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Abstract: Staphylococcus aureus contamination of food and food contact surfaces is a public health
concern given its virulent and antimicrobial-resistant properties worldwide. In this study, a total
of 181 MSSA isolates were analyzed for SE genes, antimicrobial resistance patterns, and spa types.
Overall, 24.9% of isolates were positive for SE gene detection, with sea being the most prevalent
classical SE (18.8%). The most predominant sample sources for SE gene contamination were hand
swabs for sea (6/48), meat dishes for seb (3/14) and seafood dishes for sec (2/24). Antimicrobial
resistance was also observed at relatively high frequencies for the clinically important antibiotics
penicillin G and ampicillin (both 54.7%), followed by tetracycline (14.9%) and azithromycin (8.8%). In
addition, characterization of spa types revealed spa type t5078 to be the most predominant (40.3%),
with significant associations between spa types t127 and t5521 and the sea gene. This study offers
insights into the enterotoxin gene and antimicrobial resistance profiles of S. aureus in cooked or
ready-to-eat food to inform future surveillance and epidemiological studies.

Keywords: Staphylococcus aureus; spa type; antimicrobial resistance; retail food; food contact surface;
enterotoxin genes

1. Introduction

Staphylococcus aureus has been recognized as a ubiquitous pathogen responsible for
Staphylococcal food poisoning (SFP), a gastrointestinal intoxication resulting from the
ingestion of food contaminated by enterotoxigenic S. aureus [1]. While S. aureus does not
form spores, their opportunistic nature encourages growth in a wide range of temperatures
(7 to 48.5 ◦C) and pHs (4.2 to 9.3) [2]. These characteristics promote the growth and
spread of S. aureus in many food products, especially meat and meat products, poultry
and egg products, unpasteurized milk, and dairy products [3]. After contamination,
improper storage conditions and poor hygiene practices accelerate the growth of S. aureus,
allowing it to reach the cell density necessary for enterotoxin production. Hence, it is
crucial that proper hygiene standards are adhered to during food processing and storage to
minimize the spread and growth of the pathogen and its enterotoxins throughout the food
processing chain.

Staphylococcal enterotoxins (SEs) produced by coagulase-positive staphylococci are
the main causatives agents of SFP. SEs are resistant to heat, proteolytic enzymes, and
other environmental conditions [4]. Due to their stable nature, the detection of SEs is a
definite method for the confirmation of outbreaks and the enterotoxigenicity of strains.
There are over 20 S. aureus enterotoxins identified. Based on serological classification, they
are grouped as classical genes and non-classical genes (new SEs). Classical genes are the
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top five predominant enterotoxins (sea, seb, sec, sed, and see) that are highly isolated from
outbreaks of SFP in more than 90% of cases, while non-classical genes are new enterotoxins
that were isolated from 5% of cases [5]. Due to the stable properties of SEs and the low
dose required to cause symptoms, consumption of food contaminated with enterotoxigenic
S. aureus can easily lead to foodborne outbreaks. There are several reported SFP outbreaks
across Asia [6–8], though none were reported in Singapore. Nonetheless, contamination of
S. aureus with food and food contact surfaces is a public health concern given its virulent
and antimicrobial-resistant properties worldwide.

Molecular typing is a useful tool to understand clonal relatedness, genetic diversity,
and the spread of pathogens [9]. There are several molecular methods to identify entero-
toxigenic S. aureus strains, including pulsed-field gel electrophoresis (PFGE), multi-locus
sequence typing (MLST), whole genome sequencing (WGS), and spa typing. In this study,
spa typing was adopted. Spa typing is a single-locus typing method to analyze the highly
variable X region of the protein A gene in S. aureus strains. The X region consists of 24-bp
tandem repeats flanked by well-conserved regions. Repeats are assigned a unique repeat
code, and the spa type of a given strain is derived from the number of tandem repeats
and the sequence variation in the X region. Due to its discriminatory power to identify
strains based on a single-locus DNA sequence-based marker in the presence of polymor-
phisms, this method proved to be as effective as other typing methods, including PFGE
and MLST [10]. It is also most cost-effective, less time-consuming, and less error-prone
compared to other molecular methods [9,11]. While WGS can differentiate closely related
strains with greater sensitivity as compared to spa typing, the spa gene is composed of
highly variable and similar repeats, which could pose a challenge for WGS since repeated
sequences can be misassembled [12]. Since the objective of our study is to understand if
there is a possible transfer of S. aureus from food handlers to food, the use of spa typing in
our study would be sufficient and more cost-efficient compared to WGS, so spa typing is
adopted in this study.

Over the past decades, the increasing use of antibiotics in animal and human medicine
has led to an increasing public health concern about antibiotic resistance in pathogens,
including S. aureus, [4]. S. aureus also colonizes animals, and transmission between humans
and animals has been reported [1]. Once humans acquire it, community transmission is
possible. With the increasing use of antibiotics in animals, the emergence of antimicrobial
resistance and increasing virulence would be a public health concern [1]. Although SFP
is mostly self-limiting in healthy adults, treatment with antimicrobials is necessary for
invasive and immunocompromised individuals [13], and the presence of resistance traits
can render corresponding antimicrobials ineffective in treating the infection or intoxication,
resulting in serious public health issues [13].

To the best of our knowledge, limited research has been done in Singapore on S. aureus
in the food chain and its implications for food safety with regards to antimicrobial resistance
and enterotoxigenicity. Additionally, SFP is not a notifiable disease in Singapore. Therefore,
the data on the incidence of SFP in the population is limited. Hence, the objectives of this
study are to evaluate the occurrence and prevalence of S. aureus strains in food and food
contact surfaces in Singapore and to examine the antimicrobial susceptibility pattern of
these strains. Through an understanding of the molecular epidemiology of these strains
in retail food and food handlers, findings from this study will be useful to inform public
health and mitigation measures at the retail level, such as good food handling practices
among food handlers, and strengthen future surveillance and epidemiological studies.
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2. Materials and Methods
2.1. Sample Collection, Isolation and Identification of S. aureus

A total of 1540 retail food and food contact surface samples were obtained from food
surveillance and risk assessment studies conducted by the National Environmental Agency
between 2009 and 2013.

A ten-gram sample of each food item was placed in a sterile stomacher bag and ho-
mogenized with 90 g of Universal Pre-enrichment Broth (UPB) (Acumedia Manufacturers,
Lansing, MI, USA) using a stomacher (Seward Stomacher® 400 Circulator, Seward, West
Sussex, UK) at 230 rpm for 30 s. Serial 10-fold dilutions were prepared using 9 mL of
Butterfield’s buffer (3M, St. Paul, MN, USA). For the detection of S. aureus, 1 mL of a 10-fold
diluted sample was equally distributed between two plates of Baird-Parker agar (Oxoid,
Basingstoke, Hants, UK) before incubation at 37 ◦C for 48 h. Presumptive S. aureus colonies
(grey-black colonies with a narrow white margin surrounded by a zone of clearing) were
tested for a catalase reaction using 3% hydrogen peroxide (ICM Pharma, Singapore) and
confirmed using coagulase rabbit plasma (Remel, Haverhill, MA, USA).

2.2. Detection and Isolation of SE Genes

The detection of SE genes was performed using the following method [14–17].
DNA was extracted from pure S. aureus colonies grown on Tryptic Soy Agar plates

with 5% sheep blood (Acumedia, Baltimore, MD, USA) using the QIAamp® DNA Mini
Kit (Qiagen, Hidden, Germany). Multiplex and singleplex PCR assays were performed
to detect virulence genes (sea, seb, sec, sed, see, seg, seh, sei, sej, and sel) and the mecA gene
characteristic of methicillin-resistant S. aureus (MRSA).

PCR master mixes were prepared as shown below (Table 1). Each PCR mix (45 µL)
consists of 5× Phusion High-Fidelity Buffer (Thermo Scientific, Vilnius, Lithuania), dNTP
mix (1st BASE, Seri Kembangan, Malaysia), 10 µM of each primer (Integrated DNA Tech-
nologies, Singapore) (Table 2), Phusion Hot Start II DNA Polymerase (Thermo Scientific,
Vilnius, Lithuania), DNA template, and molecular-grade water. S. aureus 29213, S. aureus
43300, S. aureus ATCC® 13565, S. aureus ATCC® 14458, S. aureus ATCC® 23235, S. aureus
ATCC® 27664, S. aureus ATCC® 19095, and BAA S. aureus ATCC® 1761 were used as
positive controls, while molecular-grade water was used as a negative control.

Table 1. Volume of reagents used for multiplex and singleplex PCR assays in this study.

Reagents
Volume of Reagents Used for the Detection of Virulence Genes (µL)

Multiplex PCR 1 Multiplex PCR 2 Singleplex PCR 1 Singleplex PCR 2

HF Buffer (5×) 10 10 10 10
dNTP (10 mM) 1 1 1 1

ESA F + R primer (10 µM) 1
ESB F + R primer (10 µM) 1
ESC F + R primer (10 µM) 1
ESD F + R primer (10 µM) 1
ESE F + R primer (10 µM) 1
ESG F + R primer (10 µM) 0.5
ESH F + R primer (10 µM) 0.5
ESI F + R primer (10 µM) 1
ESJ F + R primer (10 µM) 1
ESL F + R primer (10 µM) 1
Phusion Taq polymerase 1 0.5 0.5 0.5
Molecular grade water 29 30.5 32.5 32.5
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Table 2. Nucleotide sequences and amplicon sizes for virulence gene primers used for this study.

Gene Primer Nucleotide Sequences Amplicon Size (bp) Multiplex/Singleplex PCR

sea ESA′ 5′-ACGATCAATTTTTACAG′-3′ 544 Multiplex PCR 1
ESA′ 5′-TGCATGTTTTCAGAGTTAAT′-3′

seb ESB′ 5′-GAATGATATTAATTCGCAT′-3′ 416 Multiplex PCR 1
ESB′ 5′-TCTTTGTCGTAAGATAAACTT′-3′

sec ESC′ 5′-GACATAAAAGCTAGGAATT′-3′ 257 Singleplex PCR 2
ESC′ 5′-AAATCGGATTAACATTATCC′-3′

sed ESD′ 5′-TTACTAGTTTGGTAATATCTCCT′-3′ 334 Multiplex PCR 1
ESD′ 5′-CCACCATAACAATTAATG′-3′

see ESE′ 5′-ATAGATAAAGTTAAAACAAGCA′-3′ 170 Multiplex PCR 1
ESE′ 5′-TAACTTACCGTGGACC′-3′

seg ESG′ 5′-ACGTCTCCACCTGTTGAAG′-3′ 400 Multiplex PCR 2
ESG′ 5′-TGAGCCAGTGTCTTGCTTT′-3′

seh ESH′ 5′-TCACATCATATGCGAAAGCA′-3′ 357 Multiplex PCR 2
ESH′ 5′-TAGCACCAATCACCCTTTC′-3′

sei ESI′ 5′-TGGAACAGGACAAGCTGAA′-3′ 467 Multiplex PCR 2
ESI′ 5′-TAAAGTGGCCCCTCCATAC′-3′

sej ESJ′ 5′-CAGCGATAGCAAAAATGAAAC′-3′ 240 Singleplex PCR 1
ESJ′ 5′-TCTAGCGGAACAACAGTTCTG′-3′

sel ESL′ 5′-CACCAGAATCACACCGCTT′-3′ 426 Multiplex PCR 2
ESL′ 5′-CTGTTTGATGCTTGCCATT′-3′

Amplification using multiplex PCR was conducted using the following parameters:
initial denaturation of the strand at 98 ◦C for 30 s, followed by 30 cycles of denaturation
at 98 ◦C for 10; annealing at 61 ◦C for 30 s; extension at 72 ◦C for 30 s; and final extension
for 10 min at 72 ◦C. For amplification using singleplex PCR, the following parameters
were used: initial denaturation of the strand at 98 ◦C for 30 s, followed by 35 cycles of
denaturation at 98 ◦C for 10 s; annealing at 57 ◦C for 30 s; extension at 72 ◦C for 30 s; and
final extension for 10 min at 72 ◦C. PCR-positive MSSA samples were confirmed with a
latex agglutination test (PBP2) (Oxoid) and a cefoxitin disc (Oxoid) using the disc diffusion
method following Clinical and Laboratory Standards Institute (CLSI) guidelines [18,19].

The amplified products were visualized using gel electrophoresis on a 1.5% agarose
gel for multiplex PCR 1, singleplex PCR 1 and 2, and a 2% agarose gel for multiplex PCR 2.
Detectable PCR bands were confirmed to contain the virulence genes.

2.3. Spa Typing

The spa typing for the S. aureus isolates was performed using the following method [20–23].
The X region of the protein A gene was amplified using PCR with four primer sets:

1113f and 1514r; 1095f and 1517r; 1084f and 1618r; and 238f and 1717r. If no PCR ampli-
fication was detected with one of the primer sets, the other three sets were used for PCR
amplification instead.

The PCR mix for spa typing consists of 10 µL of 5× Phusion High-Fidelity Buffer
(Thermo Scientific, Vilnius, Lithuania), 1 µL of dNTP mix (10 mM) (1st BASE, Seri Kemban-
gan, Malaysia), 0.5 µL of each forward and reverse primer (Integrated DNA Technologies,
Singapore), 0.5 µL of Phusion Hot Start II DNA Polymerase (Thermo Scientific, Vilnius,
Lithuania), and 32.5 µL of molecular-grade water. To each PCR mix, 5 µL of DNA template
was added.

Amplification was conducted using the following parameters: For primers 1113f
and 1514r, initial denaturation of the strand at 98 ◦C for 30 s is followed by 35 cycles of
denaturation at 98 ◦C for 10 s, annealing at 61 ◦C for 30 s, extension at 72 ◦C for 30 s, and
final extension for 10 min at 72 ◦C. For primers 1095f and 1517r, initial denaturation of the
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strand at 98 ◦C for 30 s is followed by 35 cycles of denaturation at 98 ◦C for 10 s, annealing
at 45 ◦C for 30 s, extension at 72 ◦C for 30 s, and final extension for 10 min at 72 ◦C. For
primers 1084f and 1618r, 238f and 1717r, initial denaturation of the strand at 98 ◦C for
30 s is followed by 35 cycles of denaturation at 98 ◦C for 10 s, annealing at 55 ◦C for 30 s,
extension at 72 ◦C for 30 s, and final extension for 10 min at 72 ◦C. The amplified products
were visualized using gel electrophoresis on 1.5% agarose gel. Detectable PCR bands were
confirmed to contain the spa gene.

PCR products were purified using the QIAquick® PCR Purification Kit (Qiagen,
Hilden, Germany) and sequenced by capillary electrophoresis using BigDye Termina-
tor chemistry (AIT Biotech, Singapore). Sequences were analyzed using BioNumerics v7.6
to determine spa types.

2.4. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility for S. aureus isolates was determined by the disc diffu-
sion method according to the Clinical and Laboratory Standards Institute (CLSI) guide-
line [18]. All the antibiotics used to determine antimicrobial resistance were grouped
into nine classes: Aminoglycosides, Beta-lactams, Cephalosporins, Chloramphenicols,
Fluoroquinolones, Glycopeptides, Macrolides, Sulphonamides and Tetracyclines. The
antimicrobial agents used were Ciprofloxacin (CIP5), Norfloxacin (NOR10), Amikacin
(AK30), Ampicillin (AMP10), Gentamicin (CN10), Tetracycline (TE30), Ceftriaxone (CRO30),
Amoxycillin/Clavulanic acid (AMC30), Sulphamethoxazole/Trimethoprim (SXT25), Chlo-
ramphenicol (C30), Azithromycin (AZM15), Penicillin G (P10), Vancomycin (VA30), Cefox-
itin (FOX30), and Rifampicin (RD5). The zone diameter breakpoints used were obtained
from the CLSI standards [18]. Staphylococcus aureus ATCC® 25923 was used as the quality
control strain, while sterile water was used as a negative control.

2.5. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 8.0 (GraphPad Software,
LLC, San Diego, CA, USA). A p-value < 0.05 was considered statistically significant. Non-
random associations between categorical variables (spa type and SE gene) were determined
using the Fisher’s exact test. Cluster analysis was performed on BioNumerics v7.6 and a
maximum distance of 2 was used to determine closely related spa types in the same cluster.

The 95% confidence intervals of proportions were calculated using http://vassarstats.
net/prop1.html (accessed on 23 March 2023) Z-scores for two population proportions were
calculated using https://www.socscistatistics.com/tests/ztest/default2.aspx (accessed on
1 April 2023).

3. Results
3.1. Occurrences and Distribution of SE Genes

The prevalence of S. aureus in food and food contact surfaces is 15.4% (237/1540 sam-
ples). All 237 S. aureus isolates were determined to be methicillin-susceptible S. aureus
(MSSA). Of the 237 S. aureus isolates tested, 181 could be typed using spa sequencing. The
remaining strains that could not be typed were excluded from the analysis. The frequency
of isolates from food and food contact surfaces are shown in Table 3.

http://vassarstats.net/prop1.html
http://vassarstats.net/prop1.html
https://www.socscistatistics.com/tests/ztest/default2.aspx
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Table 3. Number and percentage of S. aureus isolates obtained for this study.

Sample Category n %

Hand swabs 48 26.5
Vegetables 32 17.7

Seafood dishes 26 14.4
Mixed 23 12.7

Meat dishes 17 9.4
Fruits 7 3.8
Rice 7 3.8

Bread products 5 2.8
Eggs 5 2.8

Soybean 5 2.8
Chili 4 2.2

Drinks 2 1.1

Total 181 100%

Of the 181 isolates, 45 (24.9%) [95% CI: 19.1–31.6%] were detected with at least one of
the SE genes. A total of 96 SE genes were detected among these 45 isolates.

The occurrence of each SE gene across all isolates is shown in Table 4 below.

Table 4. Occurrence of each SE gene across all isolates Classical SE genes include sea, seb, sec, sed and
see; Non-classical SE genes include seg, seh, sei, sej and sel.

Type of SE Genes Name of SE Genes % n

Classical SE genes

sea 18.8 18

seb 7.3 7

sec 5.3 5

sed 0.0 0

see 0.0 0

Non-classical SE
genes

seg 26.0 25

sei 26.0 25

seh 8.3 8

sel 7.3 7

sej 1.0 1

Total 100 96

The most common classical SE gene is the sea gene, while the most common non-
classical genes are seg and sei. In total, seg and sei genes had the highest occurrence (25/96)
(26.0%) across all SE genes. sed and see genes were not detected in any of the isolates tested
in this study.

The predominance of classical SE genes was categorized based on their food and
food contact surface categories, as shown in Figure 1 below. The sea, seb and sec genes
were predominantly found in hand swabs (6/48), meat dishes (3/17) and seafood dishes
(2/26) respectively.

3.2. Occurrence and Distribution of Antimicrobial Resistance (AMR) in Food

The percentage of antimicrobial resistance in S. aureus isolates are shown in Table 5.
All 181 S. aureus isolates were susceptible to ceftriaxone, cefoxitin, chloramphenicol, ri-
fampicin, sulfamethoxazole/trimethoprim, and vancomycin. The occurrence of resistance
was 54.7% against ampicillin (99/181), 54.7% against penicillin G (99/181), 14.9% against
tetracycline (27/181), and 8.8% against azithromycin (16/181).
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Table 5. Percentage of antimicrobial resistance in S. aureus isolates from foods and food con-
tact surfaces.

Antimicrobial Class Antimicrobial Agent Tested in the Study Percentage of Isolates Showing Resistant
Phenotypes (n)

Aminoglycosides Amikacin (AK) 0.0%

Gentamicin (CN) 3.3% (6/181)

Beta-lactams

Amoxycillin/Clavulanic Acid (AMC) 0.6% (1/181)

Ampicillin (AMP) 54.7% (99/181)

Penicillin G (P) 54.7% (99/181)

Cephalosporins Cefoxitin (FOX) 0.0%

Ceftriaxone (CRO) 0.0%

Chloramphenicols Chloramphenicol (C) 0.0%

Fluoroquinolones Ciprofloxacin (CIP) 1.7% (3/181)

Norfloxacin (NOR) 0.6% (1/181)

Clycopeptides Vancomycin (VA) 0.0%

Macrolides
Azithromycin (AZM) 8.8% (16/181)

Rifampicin (RD) 0.0%

Sulphonamides Sulphamethoxazole/Trimethoprim (SXT) 0.0%

Tetracyclines Tetracycline (TE) 14.9% (27/181)

Table 6 shows the classification of antimicrobial agents in different food and food
contact surface categories. Noticeably, isolates that were resistant to ampicillin were
resistant to penicillin G across all categories. In addition, resistance to tetracycline and
azithromycin was observed in most of the categories.

3.3. Distribution of Spa Types

Figure 2 shows the distribution of spa types for the S. aureus isolates. All 181 S. aureus
isolates were classified under 39 spa types. The top six predominant spa types were t5078
(73/181, 40.3%), t084 (19/181, 10.5%), t5521 (11/181, 6.1%), t189 (10/181, 5.5%), t6675
(9/181, 5.0%), and t127 (6/181, 3.3%). These spa types were analyzed for the presence of SE
genes, as shown in Table 7.

The most predominant classical SE gene, sea, was observed to have the highest propor-
tion in t5521, representing 73% (11/15) of all sea-positive isolates. The associations between
spa type t5521 and the presence of the sea gene (p < 0.0001) and between spa type t127
and the sea gene (p = 0.0138) were determined to be statistically significant using Fisher’s
exact test.

A minimum-spanning tree was constructed to perform spa clustering analysis for all
isolates (Figure 3). Clusters were arbitrarily assigned to clustering complexes spa CC01 to
spa CC04, according to the four definitive clusters observed. Spa types were partitioned
into complexes when the distance between connected nodes was ≤2.
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Table 6. Percentage of antimicrobial resistance in S. aureus isolates classified based on food and food contact surface categories.

Antimicrobial
Class

Antimicrobial Agent
Tested in the Study

Bread
Products

(n = 5)

Chilli
(n = 4)

Drinks
(n = 2)

Eggs
(n = 5)

Fruits
(n = 7)

Hand
Swabs
(n = 48)

Meat
Dishes
(n = 17)

Mixed
(n = 23)

Rice
(n = 7)

Seafood
Dishes
(n = 26)

Soybean
(n = 5)

Vegetables
(n = 32)

Aminoglycosides
Amikacin (AK) 0 0 0 0 0 0 0 0 0 0 0 0

Gentamicin (CN) 0 25 0 0 14 0 0 0 0 4 0 9

Beta-lactams

Amoxycillin/
Clavulanic Acid (AMC) 0 0 0 0 0 0 0 0 0 4 0 0

Ampicillin (AMP) 80 25 50 40 71 60 53 57 57 54 40 47

Penicillin G (P) 80 25 50 40 71 60 53 57 57 54 40 47

Cephalosporins
Cefoxitin (FOX) 0 0 0 0 0 0 0 0 0 0 0 0

Ceftriaxone (CRO) 0 0 0 0 0 0 0 0 0 0 0 0

Chloramphenicols Chloramphenicol (C) 0 0 0 0 0 0 0 0 0 0 0 0

Fluoroquinolones
Ciprofloxacin (CIP) 0 0 0 0 0 2 6 4 0 0 0 0

Norfloxacin (NOR) 0 0 0 0 0 0 0 4 0 0 0 0

Clycopeptides Vancomycin (VA) 0 0 0 0 0 0 0 0 0 0 0 0

Macrolides
Azithromycin (AZM) 0 0 0 20 14 8 0 4 14 12 20 13

Rifampicin (RD) 0 0 0 0 0 0 0 0 0 0 0 0

Sulphonamides Sulfamethoxazole/
Trimethoprim (SXT) 0 0 0 0 0 0 0 0 0 0 0 0

Tetracyclines Tetracycline (TE) 60 25 0 0 29 15 18 9 0 8 20 19

Legend:
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Table 7. Number of classical SE genes detected in S. aureus isolates, with the top six spa types in
181 isolates.

Spa Type sea seb sec

t5078 (n = 73) 0 0 0
t084 (n = 19) 0 2 0
t5521 (n = 11) 11 0 0
t189 (n = 10) 0 0 0
t6675 (n = 9) 1 0 0
t127 (n = 6) 3 1 1
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4. Discussion
4.1. Overall Occurrence of SE Genes

In this present study, 24.9% (45/181) of the isolates were detected for the presence of at
least one SE gene. The incidence of S. aureus detected with at least one or more SE genes in
this present study (24.9%) was relatively lower than that reported in other countries, such
as Korea (48.0%), China (54.4%), and Italy (55.5%) [24–26], which was expected. One of the
most common foods associated with SFP is milk and dairy products [3]. In Singapore, only
heat-treated milk is permitted to be sold for direct human consumption [27], hence there is
a lower risk of S. aureus contamination as compared to raw milk, which could be a possible
reason for the lower incidence compared to other countries. Another possible reason is that
food handlers in Singapore are required to undergo a compulsory food safety course to
equip them with the basic hygiene knowledge required for handling food, resulting in a
lower incidence of S. aureus. The lower incidence of S. aureus with SE genes also correlates
with the occurrence of SFP outbreaks, as Singapore has no known reported SFP outbreaks
compared to other Asian countries [6–8].

Among the ten SE genes tested, the classical SE gene sea (18.8%, 18/96) and the non-
classical SE genes sej (26.0%, 25/96) and sei (26.0%, 25/96) were detected at the highest
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frequencies. For the classical SE gene sea, observation was similar to studies conducted
in other countries, such as Taiwan (29.9%) and Iran (25.5%), where the sea gene was most
prevalent among the classical genes [5,28]. The sea gene was most commonly isolated
in cases of SFP and was frequently isolated in SFP outbreaks in Japan and the United
States [3,8]. Enterotoxins sea and seb are known to cause approximately 90% of staphylo-
coccal food poisoning worldwide [29]. The presence of enterotoxin genes in these isolates
suggests the isolates’ potential to produce toxins under favorable conditions and cause
staphylococcal food poisoning (SFP) if allowed to grow in large numbers in food.

In contrast, several other studies by Hait et al. [30] and Tang et al. [31] have found
non-classical genes to be the most predominant genes detected in the isolates investigated.
Non-classical genes are new types of genes that have lower expression than classical genes.
A non-classical sei gene has been detected in food poisoning-associated S. aureus isolates in
Switzerland, the United Kingdom, and Japan [32–34]. However, despite the presence of sei
genes in these isolates, it remains an open question whether these isolates have produced
enterotoxins in sufficient amounts in food to cause SFP. The detection of enterotoxin sei in
food should be explored further to make an accurate association between the sei gene and
its ability to cause food poisoning.

4.2. Occurrence of SE Genes according to Food and Food Contact Surface Category

Due to the widespread occurrence of classical genes among SFP outbreaks [5], this
study will focus on the comparison of the occurrence of classical SE genes across food
and food contact surfaces. Of the food and food contact surfaces, hand swabs had the
highest incidence of the sea gene (12.5%, 6/48). This is similar to studies conducted in
Brazil and Japan, where high occurrences of the sea gene were detected in hand swab
samples [35,36]. Without proper hygiene practices, such as wearing gloves during food
preparation, S. aureus can be transmitted from human skin to food. This suggests that
food handlers without proper hygiene care may increase the risk of contamination in
food, as they act as vectors for the spread of enterotoxigenic S. aureus to food [2,35,37],
which increases the risk of consumers consuming food contaminated with enterotoxigenic
S. aureus. Contamination by food handlers contributes significantly to food poisoning
outbreaks. In the United States, 42% of outbreaks between 1975 and 1988 were attributed
to contamination by food handlers [2].

Of the food and food contact surfaces, meat dishes had the highest incidence of
enterotoxin seb (21.4%, 3/14). Previous studies have reported few or no detections of the
seb gene in S. aureus isolates in retail meat samples [38,39], which is interesting to note as
the seb gene is directly associated with human contamination [40]. Meat dishes collected
in this study could be more susceptible to human contamination, as the dishes, including
chicken rice and duck rice, involve post-cooking manipulation, such as cutting and shifting
the meat from chopping board to plate. Potential contamination sources include cutting
boards, knives, or improper hygiene practices by food handlers [24]. Similar to the sea
gene, the seb gene has remarkable stability against heat and proteolytic digestion [29,41,42].
Contamination of food with the seb gene in suitable numbers could result in severe food
poisoning as well [19]. The occurrence of the sec gene among S. aureus isolates was highest
in seafood dishes (7.7%, 2/26). Similar findings were reported in a study where 12.5% (1/8)
of fish products were contaminated with the sec gene [26].

The presence of enterotoxin genes in S. aureus isolates is not necessarily a definitive
indication of protein expression in these genes, as these genes may be non-functional or
silent due to point mutations [43]. In addition, the level of enterotoxin production is depen-
dent on other factors, including pH, water activity, temperature, and other parameters [34].
Knowledge on the occurrence of enterotoxin genes in this study, therefore, does not reflect
the true enterotoxigenic potential of the S. aureus isolates. This limitation calls for greater
research into the expression of genes in isolates retrieved from food to inform exposure
and quantitative microbiological risk assessment (QMRA). Nonetheless, the presence of
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S. aureus strains with multiple enterotoxin genes still presents a threat to public health with
respect to the consumption of contaminated food and contamination by food handlers.

4.3. Distribution of Spa Types

Molecular characterization by spa typing revealed a wide genetic diversity with the
identification of 39 spa types among all the food and food contact surface isolates, with spa
type t5078 as the most prominent (40.3%, 73/181), followed by type t084 (10.5%, 19/181),
t5521 (6.1%, 11/181), t189 (5.5%, 10/181), t6675 (5.0%, 9/181), and t127 (3.3%, 6/181). While
there are several studies associating spa types with food and food contact surfaces [44–46],
the spa types identified in this current study were more associated with patients and human
blood isolates than food or food-related isolates.

Spa type t5078 has been linked to MSSA isolates isolated from patients in different
countries. In Singapore, spa type t5078 was discovered in a MSSA isolate that was detected
on an infected indwelling graft in a patient suffering from chronic renal failure [47]. In
Taiwan, spa type t5078 was isolated from blood samples from patients, which were then
discovered to be MSSA isolates [48]. According to Tunsjø et al. [49], S. aureus shares
similar virulence genes, pathogenicity islands, and bacteriophages with S. argenteus. This
is consistent with a study by Aung et al. [50], where 50% (12/24) of S. argenteus isolates
were classified into spa type t5078 and other spa types with similar repeat profiles to t5078.
Spa type t084 was found to be the most predominant spa type among MSSA isolates in a
children’s hospital in Poland and in the United States, with reports of invasive infections
and being present in healthcare-associated and community-onset infections [51,52]. In
another study, spa type t084 was also one of the predominant spa types among MSSA
isolates among healthcare workers and patients [53]. The third predominant spa type,
t5521 (6.1%, 11/181), was not actively studied in many countries. In a study conducted
by Uhlemann et al. [54], t5521 was identified as one of eight new spa types isolated from
S. aureus isolates from patients in Martinique. However, as t5521 is a relatively new spa
type, no further extensive research was conducted.

Spa type t127 was also associated with an MSSA outbreak caused by ice-cream in Ger-
many, with a high concomitance with the sea, in concordance with the results of this study
(p = 0.0138) [55]. This links spa type t127 to potential food poisoning events. However, the
statistically significant association (p < 0.0001) between spa type t5521 and sea in this present
study has not been reported in other studies to the best of our knowledge. Further research
is recommended to validate the statistical associations, which can aid in surveillance and
epidemiological analysis of S. aureus infections and SFP outbreaks [56].

One limitation of spa typing in this study was the high proportion of non-typable spa
types (23.6%), either due to the low quality of tandem repeats or no sequence generated.
Future studies could consider using WGS to evaluate the reliability of spa typing by PCR.
Spa-typing has been effective in distinguishing S. aureus from various sources, which will
be relevant and useful for the epidemiological determination of food sources in outbreak
investigations. Although the S. aureus strains in this study were isolated from surveillance
and risk assessment studies and not from outbreak investigations, studying the genetic
patterns of S. aureus isolates in food and food contact surfaces will be useful to understand
the molecular epidemiology of these isolates, which will be useful in cases of improper
hygiene practices or food handling during food production and storage.

4.4. General Antimicrobial Resistance Patterns

In this study, resistance to beta-lactams, specifically penicillin G and ampicillin, was
observed at the highest frequency (54.7%, 99/181). The results are in agreement with
other reports regarding the resistance of S. aureus detected in food to penicillin G in the
United States (67.4%), Kuwait (82.0%), China (83.7%), and Western Algeria (60.8%) [57–60].
Notably, ampicillin and penicillin G resistance occurred at the same frequency (54.7%),
similar to the results observed in bovine milk samples in China (91.4%) [61] and MSSA
isolates in Trinidad and Tobago (11%) [62]. Penicillin resistance through beta-lactamase
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is conferred by the blaZ gene, which can be chromosomal or plasmid-encoded [63,64].
Furthermore, the spread of Penicillin G resistance occurs with the spread of resistant strains
of S. aureus, where food could act as a vector [63,65]. However, as many clinically relevant
S. aureus strains do possess beta-lactamase functions [66], penicillin is unlikely to be used
for treatment of SFP, and thus the high resistance to both penicillin G and ampicillin in
most sample categories identified in this study could be inherent. However, this study
showed limited resistance to amoxycillin/clavulanic acid (0.6%), perhaps owing to the
beta-lactamase inhibition activity of clavulanic acid [67]. Therefore, it could be postulated
that beta-lactams are resistant. S. aureus isolates in this study were likely due to the presence
of beta-lactamase activity.

The findings from this current study also showed that tetracycline resistance was high
(27/181, 14.9%). Other studies in the United States (56.4%) and China (24.4%) have reported
varied resistance to tetracycline [57,68,69]. The varied resistance to tetracycline in different
countries could be explained using the varying usage of tetracycline in animal feeds, and
the treatment of bacterial infections in plants, agriculture, and human medicine [70]. While
tetracycline resistance in this study is high, compared to other antimicrobial agents tested,
the frequency is still considerably low compared to other countries and thus should not be
a cause for concern.

To date, there is a limited understanding of the transmission of antimicrobial-resistant
S. aureus through food and food-contact surfaces. Food provides a conducive environment
for the growth of bacteria. In addition, food chains are important in the spread of antimicro-
bial resistance between food and the environment [71,72]. These suggest that ready-to-eat
food and food contact surfaces can be potential environmental sources for the colonization
and circulation of antimicrobial-resistant S. aureus in the community [37,71]. Antimicrobial
resistant S. aureus will not be a food safety concern if enterotoxin genes are not expressed
and allowed to grow in sufficient numbers in food. However, the consumption of food
contaminated with enterotoxigenic S. aureus with antimicrobial resistance could pose a
serious food safety and public health risk [59]. In addition, antimicrobial-resistant S. aureus
in food could contribute to a larger part of the environmental resistome. Hence, it is crucial
to monitor the antimicrobial resistance and enterotoxigenicity of MSSA in retail food to
understand epidemiological changes and develop strategies to prevent the contamination
of the pathogen in food.

4.5. Antimicrobial Resistance Patterns according to Food and Food Contact Surface Category

The results indicated that tetracycline resistant S. aureus was high in bread products
(3/5, 60%). This was reported in China as well (23.3%) [59]. Studies conducted in other
countries have shown the possibility of associating antimicrobial resistance with a particular
type of food, such as in Iran, where chloramphenicol resistance was identified in food
products made from poultry meat, which correlated to the use of chloramphenicol to treat
infections in poultry [73]. Due to the limited availability of an equal number of isolates
across different sample categories, this study did not have the chance to show that a
particular food or food contact surface category was at increased risk of acting as a vehicle
for antimicrobial transmission. More data and larger sample sizes are required to calculate
risk ratios and draw conclusions about whether an association between antimicrobial
resistance and food or contact surfaces is causal in nature.

5. Conclusions

In conclusion, this study analyzed the patterns of SE genes, spa types, and antimicrobial
resistance of S. aureus in food and food contact surface samples. This study revealed
the occurrence of antimicrobial-resistant or enterotoxigenic S. aureus in food and food
contact surface samples, suggesting that food or food contact surfaces can be potential
vehicles for spreading S. aureus. Hence, there is a need for constant monitoring of food
hygiene. In addition, findings from this study offer epidemiological insights to inform
future surveillance and quantitative microbiological risk assessment.
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