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Abstract: Desulfovibrio (DSV) are sulfate-reducing bacteria (SRB) that are ubiquitously present in the
environment and as resident commensal bacteria within the human gastrointestinal tract. Though
they are minor residents of the healthy gut, DSV are opportunistic pathobionts that may overgrow in
the setting of various intestinal and extra-intestinal diseases. An increasing number of studies have
demonstrated a positive correlation between DSV overgrowth (bloom) and various human diseases.
While the relationship between DSV bloom and disease pathology has not been clearly established,
mounting evidence suggests a causal role for these bacteria in disease development. As DSV are the
most predominant genera of SRB in the gut, this review summarizes current knowledge regarding
the relationship between DSV and a variety of diseases. In this study, we also discuss the mechanisms
by which these bacteria may contribute to disease pathology.

Keywords: Desulfovibrio; sulfate reducing bacteria (SRB); Parkinson’s disease; inflammatory bowel
disease; hydrogen sulfide (H2S); lipopolysaccharide (LPS)

1. Introduction

Desulfovibrio spp. belong to the phyla Deltaproteobacteria and are mesophilic, Gram-
negative, anaerobic, rod-shaped bacteria that produce hydrogen sulfide gas (H2S) as a
terminal by-product of their metabolic activity. Desulfovibrio (DSV) are found in marine
sediments, hydrocarbon seeps, mud volcanoes, hypersaline microbial mats, oil fields, and
anaerobic waste-water treatment plants and also play a key role in the ocean sulfur cycle
and in precipitation of dolomite [1–3]. DSV are typically motile with associated flagella,
but their physiological attributes have been shown to shift depending on the surrounding
environmental conditions [4].

Desulfovibrio spp. utilize the dissimilatory sulfate reduction (DSR) pathway for energy
conversion by using hydrogen (H2) or organic compounds to reduce sulfate or oxidized
sulfur compounds resulting in the production of hydrogen sulfide (H2S) [5,6], which can be
both beneficial and detrimental to the surrounding environment. In industrial applications,
DSV may contribute to corrosion of iron and steel surfaces [1,7] in anoxic conditions,
presenting a challenge to companies that utilize these metals in their processes. It can also
be environmentally detrimental through methylation of mercury in soil, resulting in a toxic
compound [8]. On the other hand, DSV also reduce heavy metal sulfates that are soluble
so that the heavy metals precipitate out of solution, enabling their recycling [1]. Other
beneficial biotechnological applications include the remediation of petroleum by-products
through oxidation of benzene, toluene, ethylbenzenes, and xylene [8].

More recently, DSV have become more recognized for their potential role in human
diseases. While other gastrointestinal bacteria such as f. nucleatum and E. coli gener-
ate H2S through the assimilatory sulfate reduction pathway, the final product for this
pathway is cysteine [9]. In contrast, Desulfovibrio are one of only five SRB, along with
Desulfobacter, Desulfomonas, Desulfobulbus, and Desulfotomaculum, that use the dissimilatory
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sulfate reduction pathway with H2S as the terminal product and are minor members of
the gastrointestinal microbiome [8]. Within a healthy human host, DSV localize to the
pH neutral, distal colon [6] where they represent ~66% of all colonic SRB [8]. Within the
mixed microbial communities of the colon, primary bacterial fermenters may rely on SRB
to maintain the efficient and complete oxidation of substrates through their consumption of
H2 produced during fermentation [6], again resulting in the production of H2S. In anaerobic
environments with low redox potential, other anaerobes directly compete with SRB for
H2, including those that convert H2 to methane (methanogens) or acetate (acetogens),
with the presence of sulfate being crucial to this competition [1]. Similar to the findings
for DSV in the environment, the bacterial products these organisms create can be both
beneficial [10–12] and detrimental. In this study, we will discuss the potential role of DSV
in a variety of human diseases.

2. DSV and Diseases

A number of diseases are associated with DSV bloom. These include conditions that
not only affect the gastrointestinal tract but also affect extra-intestinal sites.

2.1. Bacteremia

DSV bacteremia and infections have been documented in many case reports, suggest-
ing the impact that these bacteria can have on disease pathophysiology and extra-intestinal
dissemination. However, the mechanistic details of the role of DSV in these instances
remain largely unknown. A review by Goldstein et al. [13] discussed the role of DSV
bacteremia. Since then, more case reports that frame DSV as an agent of bacteremia, includ-
ing in the context of sepsis [14–16], renal cyst infection [17], bacteremia [18–20] thoracic
endovascular aortic repair (TEVAR) [21], acute sigmoiditis [22], liver abscess [23], acute
cerebral infarction [24], in choledocholithiasis and endoscopic retrograde cholangiopan-
creatography [25], and ulcerative colitis, have been published [26]. Among these reports,
D. desulfuricans and D. fairfieldensis are usually described as the predominant species re-
sponsible for infections. However, the mechanisms underlying the pathgoenic potential
of these two species remain largely unknown. As such, in case of D. desulfuricans, some
studies have reported inflammatory effects of lipopolysaccharide (LPS) isolated from these
bacteria [27–29]. In the case of D. fairfieldensis, the outer membrane vesicles (OMV) secreted
by these bacteria appear to play a causal role in inflammation and tight junction barrier
dysfunction [30]. Studies comparing different DSV species and their effects on the host
cellular mechanisms will be important in identifying crucial targets that may be specific to
each species.

2.2. Intestinal Bacterial Overgrowth

The number of studies reporting intestinal and extra-intestinal diseases associated
with DSV overgrowth is growing. These observations suggest a more central role of these
bacteria in the pathogenesis of human diseases. The identification and enumeration of DSV
largely occur through sampling of feces and intestinal biopsies with subsequent bacterial
culturing and real-time polymerase chain reaction (qPCR). However, each study has its
own strengths and limitations. The exact relationship between increased DSV abundance
and disease remains unclear and sometimes contradictory, perhaps due to the differences
in sample types and methodologies. However, the majority of evidence points toward a
positive association between DSV overgrowth and disease pathology and warrants further
investigation into the specific role of these bacteria. Below, we discuss intestinal and extra-
intestinal disorders that are linked to DSV overgrowth and include a summary of these
diseases (Figure 1). Table 1 summarizes research studies that have reported the effects of
DSV in various animal models in the context of these diseases.
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Figure 1. Association between DSV and various intestinal and extra-intestinal diseases.

2.2.1. Inflammatory Bowel Disease (IBD)

Inflammatory bowel disease, including Crohn’s disease (CD) and ulcerative colitis
(UC), is characterized by chronic inflammation of the gastrointestinal tract [31]. It is
widely known that IBD patients have dysbiosis (characterized by an imbalance in the gut
microbiota) [32]. Along these lines, multiple studies have identified that Desulfovibrio spp.
are enriched in IBD. Colon mucosal biopsy samples obtained from UC patients revealed a
significant increase in DSV in acute and chronic UC when compared to healthy controls [33].
In a separate study, a higher number of DSV, specifically D. piger, were isolated from feces
of patients with IBD compared to healthy subjects [34]. A longitudinal study of UC
patients conducted over a period of 1 year revealed a positive correlation between DSV
with high clinical activity indices (CAI) and worse sigmoidoscopy scores (SS) [35]. In UC
patients, DSV abundance was not only correlated with intestinal disease but also with
anxiety and depression [36]. Adverse early-life events may also lead to the development
of IBD later in life. This is exemplified by an animal study wherein prenatal maternal
stress led to worse colitis in the offspring, which was also associated with DSV bloom in
the offspring [37]. Interventions used to decrease the severity of IBD also reduced DSV
bloom [38–44]. Similarly, use of probiotics in the context of disease has a protective effect
that is likely attributable to their competition or inhibition of DSV [45,46]. While a causal
relationship has not been clarified, there are strong indications that DSV may play a key
role in IBD pathology. In contrast, some studies contradict the involvement of DSV in
IBD [47,48].
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It was also found that the small intestinal transit time was prolonged in IBD pa-
tients [49], suggesting that intestinal transit may be dysregulated in IBD patients. Moreover,
an increase in the production of H2S has also been linked to IBD [50]. The role of DSV
in causing slowing of intestinal transit was demonstrated in our previous study [51]. In
this study, oral gavage of live but not heat-killed D. vulgaris caused the slowing of small
intestinal transit in mice and this correlated with an increased concentration of H2S in
luminal contents of the small intestine. Slowing of transit by DSV was inhibited in the
presence of bismuth, a H2S binding compound, suggesting that H2S (produced by DSV)
was responsible for the slower transit in these animals. These findings provide insights into
the underlying mechanisms of IBD, DSV bloom, and slow intestinal transit, as well as the
links between them.

The host mechanisms by which DSV may affect inflammatory outcomes have been
reported in other studies. It has been demonstrated that SRB-colonized mice have in-
creased numbers of CD11b+, B, CD8+ T, and regulatory T cells (Treg-cells) in the mesen-
teric lymph nodes. Colonization by SRB has also been shown to induce Th17 and Treg
immune responses in mesenteric lymph nodes in germ-free mice [52]. Infection with
D. indonesiensis has also been shown to exacerbate colitis-induced inflammation in mice [52].
In another study, oral gavage with D. desulfuricans aggravated atherosclerotic lesions and
increased both intestinal permeability and systemic inflammation in Atherosclerosis-prone
apolipoprotein E-deficient (Apoe−/−)-mice [53].

2.2.2. Neurodegenerative Diseases

DSV bloom has also been linked to extra-intestinal disorders such as Parkinson’s
disease (PD). PD is a neurodegenerative disease that mainly affects the elderly and is
characterized by the loss of dopaminergic neurons in substantia nigra and by the presence
of aggregates of alpha-synuclein (α-syn) protein within inclusion bodies (referred to as
Lewy bodies) [54]. The cause of PD is not clear, and while PD is a neuronal disease, it has
recently been proposed that its pathology may originate in the gut and that it is a bacterial-
driven disease [55]. The gut microbial profile in PD patients is significantly different from
that of control subjects, as evidenced by an increase in DSV in PD [56]. A recent study also
demonstrated that DSV isolates from PD patients cause α-syn aggregation in C. elegans,
suggesting a causal role for DSV in the development of PD [57]. Furthermore, a comparison
between DSV from PD patients and healthy controls (patient’s respective spouses) showed
that isolates from PD patients were more potent than similar Desulfovibrio spp. isolates from
healthy controls with respect to causing substantially higher levels of α-syn aggregation.
These data suggest that some factor(s) in the PD gastrointestinal environment may change
certain Desulfovibrio spp. to make them more pathogenic. Understanding the biochemical
and structural differences between DSV isolated from PD patients and those from control
subjects may provide further insight into the pathogenic potential of these bacteria.

Research on mechanistic description of the association between DSV and PD suggests
that a putative link may be hydrogen sulfide (H2S), a gaseous metabolic by-product of
DSV [58]. This hypothesis was proposed in a review by Murros et al., which discussed the
potential role of gut bacterial H2S in the development of PD via its release of cytochrome C
from mitochondria, which further induces α-syn oligomerization [59]. Cytochorme C is
capable of possessing peroxidase activity via its interaction with anionic lipids that utilize
α-syn as a substrate. This leads to oligomerization of syn with cytochrome C into high
molecular weight aggregates [59,60]. Alpha-syn aggregates constitute major components
of Lewy bodies, a hallmark of PD [61]. Hydrogen sulfide not only impacts mitochondrial
function but also reduces ferric iron to ferrous iron, and ferrous iron may promote α-
syn aggregation [62–67]. A computational metabolomic profile of PD patients revealed
significant changes in the pathways related to gut microbial sulfur metabolism, supporting
the idea that an increase in DSV abundance may lead to increased exposure to H2S (through
enhanced sulfur metabolism) [68]. Whether or not DSV-derived H2S mediates the formation
of α-syn aggregates remains to be investigated. In contrast to these findings, H2S has been
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shown to have protective effects on mitochondria function in hyperhomocysteinemia,
which is associated with the development of neurological disorders including Parkinson’s
disease and Alzhiemer’s disease (AD) [69–71].

Hydrogen sulfide is not the only DSV by-product with effects in PD. Bacterial endo-
toxin lipopolysaccharide (LPS) may also influence PD outcomes. In an animal model of
rotenone-induced PD, DSV overgrowth occurred in PD mice, but fecal microbial transfer
(FMT) from healthy mice reversed this phenomenon. Suppression of DSV overgrowth
occurred when LPS-triggered Toll-like receptor 4 (TLR4) inflammatory pathway was inhib-
ited [72].

Since DSV are positively correlated with PD and appears to contribute to the develop-
ment of the disease by causing α-syn aggregation, it is possible that DSV also contribute to
other neurodegenerative diseases associated with protein aggregation and inclusion bodies
such as those found in Huntington’s disease (HD), Alzheimer’s (AD), and amyotrophic
lateral sclerosis (ALS). Possibly, its role in these diverse neurodegenerative conditions may
depend on a common mechanism. While it is not clear whether or not all these neurode-
generative conditions are associated with DSV bloom, they are universally associated with
gut microbial dysbiosis [73–75].

2.2.3. Autism

Autism spectrum disorders (ASD) are neurobiological disorders that cause impaired
social and communication skills and are characterized by repetitive behaviors (https:
//www-cdc-gov.libproxy.unm.edu/ncbddd/autism/facts.html, accessed on 15 May 2023).
Many studies have reported an increase in the abundance of DSV in context of autism.
For instance, it was found that children with ASD had more DSV when compared to
healthy children [76–79]. Additionally, severity of ASD appears to be proportional to
DSV abundance [80]. Despite this strong correlation, studies aiming to understand the
mechanistic link between DSV overgrowth and ASD are lacking. Some studies have
suggested a few mechanisms by which DSV may be responsible for ASD. One such study
by Karnachuk et al. identified low iron bioavailability caused by DSV as a result of its H2S
production [81]. By binding iron, hydrogen sulfide forms iron sulfide, resulting in iron
deficiency, a feature of ASD [82,83]. Another mechanism by which DSV may contribute
to ASD is through their production of LPS endotoxin. This is supported by findings that
show increased endotoxin concentrations in the serum of ASD patients when compared
to healthy controls [84]. LPS may contribute in ASD by causing neuroinflammation [85],
which has been implicated in the pathogenesis of ASD [86]. Another mechanism that has
been proposed to explain the effect of DSV is their production of a short chain fatty acid,
propionic acid, as increased propionic acid is also found in autism cases [87–91]. Propionic
acid infusion was found to induce repetitive behaviors and other effects associated with
ASD in rodents [88,92]. Propionic acid was also found to alter the phospholipid profiles
in these animals. It has been suggested that ASD may be associated with dysregulated
fatty acid metabolism in ASD [93], thus indicating the underlying mechanism of propionic
acid-induced ASD-like behavior. Not all studies point toward a pathological role for DSV
in ASD. It has been shown that microbial transfer therapy (MTT) improved the symptoms
of autism and increased DSV [94]. Future studies are needed to clarify the relationship
between ASD and DSV abundance and to identify underlying molecular mechanisms
behind their association.

2.2.4. Cognition

A role for DSV in impairing cognition has been demonstrated in our laboratory [95].
Oral gavage of live D. vulgaris was found to impair radial arm maze performance and
Morris water maze performance in mice in tests used to assess spatial learning and memory.
This effect was not observed in animals gavaged with heat-killed DSV, suggesting that
metabolically active DSV were required for this effect. Interestingly, the concentration of
H2S was also higher in the small intestine and cecum of mice gavaged with live but not

https://www-cdc-gov.libproxy.unm.edu/ncbddd/autism/facts.html
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heat-killed DSV. Thus, production of H2S by DSV may be responsible for causing learning
and memory defects in mice gavaged with DSV. While the physiological levels of H2S are
important in many neuronal functions, including learning and memory, elevated levels of
H2S are toxic and have adverse effects on many physiological functions including poor
memory and other neurobehavioral deficits [96–100]. Understanding the mechanism of
how H2S generated by DSV in the gut may cause memory deficits may provide a crucial
link to understanding the basis of neuronal diseases related to impaired cognitive memory
function and associated with DSV bloom.

2.2.5. Cancer

Several studies have reported an increase in Desulfovibrio genera in cancer patient
samples when compared to healthy control groups. This has been observed in cases of rectal
cancer [101], adenomatous polyps [102], colorectal cancer, gastric cancer, breast cancer, and
lynch syndrome. A study using logistic regression analysis reported salivary D. desulfuricans
to be a predictor of risk for colorectal cancer (CRC) [103]. Role of DSV in the development
of CRC was also studied by administering DSV via oral gavage in rodents [104]. DSV
caused colonic damage and induced a pre-metastatic niche (PMN) in the liver by increasing
Matrix metalloproteinase 2 (MMP2), Matrix metalloproteinase (MMP9), and C-X-C motif
chemokine ligand 12 (CXCL12), components of extracellular matrix that are important
in the formation of PMN. PMNs are microenvironments that make secondary organs
conducive to tumor metastasis [105]. The main player in DSV-induced cancer phenotypes
appears to be the H2S produced by these bacteria. H2S is known to cause DNA damage
and contributes to CRC [106]. The role of H2S in mitochondria has also been discussed in
context of cancer [107,108]. The abundance of DSV in established animal models of cancer
has also been tested. In animal models of 1,2-dimethylhydrazine (DMH)-induced colon
cancer, an increase in DSV density was observed in the tumor group when compared to
the control group [109]. A sequential increase in DSV also occurred in mice that developed
Non-Alcoholic Fatty Liver Disease (NAFLD)-associated hepatocellular carcinoma (NAFLD-
HCC) in response to dietary cholesterol [110]. In contrast to these studies, no difference
was found in DSV density in either patients with colorectal cancer, patients with upper
gastrointestinal cancer, or healthy controls [111]. Similarly, no difference was found in DSV
density in polypectomized (PP) individuals and healthy individuals, while DSV numbers
were reduced in CRC individuals when compared to the PP and healthy groups [112]. In
a study assessing post-operative pain in women with breast cancer, DSV was negatively
associated with sleep disturbance and anxiety [113].

Various therapies aimed at treating human cancer patients and animal models have
shown that DSV abundance can be successfully suppressed with probiotic treatments and
that such treatments could improve clinical outcomes. For example, supplementation with
the probiotic C. butyricum significantly reduced the abundance of DSV in gastric cancer
patients after gastrectomy [114]. In another study, oral administration of Bifidobacterium
reduced the abundance of DSV and improved dextran sodium sulfate (DSS)-induced
colitis and colon cancer in rats [41]. Similarly, Lactobacillus coryniformis MXJ32 adminis-
tration decreased DSV and ameliorated azoxymethane/DSS-induced colitis-associated
colorectal cancer, enhanced tight junction proteins, and downregulated proinflammatory
cytokines [115].

2.2.6. Metabolic Syndrome

Many studies have reported a positive correlation between DSV and obesity and
other metabolic syndrome phenotypes. A high abundance of DSV was observed in obese
patients with Prader–Willi syndrome, a genetic mutation that often leads to obesity [116].
Metagenomic and other profiling studies have revealed an abundance of DSV in Type 2
diabetes (T2D) [117–119]. An increase in DSV was also observed in coronary artery disease
(CAD) patients with Type-2 diabetes mellitus (DM2) when compared to CAD patients
without DM2 [120]. Upon examining the gut microbiota of women with gestational diabetes
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mellitus (GDM), it was found that DSV load was higher in GDM in comparison to healthy
pregnant women [121]. Various studies have reported the reversal of DSV abundance
in T2D models by different compounds found in natural medicines and extracts derived
from plants. For example, a high-fiber diet ameliorated T2D serological and psychiatric
outcomes in a randomized control study, with these outcomes correlating with a decrease
in DSV abundance [122].

The protective effects of probiotics have been tested in improving diabetes-related
outcomes. It was found that orally administered L. acidophilus improved epithelial barrier
function; lowered proinflammatory cytokines such as interleukin-8 (IL-8), tumor necrosis
factor-α (TNF-α), and interleukin-1β (IL-1β) in liver and colon tissue; and prevented liver
and colon tissue injuries to some extent. At gut microbial level, L. acidophillus decreased
the abundance of DSV [123]. Additionally, both diet (consisting of pre- and pro-biotics
as well as whole grains) and FMT have been shown to control blood glucose and blood
pressure levels in T2D patients while also significantly decreasing DSV and other SRB [124].
In another study, consumption of high dietary fiber reduced T2D and DSV in Chinese
patients [125]. In other interventional studies in pre-clinical models, various compounds
have been shown to have a protective effect against T2D and to decrease the DSV load [126].

While most reports have described a positive association between DSV and disease,
some studies have reported the opposite. One such study highlighted the protective role of
DSV in NAFLD via its production of acetic acid [127]. In a recent study, supplementation
with a slowly digestible carbohydrate diet improved hyperglycemia and hyperlipidemia
in high-fat diet-streptozocin-induced diabetic mice, resulting in an increase in DSV pop-
ulation [128]. However, the role of DSV in these studies is not clear, and further research
demonstrating a direct role of DSV in the development of metabolic syndrome is needed.

Diet also plays an important in the development of metabolic syndrome. As such,
DSV bloom has been observed in High-Fat Diet (HFD)-fed animal models, suggesting
a positive correlation between DSV and Western diet [104]. A study demonstrated that
maternal HFD-induced gut microbiota disturbance in offspring at weaning included an
increase in DSV [129], which also occurred in conjunction with increase in body weight,
hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia, and lep-
tin resistance, and a decrease in adiponectin in the offspring. It was also reported that
HFD caused anxiety-like behavior in addition to disrupted biochemical markers in obe-
sity prone mice but not in the obesity resistance group [130]. This was correlated with
increased DSV in the small intestines of these animals. A more direct role for DSV in
HFD-induced outcomes was established by gavaging Desulfovibrio piger in HFD-fed mice.
D. piger increased hepatic steatosis and fibrosis in HFD-fed mice [131]. D. piger also caused
increased intestinal permeability in mice fed with HFD by disrupting the tight junction
protein ZO-1. Many studies have reported amelioration of HFD-induced non-alcoholic
fatty liver diseases (NAFLD) as well as other physiological and biochemical changes in
rodents by various nutritional supplements and other compounds such as plant polyphe-
nols. These changes were correlated with a reduction in HFD-induced abundance of DSV
and other gut bacteria [132–141]. A few studies have also revealed the protective effect of
probiotics such as Lactobacilli and Bifidobacteria in ameliorating HFD-induced changes
along with decreasing HFD-induced increase in DSV population [142]. Additionally, it was
found that exercise improved Western diet (WD)-induced atherosclerosis by modulating
gut microbiota, including WD-induced increase in DSV. On the other hand, certain envi-
ronmental and man-made pollutants can exacerbate the risk of HFD-induced metabolic
disorders, which is also correlated with exacerbated HFD-induced DSV bloom [143]. A
high-fat, high-fructose corn syrup-based, high-cholesterol western-style diet was found
to cause obesity, dyslipidemia, and systemic insulin resistance in juvenile Ossabaw swine
pigs compared to control pigs. At gut microbial level, these pigs also had increased cecal
DSV [144]. In contrast to HFD, a diet rich in fiber showed a negative association with DSV
abundance. In a cross-sectional and a longitudinal study involving Chinese patients [125],
it was shown that high fiber intake among diabetes patients lowered the abundance of
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DSV. Understanding the mechanistic phenomena underlying positive association between
DSV and HFD-induced changes may be helpful in understanding the development of
diet-related conditions such as obesity.

Table 1. In vivo effects of DSV in various animal models.

Disease Context System DSV Source Methods Findings Reference

Parkinson’s Disease C. elegans DSV isolates from
feces of PD patients

Worms expressing
α–syn-YFP fed on
DSV containing

medium

Alpha synuclein
aggregation in brain [57]

Inflammatory Bowel
Disease C57/BL6 mice

D. vulgaris
Hildenborough

(ATCC

Intestinal transit of a
fluorescent probe
through the small

intestine in animals
gavaged with DSV

Intestinal transit was
slowed down [51]

Experimental Colitis C57BL/6 mice (germ
free and wild type)

D. indonesiensis
isolated from biofilm
on corroded ship or

human SRB
consortium from

patients with colitis

H&E staining
Cytokine analysis by
CBA Th1/Th2/Th17

kit

H&E staining
Cytokine analysis by

CBA Th1/Th2/Th17 kit
[52]

Atherosclerosis C57/Bl6 Apoe−/−

Caco2
D. desulfuricans

Intestinal
permeability using

FITC probe
Inflammatory

markers and tight
junction proteins

Increased formation of
atherosclerotic lesion

Increased inflammation
Increased intestinal

permeability

[53]

Colorectal Cancer BALB/c Mice

Desulfovibrio (species
unspecified), from

China General
Microbiological

Culture Collection
Center

Real-Time qPCR
ELISA kits for LPS,

H2S.

Decreased mRNA for
tight junction proteins
Increased mRNA for

inflammatory markers
Increased mRNA levels

of extacellular matrix
proteins important for

formation of
pre-metastatic niche
(PMN) in the liver

Increased serum ALT and
AST Increased H2S and

LPS in serum

[109]

Obesity

C57Bl/6
Myd88LoxP/LoxP mice
crossed to C57Bl/6
CD4-Cre animals to
produceCD4-Cre+

(T-MyD88−/−)
animals

D. desulfuricans subsp.
desulfuricans

qPCR
16s rDNA sequencing

Expression of CD63 was
increased by DSV

Reduction in Clostridia
[145]

Cognition C57/BL6 mice
D. vulgaris

Hildenborough
(ATCC)

8-Arm radial learning
maze performance
Morris water maze

performance
H2S measurement

Impaired working
memory

Increased H2S in small
intestine and cecum

[95]

Role of DSV in animals that had T cell specific ablation of the innate adaptor molecule,
Myeloid differentiation factor 88 (Myd88) (T-Myd88−/− mice), which causes obesity in
mice, was also addressed [145]. These animals develop dysbiosis mirroring that of indi-
viduals with obesity. Firstly, T-Myd88−/− mice had a higher load of DSV and a loss of
beneficial Clostridia (related to leanness) when compared to wild-type mice. Additionally,
colonization of germ-free animals with D. desulfuricans led to a significant reduction in
Clostridia. CD36 is a regulator of lipid absorption in the small intestine [146,147]. DSV
elevated the expression of CD36, thus contributing to dysfunctional absorption of lipids,
leading to obesity phenotypes.
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2.2.7. Other Diseases

Several other diseases have also been linked to DSV bloom. Prevalence of DSV was
found to be significantly higher amongst orthodontic patients when compared to non-
orthodontic participants (about 20%) [148]. DSV was found to be abundant in patients with
periodontitis [149]. Other studies have reported an increased abundance of DSV associated
with diseases such as Chronic Kidney Disease (CKD) [150,151]. DSV has also been found to
be associated with liver cirrhosis [152], cute myocardial infarction (AMI) [153], stroke, and
transient ischemic attack patients [154]. DSV is also found to be more abundant in patients
with irritable bowel syndrome (IBS) [155,156] and those with autoimmune diseases such as
systemic sclerosis [157] and multiple sclerosis [158].

Overall, majority of studies in the literature support a positive relationship between
DSV and various diseases. However, detailed investigations that take into account the
discrepancies observed among different studies are needed to gain more clarity on the
nature of these associations.

3. Effect of DSV on Host Cells In Vitro

While the effects of DSV have been studied in vivo by inoculating either germ-free mice
or conventionally raised mice with monocultures of DSV species or with SRB consortia,
direct mechanistic cellular events affected by DSV have been most effectively studied
in vitro using various cell lines such as macrophages and epithelial cell lines (Table 2).

It has been shown that enriched SRB culture from UC patients, but not those from
control subjects, induced apoptosis of epithelial cells [159]. In addition, pure culture of D.
indonesiensis was internalized and induced apoptosis in human ileocecal adenocarcinoma
HCT 8 cells. This effect was exacerbated when a co-culture of DSV with E. coli 2R/BP was
used. Furthermore, antibody raised against the exopolysaccharide (EPS) of D. indonesiensis
cross-reacted with SRB population from UC patients, but not with SRB combination from
non-UC controls, suggesting that antibodies raised against the EPS of D. indonesiensis could
be utilized as a marker to differentiate between SRB from UC versus non-UC biopsies.

As mentioned previously, role of SRB in periodontitis has been described in the
literature. Different SRB have also been isolated from the oral cavity, generally belonging
to the genus Desulfovibrio [160–165]. Proinflammatory effects of D. desulfuricans and D.
fairfieldensis on human KB oral epithelial cells have also been evaluated elsewhere [166].
Both strains invaded KB cells and induced IL-6 and IL-8 cytokine expression. Similarly,
DSV have been shown to induce IL-6 and IL-8 production in human gingival fibroblast
cells HGF-1 [29].

Role of DSV in activating cellular pathways has also been reported, including in our
own study, which showed that the D. vulgaris -induced infection of RAW264.7 macrophage-
like cell lines activated proinflammatory Notch cell-to-cell signaling pathway and induced
the protein expression of proinflammatory cytokine IL-1β [167]. DSV have also been
demonstrated to induce nitric oxide (NO) in RAW 264.7 macrophage-like cell lines, which
was inhibited in the presence of N(G)-monomethyl L-arginine (L-NMMA), a NO synthase
inhibitor [168]. Additionally, DSV impair intestinal barrier integrity. Work from our labora-
tory showed that D. vulgaris increased barrier permeability in polarized intestinal Caco-2
cells by disrupting the localization of an important tight junction protein occludin [169], and
DSV mediated this effect via upregulating Snail1 transcription factor. DSV may also com-
promise intestinal barrier integrity indirectly by inhibiting lysozyme [170], an anti-microbial
protein crucial in shaping the gut microbiota [171].
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Table 2. In vitro effects of DSV on cell lines.

Cell Lines DSV Source Methods Findings Ref.

HCT116

D. indonesiensis
mono-culture or co-culture
with E. coli isolate 2R/BP

SRB consortia from
human biopsy samples

Flow cytometry and tunnel
labeling for apoptosis

Immunostaining

Induction of apoptosis
antibody against exopolysaccharides of
D. indonesiensis cross reacted with the
SRB from UC patients but not with the

SRB from non-UC controls.

[159]

KB cell line ATCC CCL-17

D. desulfuricans ATCC
29577, D. desulfuricans

ATCC 27774, D.
fairfieldensis
ATCC 700045

Invasion assay
Electron microscopy

ELISA kit for cytokines

DSV invaded KB cells in microtubule
dependent manner

DSV are present in the free space in
cytoplasm

Induction of pro-inflammatory
cytokines by DSV

[166]

RAW 264.7
Desulfovibrio vulgaris

Hildenborough
(ATCC 29579)

Western blot
siRNA transfection

qPCR

Increased mRNA and protein
expression of Notch1 and IL-1b.
Activation of Notch intracellular

domain
Paracrine activation of Notch signaling
in recipient cells by soluble factors in

culture supernatant of
DSV-treated cell.

[167]

RAW 264.7
Desulfovibrio vulgaris

Hildenborough
(ATCC 29579)

Colorimetric assay for nitrite
production

Increased nitrite production in
D. vulgaris-infected macrophages [168]

Polarized and
differentiated Caco2

Desulfovibrio vulgaris
Hildenborough
(ATCC 29579)

FITC flux to measure barrier
permeability

siRNA transfection
Western blot

Increased paracellular permeability
Increased snail protein expression [169]

RAW 264.7
Desulfovibrio vulgaris

Hildenborough
(ATCC 29579)

Western blot
Lysozyme activity assay

Decreased lysozyme mRNA and
protein expression [170]

4. Products of DSV Responsible for Causing Potentially Harmful Effects
4.1. Hydrogen Sulfide

Hydrogen sulfide is a by-product of Desulfovibrio dissimilatory reduction pathway
and is by far the most important player in imparting pathogenicity to these bacteria.
Involvement of DSV-derived H2S has been discussed throughout this review in the context
of different diseases. We have covered the effects of mammalian and bacterial H2S on host
pathophysiology elsewhere [96].

To generate H2S, DSV use lactate and hydrogen (H2) as electron donors and sulfate as
the terminal electron acceptor [1,8,9]. This process requires transfer of eight electrons and
processing of enzymes in both the cytoplasm and periplasm of the bacteria, with breakdown
of lactate resulting in acetate production. Sulfate and sulfite come from dietary sources
such as food preservatives and antioxidants or sulfate is released from its bound form in
mucin or chondroitin by saccharolytic bacteria such as Bacteroidetes spp. [6,9]. Desulfovibrio
adenosine-5′-phosphosulfate (APS) sulfurylase binds ATP to the sulfate, resulting in the
production of two inorganic phosphates and APS. Cytoplasmic APS reduction is catalyzed
by APS reductase, where two electrons are used to make adenosine monophosphate
(AMP) and sulfite is an interval product. Cytoplasmic sulfite is then further reduced
to hydrogen sulfide by dissimilatory sulfite reductase (desulfoviridin in Desulfovibrio)
(Figure 2), which is then released into the environment [1,8,9]. The toxicity of hydrogen
sulfide is dependent on its oxidation state (H2S vs. HS− vs. S2−), which in turn is dependent
on pH of the environment [172]. Healthy levels of H2S fall into a range of 0.3–3.4 mmol/L
in the intestine [173], with higher concentrations resulting in not only the destruction of
colonocytes but also in attenuation of bacterial ribosomal proteins and of the genes encoding
the dissimilatory enzymes (>25 mM H2S) [174]. High H2S concentrations also cause an
increase in the expression of bacterial genes involved in proteolysis [175]. Hydrogen sulfide
can be beneficial to the system in low concentrations, but at higher concentrations, it is
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toxic to butyrate fermentation by colonocytes (which is responsible for 70% of the energy
required by colonocytes) andto Desulfovibrio as well [176], although Desulfovibrio are capable
of tolerating much higher concentrations of hydrogen sulfide (>10 mM [174]).
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While the effects of H2S in causing cellular and physiologic damage are well known,
studies demonstrating direct effects of DSV-produced H2S on host cells are scarce. Conduct-
ing investigations studying the role of DSV-derived H2S in pathogenesis of DSV-associated
diseases will be key to identifying the underlying mechanisms of DSV-induced effects on
the host.

4.2. LPS

Lipopolysaccharide is an important endotoxin produced by Gram-negative bacteria
that is responsible for a plethora of harmful biological effects. The chemical composition of
D. desulfuricans LPS was studied by Lodowska et al. [177]. LPS typically consist of lipid A,
the core oligosaccharide, and an O-specific polysaccharide called the O antigen. Lipid A
structure in Desulfovibrionaceae was also characterized in another study [178]. In this study,
LPS from two SRB isolates with differing lipid A moieties in the LPS were isolated from the
same healthy human gut. These different LPS were then tested on human THP-1 cells and
their proinflammatory effects via the production of inflammatory cytokines IL-6 and TNFα,
were observed. SRB1 LPS was found to be less potent for cytokine production than SRB2
LPS, suggesting that SRB may differ in their pathogenic potential due to the differential
proinflammatory potential of their LPS. In another study, LPS isolated from D. desulfuricans
was found to cause an increase the production of pro-inflammatory cytokines IL-6 and IL-8
while also inducing the expression of E-selectin and VCAM-1 in endothelial cells [27].

D. desulfuricans LPS also increased the secretion of IL-6 and IL-8 in gingival fibrob-
lasts [29] but failed to elicit IL-8 production in Caco-2 epithelial cells [179]. It is possible
that since DSV are normal residents of colon, its LPS may not be immunostimulatory for
colonic cells. In another study, the effects of LPS from either D. desulfuricans intestinal
isolates or soil isolates on cytokine secretion in Caco-2 were characterized [180]. LPS de-
rived from the soil isolates was more potent for IL-8 secretion than that derived from the
intestinal isolates. In contrast, IL-6 induction was much higher in response to LPS from the
intestinal strain compared to LPS from the soil strain. However, in a separate study, LPS
derived from D. desulfuricans was found to elicit the gene expression of NFκβp65 subunit
as well as IκB gene expression in Caco-2 cells [28]. Whether changes in gene expression
led to the activation and localization of NFκβ and whether there was an effect on cytokine
production, was not addressed in this study. LPS from D. desulfuricans was also found to
cause secretion of proinflammatory cytokine IL-6 as well as the neutrophil-, basophil-, and
T-cell-attracting chemokine IL-8 in human gingival fibroblast (HGF-1) cell line [29] and
in human umbilical vein endothelial (HUVEC) cells [27]; IL-6 secretion was also induced
in Tamm–Horsfall protein 1 (THP1) cells [178]. Together, these results suggest that differ-
ent pathogenic effects of DSV-derived LPS may not only be dictated by the type of DSV
strains but may also depend on both the discrimination of the endotoxin type by epithelial
cells and the particular cell type (epithelial, macrophage, endothelial, etc.) involved in
the response.
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4.3. Extracellular Vesicles

Outer membrane vesicles (OMVs) are double-layer lipid membrane nanospheres
that are commonly produced by Gram-negative bacteria that range in size from 20 to
300 nm [181,182]. OMVs play an important role in bacterial physiology as well as in stress
response. OMVs are one of the means by which bacteria effectively communicate with their
environment [183,184].

Recent studies have identified outer membrane vesicles (OMVs) that are secreted by
D. fairfieldensis. This bacterium is potentially the most pathogenic strain of DSV that has
been identified thus far [185] and is associated with Choledocholithiasis and Endoscopic
Retrograde Cholangiopancreatography [25]. OMVs isolated from D. fairfieldensis are re-
sponsible for inducing inflammation and pyroptosis in macrophages. OMVs are known
to activate immune responses [181] and stimulate the production of proinflammatory cy-
tokines such as IL-1β, IL-8, and TNFα [186,187]. OMVs have also been reported to disrupt
the epithelial barrier junction. OMVs derived from D. fairfieldensis disrupted epithelial
tight junction in Caco-2 cells by downregulating ZO-1 and the occludin gene and protein
expression [30] in a manner similar to that observed in C. jejuni infection, where OMVs
cleave E-cadherin and occludin, important players in maintaining tight junctions [188]. A
study also purified and identified outer membrane-associated proteins in D. vulgaris [189].
Thus, OMVs secreted by DSV play an important role in the pathogenic potential of this
bacteria. Whether or not other species of Desulfovibrio produce OMVs and whether OMVs
produced by DSV can be targeted for therapy should be explored in future research.

4.4. Mucolytic Activity of DSV

There are studies that have reported the colonic mucin binding of DSV in UC. It has
been reported that mucin binding profiles of clinical isolates of Desulfovibrio spp. were
specific to each isolate [190]. The mucus gel layer is a physical barrier that is important
in maintaining intestinal barrier integrity. Increased microbial colonization of mucus has
been observed in IBD [191–193]. SRBs metabolize sulfated mucopolysaccharides found in
mucin [194]. It was found that there was an inverse correlation between sulfated mucin
and DSV and inflammation in UC [191]. Thus, DSV may contribute in the pathogenesis
of IBD by depleting the protective mucus layer, which further exacerbates outcomes such
as intestinal barrier loss, increased inflammation, and other hallmarks of IBD. Figure 3
summarizes the DSV products that may be responsible for the pathogenic potential of DSV.
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5. Conclusions

DSV bacteria have emerged as important pathobionts in the last few years and appear
to be contributing factors in not only intestinal disorders but also in extra-intestinal diseases.
This is exemplified by diseases such as Parkinson’s disease, where DSV appear to play a
causal role in the formation of synuclein aggregates, a hallmark of PD. It also provokes the
question of whether the association and involvement of DSV can be extended to similar
diseases such as ALS, HT, or AD, where DSV may act as a common denominator in disease
pathophysiology. Similarly, role of DSV in the development of atherosclerosis has been
reported. Thus, mounting evidence suggests that DSV have multifaceted effects throughout
the human body, extending beyond their influence in the gut. This also applies to all other
intestinal and extra-intestinal diseases that are linked to gut microbial dysbiosis where
DSV overgrowth may occur. While a few studies have revealed some cellular pathways
by which DSV may mediate their effects, the underlying mechanisms of how DSV may
affect these diseases remain largely unknown. Thus, future in vivo and in vitro studies
should focus on determining the molecular mechanisms behind the effects of DSV on
the host. As some DSV species appear to be more pathologically significant than others
and because DSV isolated from patients have worse outcomes on recipient cells than the
ones isolated from healthy individuals, it is critical to understand the structural (such as
LPS), biochemical, and functional differences between DSV species. This may hold a key
to identifying the target mechanisms that are unique to each of these species. It is also
important to understand what host factors in patients (but not in healthy controls) may
lead to increased pathogenicity of these strains. Overall, this information may be helpful in
identifying novel therapeutic targets that could be utilized in the management or treatment
of diseases that are associated with DSV bloom.
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