30%

Multiple diagnosis (more than 2 ) 11/151 7.28%

severe 10 33.33%

mild 1 4%

ATB (severe only) 30

Ruzinov hospital 18

ATB 18 100%

no ATB 0 0%

Kramare hospital 12

ATB 2 16.70%

no ATB 10 83.30%

Median Ct value E gene SD

Severe 28.06 (13.9-37.3) 7.34

Mild 24.89 (15-38.77) 5.32

Asymptomatic 28.56 (19.24-33.59) 4.72
SD—standard deviation, Ct—threshold cycle in RT-PCR.

2.2. RNA Isolation, RT-PCR and Library Preparation

RNA was isolated retrospectively from a nasopharyngeal swab-originated collec-
tion medium representing samples from patients with positive findings for COVID-19,
regardless of disease severity, without selection based on viral load (high or low Ct values)
and from COVID-negative controls using the Cytiva® Sera-XtractaTM virus/Pathogen
Kit (Global Life Sciences Solutions Operations, Little Chalfont, UK) on a KingFisher Flex
benchtop automated machine (ThermoFisher Scientific, Waltham, MA, USA). RNA quantity
was measured fluorometrically using QubitTM RNA High sensitivity (Invitrogen, Eugene,
OR, USA). RNA isolates were stored at −80 ◦C until processed. Genomic libraries were
prepared using Kappa HyperPrep with RiboErase Kit (Kapa Biosystems, Salt River Cape
Town, South Africa) with depletion of eukaryotic RNA for 18S rRNA according to the
manufacturer’s recommendations. Illumina’s TruSeq CD dual adapters were used for



Microorganisms 2023, 11, 1804 5 of 17

sample indexing. The resulting libraries were quantified by fluorometric analysis using the
QubitTM dsDNA HS Assay kit (Invitrogen, USA) and fragment analysis using the High
Sensitivity DNA reagent kit (Agilent Technologies, Waldbronn, Germany).

All RNAs underwent RT-PCR to confirm or exclude SARS-CoV-2 positivity using the
COVID-19 Real-Time Multiplex RT-PCR Kit (Labsystems Diagnostics, Vantaa, Finland) and
the ABI QuantStudio 6 Real-Time PCR System RT-qPCR platform (ThermoFisher Scientific,
Waltham, MA, USA) using the original manufacturer’s protocols. A Ct value < 40 was
required to evaluate a sample as positive.

2.3. Sequencing and Bioinformatic Analysis

Paired-end sequencing (2 × 75 and 2 × 100) was performed on NextSeq500/550
and NextSeq2000 (Illumina, San Diego, CA, USA) platforms, respectively. Paired-end
sequencing data were subjected to quality control by FastQC v0.11.9 [19] and reads were
processed by Trimmomatic v0.39 (CROP:96 HEADCROP:10 LEADING:22 TRAILING:22
SLIDINGWINDOW:4:22 MINLEN:25 and our own set of adapter sequences was used in
the ILLUMINACLIP step) [20]. First, reads were mapped to the human reference hg38
(GRCh38) by the BWA-MEM algorithm (from bwa v0.7.17) [21]. Unmapped reads, extracted
using samtools view from samtools v1.6 [22] and Picard SamToFastq from Picard v2.27.4 [23],
longer than 50 bp were further processed for microbiome identification. To identify and
quantify bacterial species, we used Kraken2 v2.1.2 [24], as we previously observed to
be well-functional for this purpose [25]. Kraken2 was run in paired-end mode with the
minimum-base-quality set on 20, while the minimum-hit-groups parameter was set on
2 and a standard database was used (built with a standard flag, installed on 2 August
2022). Flag-use-mpa-style was used to produce output, which can be useful in downstream
analysis and is also more easily readable.

For the SARS-CoV-2 virus, we applied de novo assembly algorithm coronaspades.py
from Spades v3.15.5 [26]. SARS-CoV-2 lineage/clade assignment was carried out as pro-
posed in Galaxy tutorial for a pipeline constructed by Maier and Batut [27].

2.4. Statistical Analysis

To statistically analyze the results of Kraken2, mpa-style outputs were first brought
together by combine_mpa.py from KrakenTools v1.2 [28] counts were normalized by
division by the total read pairs number in the given sample (after Trimmomatic step) and
subsequently multiplied by the average read pairs number. The difference in the number
of bacterial transcripts detected between groups was statistically analyzed by LefSE tool
(Galaxy Version 1.0) [29].

The normalized data were further analyzed using the R programming language.
Firstly, Bray–Curtis dissimilarity distance matrices were computed for all pairwise patient
group comparisons. PERMANOVA was then performed to compare the distribution of
bacterial genera and species between each pair of groups. Mann–Whitney U test (Wilcoxon
test) was used to compare the counts of reads matching sequences from the Kraken2
database between each pair of groups. This test was also applied to compare Ct values
between each pair of positive groups, thus excluding negative controls. To account for
multiple comparisons, Bonferroni correction was used to set a threshold of significance for
p-values.

To examine the abundance data in relation to various covariates and factors such
as age, sex, severity, ATB treatment, and SARS CoV-2 variant, we conducted additional
statistical analysis using the R package Maaslin2 [30]. The Maaslin2 function was applied
to the pre-normalized data with specific modifications to the options: a minimum abun-
dance threshold of 100 (min_abundance = 100), no standardization (standardize = FALSE),
no additional normalization (normalization = “NONE”), and no transformation (trans-
form = “NONE”). Consequently, a taxon had to exhibit an abundance value of at least 100
in at least one sample to be considered for further analysis.
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By default, a linear model was employed as the analysis method (analysis_method = “LM”),
and the Benjamini–Hochberg correction method (correction = “BH”) was utilized. The anal-
ysis encompassed all available samples, incorporating the following parameters: severity,
SARS-CoV-2 WHO variant, age (as continuous data), age category (as categorical data), sex,
and ATB treatment. Additionally, we examined specific categories individually, including
severe patients alone (to assess the impact of antibiotic treatment) and negative controls
alone (to explore potential effects of age and sex on microbial transcript quantities).

3. Results
3.1. Prokaryotic Microbiome

By metatranscriptome shotgun sequencing, we analyzed 151 samples categorized into
four main groups: asymptomatic (24, A), mild (25, M), severely affected (30, S) and control
group (72, NC). The mean number of read pairs per sample after trimming was 45.3 M
(27.7–133 M). Eukaryotic 18S rRNA from nasopharyngeal swabs was previously removed
during the DNA library preparation (detailed in Section 2).

The microbiome fraction or simply the number of reads matching sequences from the
standard Kraken2 database, distribution, and representation of bacterial taxa were different
across all four groups. The relative abundance of bacteria according to mapped sequence
reads was significantly higher in asymptomatic and mild patients. Firmicutes, Bacteroidetes,
Proteobacteria, Actinobacteria, and Fusobacteriales were the most abundant phyla among the
positives. On the contrary, in the control group, Actinobacteria, Proteobacteria, and Firmicutes
were the most abundant group while Bacteroides and Fusobacteriales had only a negligible
proportion (Figure 1A–D; Figure 2A,B). Using a threshold of 1000 reads in at least one
sample, we identified a total of 944 species, 531 genera, 218 families, 110 orders, 28 classes,
and 25 phyla. The highest number of species was in the severe (725), asymptomatic (692),
mild (574), and less than tenfold lower numbers in the negative control group (58). It is
important to mention that 20 out of 30 severe patients from two hospitals, including 100%
of patients from Ruzinov Hospital (18/18) and 16.7% of patients (2/12) from Kramare
Hospital, were treated with antibiotics. Antibiotic treatment (ATB) resulted in a reduction
of the total bacterial count, but the ratio of individual bacterial taxa was nevertheless
maintained (Figure 2C). Although we observed a decrease in the abundance of major
bacterial taxa in severe antibiotic users and non-users, this difference was not statistically
significant (Figure 2D). Apart from researching bacterial content, we compared relative
counts of taxa transcripts between different disease symptoms and different SARS-CoV-2
variants (alpha, delta, omicron) by LefSE tool. Here, we are showing differentially represented
genera under the LDA threshold, further filtered by median values (Figure 2E).
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Figure 2. Horizontal bar charts illustrating the relative abundance of phyla (A) according to the
severity of COVID-19 (B), phyla abundance according to ATB treatment in severe patients (C),
statistical comparison of relative phyla abundance in ATB and non- ATB group (only severe) (D),
and relative abundance of differentially represented genera by WHO SARS-CoV-2 variants, shown
genera were chosen under conditions: LDA from LefSE > 4 and median of relative abundance in
either control group or COVID-positive group > 100 (E).
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We further profiled the microbial composition at the genus and species level in healthy
controls and various COVID-19 groups. In the nasopharyngeal swab samples, there
is a striking enrichment of Streptococcus, Prevotella, and Veillonella, the most abundant
genera in the mild and asymptomatic groups (Figure 3A). Stenotrophomonas, Staphylococ-
cus, and Corynebacterium are dominating genera in the severe group. Surprisingly again,
Stenotrophomonas, Mycobacterium, and Pseudomonas are the most abundant in healthy partici-
pants. At the species level, Stenotrophomonas maltophilia, Cutibacterium acnes, and Halomonas
sp. JS92-SW72 were enriched in severe patients. Veillonella atypica and Prevotella melanino-
genica were most abundant in the mild and asymptomatic groups, and the total numbers of
other species of the genus Prevotella (P. jejuni, P. histicola, P. intermedia, P. oris) and Strepto-
coccus (S. parasanguinis, S. mitis, S. sp. LPB0220) were very similar (Figure 3B). The most
frequently present species in the healthy control group as well as in the severe group were
Stenotrophomonas maltophilia, Halomonas sp. JS92-SW72 and Mycobacterium canettii. Of the
clinically relevant opportunistic bacterial species, e.g., Klebsiella pneumoniae, Staphylococcus
aureus, Streptococcus pneumoniae and Haemophilus parainfluenzae were present in all four,
although they did not significantly dominate in any of the groups and the differences
between the groups were not statistically significant; rather, their prevalence was similar
in the pairs of severe and negative control versus mild and asymptomatic. Of particular
interest was the presence of bacterial species in all groups that are not entirely typical of the
human upper respiratory tract microbiome. Of both Gram-negative coccobacilli, Moraxella
osloensis is rarely isolated from clinical specimens and Pasteurella multocida is part of the
normal microbiota in the nasopharynx of many wild and domestic animals, including cats
and dogs.
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By reducing the threshold from 1000 reads to 100, we were able to identify sequences of
microorganisms that are not typical of the nares and nasopharynx microbiome, e.g., Archaea
(originally Archebacteria), a distinct group separate from bacteria that commonly inhabit
extreme biotypes. We identified two phyla Candidatus Micrarchaeota and Euryarchaeota. The
most abundant species identified was Natrinema salinisoli.

3.2. Virome Analyses

Among the 79 RT-PCR-positive samples, 51 complete SARS-CoV-2 genomes and
19 partially complete SARS-CoV-2 genomes (multiple scaffolds) were assembled by meta-
transcriptome shotgun sequencing, accounting for 62% (51/79). Additionally, we did not
identify SARS-CoV-2 sequences in any of the control group samples (SARS-CoV-2 RT-PCR
negative). In the asymptomatic, mild, and severe group, we identified SARS-CoV-2 clades:
Alpha (B.1.1.7)—clade 20I, Delta (AY.4; AY.43; AY.43.9; AY.122; AY.9.2)—clade 21I and in one
case 21J, Omicron (BA.1.1; BA.2.9; BA.2; BA.2.67; BA.5)—clade 21L and in one case 22B, and
one sample clade 20C. The Alpha and Delta variants were predominant in the severe COVID
group; however, 30% of analyses failed to assemble the genome due to the insufficient
read counts aligned to the SARS-CoV-2 reference. Alpha was dominant in the mild group,
while Omicron and Delta were dominant in an asymptomatic group with an undetermined
SARS-CoV-2 clade in 24% and 33% with median Ct values of 33.3 and 33.8, respectively.

In addition to SARS-CoV-2, we identified sequences of other human RNA viruses, e.g.,
from the family Picornaviridae (Rhinovirus A). As expected, among the DNA viruses, these
were mainly phages from Pedoviridae, Rountreeviridae, and Siphoviridae. In a few individual
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samples, we identified sequences of Human Herpes Virus 1, HSV-1 (Alphaherpesviridae) and
Human Mastadenovirus D (Adenoviridae).

In terms of age, the differences were mainly between severe COVID patients from
the hospital (median 68) and the other groups (M-37, A-42, N-37) (Table 1). But the
distribution of taxa in age-similar patients was similar in the microbiome representation in
all positive participants.

We performed additional linear statistical analyses (Maaslin2) to correlate the abundance
data along with age, sex, and antibiotic treatment. When analyzing age as a continuous
variable, we did not observe any discernible effect on the bacterial abundance. However,
when considering age as a categorical variable, we found significant effects on six specific taxa.
Expanding our analysis to include all samples, we discovered variations in the abundance
of 231 taxa that correlated with age (Supplementary Material S1 and S2). When we focused
exclusively on severe patient samples, which tended to include older individuals, we observed
a distinct and pronounced influence of age. Moreover, 114 taxa showed significant associations
with antibiotic (ATB) treatment in severe patients (Supplementary Material S3).

4. Discussion

Our study compares the microbiome including the virome of the nasopharynx among
four groups of participants based on the severity of the viral respiratory disease: negative
(no signs of illness, RT-PCR negative), mild (benign symptoms, not requiring hospital-
ization), asymptomatic (no signs of illness, RT-PCR positive), and severely ill COVID-19
patients (breathing difficulties, pneumonia, hospitalized) using metatranscriptome shotgun
sequencing. Samples were collected over an extended period of time at mobile sampling
centers (NC, asymptomatic, mild) and at two hospitals (severe). In the text, for simplifica-
tion, we use an abundance of bacteria or viruses, although, in reality, we are still referring to
transcripts, which, however, express the representation of the active part of the microbiome.
In addition, filtering for contaminating reads was particularly important in the context of
host-associated metatranscriptomic datasets as sequences of host origin can represent a
significant proportion of reads in a sample. Therefore, we already removed human 18S
rRNA via depletion during library preparation. For bioinformatic analysis, we analyzed
reads that did not map to the human reference based on length and quality, and further
analyzed using the Kraken2 tool (Section 2).

There are additional concerns in microbiome research that need to be addressed, specif-
ically regarding potential contamination from the environment or cross-contamination
from other samples. However, systematic requirements in this regard are still lacking.
Initially, RNA depletion and bioinformatics algorithms may not be sufficient to overcome
this issue. The inclusion of sample and extraction blanks, along with non-sample controls
in the PCR step, could be valuable in reducing the likelihood of contamination.

The abundance of bacteria is significantly higher in the mild and asymptomatic groups
while only a small proportion is present in the severe and negative. The low abundance
of bacteria in severe patients is easily explainable by the intake of antibiotics. The use of
antibiotics without a clear indication of bacterial superinfection is controversial; however,
it appears to have been common practice in some healthcare centers regardless of the risks
of antimicrobial resistance. The side effects of corticosteroids and immunomodulatory
therapies on the microbiome of the upper respiratory tract are complex and can vary de-
pending on multiple factors such as dosage, duration, and individual factors; however,
they can alter the microbial diversity in both ways: increase or decrease [31]. Few publi-
cations report that the bacterial load increased as COVID-19 severity increased (although
differences between groups were not statistically significant), and the abundance of the
microbiome increases with the severity of the disease [32,33]. According to the severity
of the disease, Firmicutes are most frequent in asymptomatic, mild, and severe patients,
whereas they are significantly less abundant and proportionally represented in healthy
controls (Figure 1A–D). We observed a significant decrease in the abundance, but not in
the diversity of bacterial taxa and in the representation of major taxa in severe patients.
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Although even in a small group of 30 patients, we divided them into antibiotic-treated and
non-antibiotic-treated patients, apart from the apparent decrease in abundance, we did not
observe a change in the relative abundance of the different bacterial phyla (Figure 2C,D).

The division into two groups of COVID-positive mild and asymptomatic was moti-
vated by the objective to investigate whether there is any difference between the microbiome
of people with symptoms of respiratory disease such as rhinitis, fever, cough and people
who, although infected (RT-PCR positive), do not show any symptoms. Our results in-
dicate that both the abundance of bacteria and the proportions of representation of each
taxon are very similar in both groups. Although the median Ct values in mild (24.89) and
asymptomatic (28.56) appeared to be rather different, they were not statistically signifi-
cant (Wilcoxon test, p = 0.017), the size of both groups (25 vs. 24), and age distribution
(37 vs. 42) were otherwise similar. We did not observe any significant differences at the
genus and species level, as confirmed by the statistical analysis (PERMANOVA; p = 0.053
and 0.024, calculated cut-off p-value was 0.0023). The most enriched genera in both groups
were Streptococcus, Veillonella (both phyla Firmicutes), and Prevotella (phyla Bacteroidetes) with
Veillonella atypica and Prevotella melaninogenica being the most abundant species (bacterial
species and genus (Figure 3B)). This observation is consistent with findings from similar
studies of the microbiome of upper respiratory airways [34–36]. P. melaninogenica is a
Gram-negative, obligate anaerobic coccobacillus that can act as an opportunistic pathogen,
and there are conflicting hypotheses for its effect on the respiratory tract. For example,
P. melaninogenica has been found to be a “beneficial” member of the airway microbiome
because it enhances protection against bacterial pneumonia caused mainly by Streptococcus
pneumoniae (S. pneumoniae). Further, Prevotella melaninogenica was ranked among the most
distinguishing bacterial species separating patients with pneumonia caused by S. pneumo-
niae (with less P. melaninogenica) from healthy controls (with more P. melaninogenica) [37].
Interestingly, the severe group with acquired pneumonia of unknown bacterial origin had
significantly less P. melaninogenica (Figure 3B).

We analyzed 72 negative healthy controls, all were additionally verified/tested by
RT-PCR (genes E, ORF1ab, N) and confirmed negative. The highest bacterial abundance
based on the number of mapped reads and transcripts was in the asymptomatic and mild
groups. This is not that surprising since any viral infection including that of SARS-CoV-2
predisposes to secondary bacterial superinfection. We acknowledge that the enormous
bacterial diversity observed in our study could potentially represent components of the
normal microbiota. However, we would like to clarify that our hypothesis does not propose
that superinfection is the sole factor driving bacterial diversity. Rather, we suggest that
superinfection may contribute to increased diversity in certain cases. The severity of
symptoms is influenced by various factors, including the host immune response, which can
explain why some individuals with superinfection experience mild or no symptoms. While
our manuscript does not provide specific information about the health status or infection
sources of patients, we believe that further research is necessary to explore these aspects.

In healthy adults, skin-associated bacteria are usually present in the nasal cavity, pre-
dominantly representatives of Actinobacteria (e.g., Corynebacterium spp., Propionibacterium
spp.), followed by Firmicutes (e.g., Staphylococcus spp.) and Proteobacteria (Bassis et al., 2014).
In negative controls, we identified 58 species out of more than 900, thus contributing only
about 6% to the microbial diversity and richness. The prevalent phyla were Actinobacteria,
but the dominantly invaded species was Stenotrophomonas maltophilia belonging to Proteobac-
teria (Pseudomonadota). It has relatively low virulence in immunocompetent persons, but in
patients with chronic respiratory disease, immunocompromization, prolonged antibiotic
use (especially carbapenems) and long-term hospitalization or admission to the intensive
care unit can be a source of life-threatening complications [38].

Not surprisingly, the nasopharyngeal virome in asymptomatic, mild, and severe pa-
tients was composed predominantly of different SARS-CoV-2 variants, which correlated
unambiguously with the period of occurrence of the particular strains in Slovakia. The
sensitivity of metatranscriptome sequencing was only about 60%, but on the other hand,
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the set of SARS-CoV-2 positive samples consisted of different Ct values. At the individual
level, for all samples that had Ct of 20 or less, corresponding to higher viral loads, we
were able to assemble the whole genome of the SARS-CoV-2 virus. Samples from a group
of severe patients were collected 3–7 days after inclusion in the study, and these patients
had been treated in the interim with a wide range of drugs (antibiotics, corticotherapy, im-
munomodulatory therapy, antivirals) that may have influenced viral load in the meantime.
The mild, asymptomatic, and healthy controls, based on questionnaire information, were
not taking antimicrobial therapy or any other treatment with the potential to affect the
microbiome. Despite the limited number of samples in the groups with confirmed Delta,
Alpha, and Omicron variants, we were interested in whether they differed specifically at
the level of bacterial taxa. The relative abundance of differentially repressed genera by the
SARS-CoV-2 WHO variant (LefSE) figure shows that the genus Streptococcus is clearly more
abundant in the Delta-positive group compared to Alpha and Omicron. Campylobacter and
Haemophilus are slightly enriched in the Alpha group (Figure 2E). The clear advantage of the
transcriptome approach is its ability to capture not only RNA, but also DNA viruses (their
transcripts). Besides SARS-CoV-2, unsurprisingly, the most frequently identified sequences
were those derived from DNA viruses of bacteria, i.e., phages of the families Pedoviridae,
Rountreeviridae, and Siphoviridae.

In one patient with severe COVID-19, we identified Herpes Simplex Virus 1 (HSV-1)
transcripts corresponding to strain 17 (Genebank: JN555585.1) that mapped to the LAT
(latency-associated transcript) region. HSV-1 is a member of the Herpesviridae family and
is known for establishing a latent infection in the sensory neurons. During the latent
phase, the virus can persist in a dormant state within the host cells, primarily in the
trigeminal ganglia [39]. The latency-associated transcripts (LATs) are a group of viral RNA
molecules produced during this latent phase. These transcripts have been studied for their
involvement in modulating the HSV-1 latency and reactivation cycle. LATs have been
implicated in various processes, such as promoting neuronal survival, reducing apoptosis,
and modulating the immune response within the host [40]. However, it is important to
note that the presence of HSV-1 LATs alone may not be definitive evidence of active viral
replication or reactivation. We can only speculate that immunosuppression caused by
SARS Co-V2, in turn, could facilitate the reactivation of latent HSV-1.

We identified Rhinovirus A transcripts (Genebank: NP_042288) from the Picornaviridae
family in two patients from the healthy control group. Rhinoviruses are a group of viruses
that commonly cause respiratory infections, including the common cold. However, it is
important to note that rhinoviruses typically cause mild respiratory symptoms, and many
infections can go unnoticed or present with very mild symptoms. Rhinoviruses have been
known to persistently shed in some individuals even in the absence of symptoms. In these
cases, the virus can be intermittently detectable in respiratory samples, indicating a state
of viral persistence without causing active infection or disease. Persistent shedding of
rhinoviruses has been reported in both healthy individuals and those with respiratory
conditions [41].

Human Mastadenovirus D (Genebank: NC_001617.1) from Adenoviridae family was
found in one asymptomatic patient. The mapping transcript corresponds to the E2B
gene, which is an early gene encoding the DNA polymerase. The virus belongs to the
adenoviruses known to cause a variety of respiratory and ocular infections in humans.
Adenovirus infections can range in severity from asymptomatic or mild illness to severe
respiratory disease [42].

Using the Maaslin2 statistical tool, which allows analysis of abundance data along
with age, sex, ATB, and SARS CoV-2 strain, demonstrated that age had no discernible effect
on the abundance of bacterial transcripts in COVID-19 negative samples when a contin-
uous scale for age was used. When employing a categorical scale for age, we observed
significant effects on six taxa (Supplementary Material S1—Maaslin_results_ONLYhealthy).
In contrast, when considering all samples, we found that the 231 taxa exhibited varia-
tions associated with age (Supplementary Material S2—Maaslin_results_ALL). Notably,
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when focusing solely on severe patient samples (given that severe patients tended to
be older than the other groups), we identified a distinct and pronounced influence of
age on the data (Supplementary Material S3—Maaslin_results_ONLYsevere). Specifically,
114 taxa demonstrated significant associations with ATB treatment in severe patients (refer
to Supplementary Material), despite a lack of significance observed in a prior simple t-test
regarding the levels of the most abundant phyla (p-values displayed in Figure 2D). Fur-
thermore, no statistically significant results were detected for the gender category in any of
the aforementioned statistical analyses. These findings highlight the complexity of factors
influencing the bacterial community composition in relation to age, with age exerting a
more pronounced effect in severe patients. Further research is warranted to explore the
underlying mechanisms and potential clinical implications of these age-related associations
in bacterial abundance.

Sequences mapped to the human transcriptome were a non-negligible part of the
analysis, but they are not the subject of this paper and deserve special attention.

5. Conclusions

The study analyzed the microbiome and virome of the nasopharynx in different groups
of COVID-19 patients, including asymptomatic, mild, and severely affected individuals, as
well as a control group. Metatranscriptome shotgun sequencing was used to analyze 151
samples. In the prokaryotic microbiome analysis, the relative abundance of bacteria was
significantly higher in asymptomatic and mild patients compared to severe patients and
the control group. Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteriales
were the most abundant phyla in the positive groups, while Actinobacteria, Proteobacteria,
and Firmicutes were dominant in the control group. The abundance of bacterial taxa was
maintained even in severe patients who received antibiotic treatment. The use of antibiotics
in severe patients decreased the overall bacterial abundance, but did not significantly
alter the relative abundance of different bacterial phyla. Similar microbiome compositions
were observed in both mild and asymptomatic groups. In virome analysis, SARS-CoV-2
genomes were assembled in 62% of the positive samples, with Alpha and Delta variants
being predominant in severe and mild groups, respectively. Other human RNA viruses
and phages from various families were also detected in the samples. Overall, this study
provides insights into the composition and diversity of the microbiome and virome in
COVID-19 patients, highlighting differences based on disease severity and the presence of
SARS-CoV-2 variants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11071804/s1, Supplementary Material S1
(Maaslin_results_ONLYhealthy): Maaslin2 used on negative control (healthy) samples only with
parameters: age (as continual data), age category (as categorical data) and sex. Statistics was per-
formed on already normalized data with altered options (min_abundance = 100, standardize = FALSE,
normalization = “NONE”, transform = “NONE”); Supplementary Material S2 (Maaslin_results_ALL):
Maaslin2 used on all available samples with parameters severity, SARS-CoV-2 WHO variant, age (as
continual data), age category (as categorical data), sex and ATB treatment. Statistics was performed on
already normalized data with altered options (min_abundance = 100, standardize = FALSE, normaliza-
tion = “NONE”, transform = “NONE”); Supplementary Material S3 (Maaslin_results_ONLYsevere):
Maaslin2 used on severe samples with parameters SARS-CoV-2 WHO variant, age (as continual
data), age category (as categorical data), sex and ATB treatment. Statistics was performed on already
normalized data with altered options (min_abundance = 100, standardize = FALSE, normaliza-
tion = “NONE”, transform = “NONE”).
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