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Abstract: (1) Background: Carbohydrates are the most important source of nutritional energy for the
human body. Carbohydrate digestion, metabolism, and their role in the gut microbiota modulation
are the focus of multiple studies. The objective of this weight of evidence systematic review is to inves-
tigate the potential relationship between ingested carbohydrates and the gut microbiota composition
at different taxonomic levels. (2) Methods: Weight of evidence and information value techniques
were used to evaluate the relationship between dietary carbohydrates and the relative abundance
of different bacterial taxa in the gut microbiota. (3) Results: The obtained results show that the
types of carbohydrates that have a high information value are: soluble fiber with Bacteroides increase,
insoluble fiber with Bacteroides and Actinobacteria increase, and Firmicutes decrease. Oligosaccharides
with Lactobacillus increase and Enterococcus decrease. Gelatinized starches with Prevotella increase.
Starches and resistant starches with Blautia decrease and Firmicutes increase. (4) Conclusions: This
work provides, for the first time, an integrative review of the subject by using statistical techniques
that have not been previously employed in microbiota reviews.

Keywords: carbohydrates; gut microbiome; gut microbiota; food additives; weight of evidence

1. Introduction
1.1. Carbohydrates

Carbohydrates (CH) serve as the main source of energy for humans, since these
substances are easier to break down and convert to energy compared to other macronu-
trients [1]. Their general formula is Cn(H2O)n; their physicochemical, chemical, and
biological properties are determined by their molecular arrangement. For instance, cellu-
lose and starch are both glucose polymers, but their different molecular structures result
in completely different properties. This review uses the Toussaint et al. (2009) [2] and
Leong et al. [1] classifications: CHs as sugars, oligosaccharides, and polysaccharides. The
Sajilata et al. [3] classification for starches is also included (see Figure 1).

Sugars are simple carbohydrates and are absorbed within the first minutes after
ingestion. Monosaccharides and disaccharides are types of simple CHs that are composed
of one or two molecules of saccharides. The most common examples of monosaccharides
are glucose and fructose, while the most common examples of disaccharides are sucrose
and lactose [4].
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These compounds are commonly found in fruits and are easily absorbed in the small
intestine as an immediate source of energy. Disaccharides are typically hydrolyzed by en-
zymes present in the small intestine, but if these enzymes are not available, the compounds
will reach the large intestine and be degraded by the gut microbiota [4].

Oligosaccharides, such as inulin and oligofructans, are found in vegetable sources
and are not easily digestible by human enzymes in the small intestine. Instead, they reach
the large intestine undigested, where their hydrolysis depends on the available glycoside
hydrolases (GHs) produced by the gut microbiota. Therefore, many oligosaccharides are
not digested by humans and are instead fermented by the gut microbiota [5].

Soluble fibers such as pectin, which is a water-soluble polysaccharide found in the cell
walls of vegetables, are partially hydrolyzed by a human enzyme in the small intestine,
but an important portion reaches the colon [6], similar to the beta-glucan, non-starch
polysaccharides, found in some cereals such as barley, oats, and wheat [7]. Arabinoxylans
and xyloglucans are complex carbohydrates also found in vegetables; these also reach the
large intestine undigested [8].

Starches are one of the most prevalent examples of carbohydrates. Not all starches
are easily digested by humans. According to Sajilata (2006) [3]., starches can be classified
according to their enzymatic hydrolysis:

• Rapidly digestible starches, which are hydrolyzed after less than 20 min of enzy-
matic digestion.

• Slowly digestible starches, which are absorbed in the small intestine and hydrolyzed
in vitro after 100 min of enzymatic digestion.

• Resistant starches (RS), which are not hydrolyzed after 120 min of enzymatic incuba-
tion [3]. RS can occur naturally, such as potato starch [9], but also as a result of food
processing (cooking techniques and production process). There are five RS types, de-
pending on why these molecules resist hydrolysis [1]: type 1 RS is physically inaccessible
because it is matrixed in food; type 2 RS is not gelatinized, and it is also inaccessible to
enzymes; type 3 RS is retrograded after temperature changes, such as heating and cooling
on multiple occasions; type 4 RS is a chemically modified starch where new bonds that
are not α 1–4 or α 1–6 are present; and type 5 RS is amylose-lipid complex [10].

Finally, non-starch polysaccharides, such as chitin, might not be digestible for humans
or their gut microbiome, and may exit the digestive tract intact [11].
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1.1.1. Carbohydrates as Part of Food

Historically, high-carbohydrate foods (cereals, tubers, legumes, fruits, and vegetables)
and other carbohydrates found in mushrooms (macromycetes), fungi (micromycetes), algae,
and foods of animal origin, have been part of the human diet across regions. Vegetables,
tubers, legumes, and mushrooms have a high concentration of carbohydrates, but humans
can absorb a limited amount of these. In some cases, these carbohydrate sources might be
part of the traditional culinary culture or even traditional medicine [12].

In recent years, carbohydrates’ effect on the gut microbiota and the host’s health has
gained global attention among scientists. There is a growing and particular interest in
studying the carbohydrates found in widespread food sources, such as cereals, tubers, and
legumes, that are processed in different ways.

1.1.2. Carbohydrates as Functional Components; Functional Carbohydrates

As a result of the advancements in food processing technologies and the evolution of
traditional medicine, nowadays, certain CHs are isolated and incorporated into food as
functional ingredients [13].

Various vegetable and fungal species have been considered for their potential healing
properties and have become part of traditional medicine among different cultures. In some
cases, these substances are also added to food to obtain health benefits.

For the purposes of this review, these carbohydrates will be referred to as functional
carbohydrates. In recent years, scientific interest in these substances has increased, leading
to the discovery that, in some cases, these substances might be generating changes in the
gut environment and influencing the host’s health.

Some of the functional carbohydrates that have been studied as gut microbiota modula-
tors are: Hylocereus undatus [14], Artemisia ordosica [15], Cyclocarya paliurus [16], Enteromorpha
Clatharata [17], and chondroitin sulfate, a polysaccharide of animal origin, that is found
commonly in the connective tissue of animals [18].

1.1.3. Carbohydrates as Food Additives

A wide range of carbohydrates are commonly used as food additives in order to
modify the physical properties of processed foods, such as viscosity, texture, gelling,
emulsifying, stabilizing, and crystallization control, among others. These long-chain
polymer carbohydrates are classified as hydrocolloids [19].

These hydrocolloid carbohydrates have been evaluated in the search for toxicological
effects, are approved by international entities, and their acceptable daily intake (ADI) has
been established [20,21]. Some examples are guar gum [22], taro starch [23], pectin [24],
potato starch [25], and transglycosylated starch [26].

Based on observations that strongly suggest the gut microbiota is an essential deter-
minant of the host’s health, some studies have focused on the effect of carbohydrates that
bypass digestion in the small intestine and enter the large intestine undigested, where they
serve as substrates for the gut microbiota.

1.2. Gut Microbiota and Microbiome

The microbiota refers to a community of microorganisms that inhabit a specific envi-
ronment [27]. Particularly, those residing in the human gastrointestinal tract constitute the
human gut microbiota.

There are many definitions of the microbiome but, for the purposes of this document,
Lederberg and McCray’s definition [28] will be used, which describes the microbiome as an
“Ecological community of commensal, symbiotic and pathogenic microorganisms within
a body space or other environment”. Another definition worth mentioning describes the
microbiome as “a characteristic microbial community occupying a reasonable well-defined
habitat which has distinct physicochemical properties” [29].
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In particular, the human gut microbiota or human gut microbiome is estimated to
have approximately 150 times more genes than the whole human genome and contains
about 1014 microorganisms belonging to different species [30].

1.2.1. Gut Microbiota General Composition

Bacteria is the most extensively studied domain of all the microorganisms found in
the human gut. It has been shown that the presence of some phyla, families, genera, and
species of bacteria has been associated with a reduced or increased risk of developing
certain diseases, and the overall health state [31–37].

The main bacterial phyla found in the human gut are Firmicutes, Bacteroidetes, Acti-
nobacteria, Proteobacteria, Fusobacteria, Cyanobacteria, Verrumicrobia, and Spirochaetes
(Zeng et al., 2017); from those, the most abundant are Firmicutes and Bacteroidetes, repre-
senting more than 87% of the total gut microbiota [38–42].

1.2.2. Factors That Modify the Microbiome

A wide range of factors influence the microbiota and the microbiome (see Figure 2)
including the host’s genetics [43], early colonization [44], early feeding practices [45–47],
living arrangements [48], having older siblings, [32] furry pets [44], the use of certain
medications, especially antibiotics [49], and controllable factors such as diet and general
lifestyle [50]. Among these controllable factors, diet, especially the carbohydrates contained
in it, seems to have a significant effect on the modulation of the gut microbiome.

 

2 

 

 
Figure 2. Factors that might modify the gut microbiome adaptation [31,43,44,49–53].

1.2.3. Carbohydrates as Modulators of the Gut Microbiome

Diet has an important impact on the gut microbiome; specific macronutrients, mi-
cronutrients, and bioactive compounds lead to changes in the composition of microbial
communities in the gut.

As mentioned above, carbohydrate digestion requires GHs to hydrolyze these molecules.
Humans produce only 17 GHs to break down carbohydrates in the upper gastrointestinal
tract. At the same time, Bacteroides thetaiotaomicron, one of the most abundant bacterium in
the gut, encodes, by itself, over 260 GHs, 15 times more than humans, allowing the human
host to indirectly metabolize different carbohydrates [54,55], obtaining energy and different
metabolites, such as short-chain fatty acids (SCFA) [16,56].

The presence and expressions of GH enzymes vary among bacterial species and the
host’s gut environment. This relationship between ingested carbohydrates and the gut
microbiome has been the subject of several studies.

To date, it has been difficult to compare results among studies that analyze the gut
microbiota. On the one hand, this is due to differences in the experimental design (variations
of the in vivo methodologies, the host species being studied, settings, type of intervention,
sequencing techniques, and other potential confounding variables). On the other hand,
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there are differences in the bioinformatics and analysis tools (software used to analyze
genomic sequences, databases consulted, and statistical methods used). For these purposes,
the use of statistical tools that have been applied in other scientific fields, such as weight of
evidence (WoE) and information value (IV), are being suggested in this work.

1.3. Statistics Weight of Evidence (WoE) and Information Value (IV)

Variable categorization and data binarization can facilitate the use of specialized
algorithms to compare information from a wide range of topics, including studies that
might differ in their methodologies.

Variable categorization is the process of dividing a set of variables into different
categories based on their characteristics. This process is used in statistical analysis and data
management in order to organize and better analyze data [57].

Data binarization is a processing technique that involves converting continuous or
categorical variables into a variable that can only take two values. In some cases, this
process involves creating different variables for each category of the original variable [58].

However, relying solely on these techniques may lead to overlooking certain patterns
and repetitions in the data. To overcome this limitation, the use of WoE-IV is suggested.
WoE is a transformation that uses the number of “bins” or events where the independent
variable affects the response variable. IV is a technique obtained from the WoE that
identifies important variables in a predictive model [59] (Fan and Ding 2022). These values
can be calculated as follows [60]:

WoEi = log

 Ni
∑n

i=1 Ni
Pi

∑n
i=1 Pi

 (1)

IV =
n

∑
i=1

[(
Ni

∑n
i=1 Ni

− Pi

∑n
i=1 Pi

)
WoEi

]
(2)

The use of the WoE and IV have evolved from logistic methods and have been em-
ployed in various literature reviews to code variables related to different topics. The obten-
tion of an IV has been applied to solve binary variable and binary classification problems
in various fields such as credit scoring [61], marketing analytics [62], pharmacology [63],
client conversion analysis, toxicology, and language processing tools. These techniques
are useful for evaluating the IV of independent variables also referred to as predictive
variables against potentially dependent variables, also referred to as response variables [61],
allowing the selection of binary variables that can predict a specific outcome [62–64].

In recent years, this approach has been successfully applied to compare different clini-
cal trials, even generating methodologies that unify the use of these techniques. The primary
motivation for applying these statistical tools is to integrate statistically valid conclusions
from numerous studies that were conducted with non-comparable methodologies or have
variations in nature and experimental design [64]. Given the above, microbiome studies
have the aforementioned limitations that cannot always be compared, as experimental
designs vary widely.

The primary objective of this work is to examine the potential relationship between
ingested carbohydrates’ characteristics including their origin, chemical composition, and
other characteristics (predictive variables), and the changes in the relative abundance of
microorganisms found in the gut microbiota at different taxonomic levels such as phyla,
class, order, family, and genus (response variables).

This review uses the SPIDER tool [65,66], in addition to the statistical techniques
of weight of evidence and information value, that have not previously been used in
this type of research. These methods provide a structured approach to the design and
conduct of systematic reviews, allowing for the identification of consistent patterns in the
literature. This work aims to contribute to a better understanding of how different types of
carbohydrates may modify the gut microbiota.
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2. Materials and Methods

This review was carried out using the SPIDER tool [65,66], as shown in Table 1. The
phenomenon of interest is the possible changes that might occur in the gut microbiome
when oligosaccharides and polysaccharides, with different properties, functions, and
origins, are consumed. The design of this review includes studies conducted in the past five
years, written in English, involving healthy individuals (humans or laboratory animals)
with a minimum intervention period of 14 days, and using molecular techniques to analyze
the gut microbiota. The SPIDER tool was used to ensure a systematic approach to the
review process.

Table 1. SPIDER tool description.

SPIDER Tool Search Description

S Sample Fecal or gut samples from humans or animals that could provide
insights into the human gut microbiome.

P I Phenomenon
of Interest

This study aims to investigate changes in the microbiome composition
following dietary interventions with different oligosaccharides and
polysaccharides, which can be found naturally in food, added as food
additives, or be functional carbohydrates found in nature.

D Design

Inclusion Criteria:
• Articles written in English published within the past five years.
• Studies involving preclinical (animal) or clinical (human models).
• Studies including groups with healthy individuals, excluding

those where all the intervention groups had baseline diseases or
diseases intentionally generated during intervention through
genetic modification, drug administration, or diet.

• Experimental design with a minimum intervention period of
14 days.

• Studies using molecular techniques, such as 16s gene shotgun
sequencing or whole genome sequencing.

Exclusion Criteria:
• Neonatal studies.
• Articles involving the consumption of mono and disaccharides as

a primary intervention.
• Articles involving the consumption of non-carbohydrate food

additives as a primary intervention.
• Review articles and models using in vitro techniques, or for

veterinary purposes.
• Articles that were carried out in illness models without a healthy

intervention group.

E Evaluation Gut or fecal microbiome composition, as well as some biomarkers
and/or histological changes.

R Research type Quantitative.

For the study design (Table 1), articles published more than 5 years prior to the start
of the review were excluded because the comparability of results could not be ensured, as
sequencing techniques and databases may have changed significantly over time. Addi-
tionally, publications with intervention periods shorter than 14 days were also excluded to
ensure sufficient time for variations in the gut microbiota to occur.

Articles involving the consumption of mono and disaccharides as the primary in-
tervention were also excluded, as these carbohydrates are usually digested before they
reach the large intestinal lumen. Furthermore, interventions using food additives with
a non-carbohydrate molecular structure were excluded from the review. Only articles
involving human or laboratory mammals, that could provide insights into the human gut
microbiota, were included in order to provide information on human or human-like gut
microbiota. Neonatal studies were excluded to compare only mature gut microbiomes.



Microorganisms 2023, 11, 1728 7 of 22

Illness models without a healthy intervention group were also excluded, to avoid
confounding variables. Review articles and models using in vitro techniques or for veteri-
nary research were also excluded. For the purposes of this review, only articles with 16s
gene shotgun sequencing or whole genome sequencing were included as an attempt to
standardize the sequencing techniques.

2.1. Search Query

The study design resulting search query was: ((((“gut microbiome” [Title]) OR (“gut
microbiota” [Title]) OR (faecal microbiota [Title]) OR (faecal microbiome [Title]) OR (fecal mi-
crobiota [Title]) OR (fecal microbiome [Title])) AND ((food additive [Title]) OR (dietary fiber
[Title]) OR (polysaccharide [Title]) OR (polysaccharide [Title]) OR (oligosaccharide [Title])
OR (starch [Title]) OR (maltodextrin [Title])))) NOT (“in vitro” [Title]) NOT (review [Title]).

The research was performed on 9 March 2021 by using two different databases: Scopus
and PubMed. These two databases were included as recommended by Siddaway, Wood,
and Hedges [67]. A scientific landscape visualization was created using the VOSviewer
software Mac version 1.6.16 [68,69] to analyze the abstracts of the resulting articles and to
visualize the data.

2.2. Screening

The duplicated articles resulting from the search query were removed, and the re-
maining entries were screened to verify that the title and methodology match the interest
and objective of the present review. The remaining studies were filtered according to the
inclusion and exclusion criteria previously described.

2.3. Information Synthesis and Variable Categorization

The remaining articles were read thoroughly by the authors to understand the method-
ology, dietary intervention, carbohydrate source, and the results obtained from the in-
tervention. The articles were labeled to categorize the information, according to the
function or functions of the carbohydrate—food component, food additive, or functional
carbohydrate—and were also classified according to the carbohydrate’s properties and
chemical structure. Finally, the bacteria (phylum, order, family, genus, and species), whose
relative abundance was significantly different from the control group, were also extracted
by the authors. Subsequently, this information was categorized into binary variables to
compare 47 studies, despite the methodological differences among them.

The information extraction, variable categorization, binarization, and statistical tech-
niques used (WoE-IV) conform to the methodology proposed by the authors and are part
of the contribution of this work.

For the purposes of this study, the variables were divided into two main classifica-
tions: predictive variables (independent variables) and response variables. The predictive
variables were divided into two categories:

1. Carbohydrate use: food additive, functional carbohydrate, or food component
2. General description of the carbohydrate: Sulfated saccharide, fructan, inulin, oligosac-

charide, polysaccharide, starch, gelatinized starch, resistant starch, insoluble fiber,
soluble fiber, and antioxidant capacity. Within the response variables, there is only
one classification:

3. Bacterial diversity variables (BDV): Bacterial taxa whose relative abundance showed
a significant change compared to the control group after the intervention.

Independent variables were transformed into binary variables (binarized) where the
presence of a use or characteristic was assigned a value of one “1” and the absence was
assigned a value of zero “0”.

These variables were not defined as mutually exclusive because, for example, an
intervention might contain a specific food that might be rich in starch but also in inulin.
Another example would be that a specific carbohydrate might be used as a food additive
but also be found as a natural food component.
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Each response variable representing bacterial taxa was subdivided into two categories:
the decrease and increase variable for each of the taxa based on the modification of their
relative abundance compared to the control group. This allowed the creation of a table
with only binary variables.

BDV (type 3) that showed a statistically significant difference in relative abundance
in just one of the 47 articles were excluded due to insufficient data to conduct a statistical
analysis on them. Bins (cooccurrence of a predictive and a response variable) that only
appeared once during the process will not be deeply addressed in the discussion but will
be mentioned in the results table.

2.4. Statistical Analysis and Co-Occurrence of Categorical Variables

Finally, a WoE-IV analysis was performed using each BDV (type 3) as the response vari-
able and each type 1 and 2 variable (carbohydrate origin and description) as the predictive
variable. IV scores were obtained for each pair (predictive vs. response), and those pairs
with an IV score above 0.5, and at least two bins, will be further analyzed in the results and
discussion section. The mathematical and statistical analysis was conducted using Python
3.10.4 [70] and implemented in Jupyter notebooks [71]. The Python libraries Pandas [72]
and NumPy [73] AI tools were used for the grammatical editing of this article [74,75].

3. Results
3.1. Search Strategy

The search strategy yielded a total of 284 articles, the search on Scopus gave 255 hits,
and the search on PubMed gave 150 hits; 121 articles were duplicated.

The resulting scientific landscape model is shown in Figure 3. An interactive version
of it can be consulted at: https://app.vosviewer.com/?json=https://drive.google.com/uc?
id=1vGFc1sE_zyTH-uGcvguk1j3PrYp6Gpcq.
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3.2. Screening

A total of 47 articles were included in the study; in other words, after removing
duplicates from the two scientific databases, 16.5% of the 284 search query results were
included (Figure 4). From the 284 articles: 47.2% were excluded because the study was
performed on a specific illness or health problem without a healthy intervention group; 13%
of the studies were excluded from the analysis because the experimentation was performed,
either using traditional microbiological techniques to characterize the gut microbiota or
had an intervention time of less than 14 days; 7.7% were performed in vitro; 6.7% were
performed using a veterinary or marine approach; 5.6% of the publications were literature
reviews; 2.8% were undertaken to neonate or very young human babies and; finally, one
article was not written in English.
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Some examples of studies that were also found in the search query but did not meet
the inclusion criteria were:

• Studies without a healthy intervention group [76–80].
• In vitro studies [81–83].
• Studies carried out on neonates or very young infants [84,85].
• Studies conducted on other species [11,86,87].

Out of the 47 included articles: 36 were animal studies (76.5%) [14–18,23–26,88–114]
and 11 human trials (23.4) [22,115–124]; 34 of them are on the topic of functional carbohy-
drates (72.4%); 31 are about carbohydrates naturally occurring in food (66%); and 12 address
carbohydrates that can be used as food additives (25.5%). It is important to note that these
three categories are not mutually exclusive.

A synthesis of the screened articles and the reasons for the exclusion are shown
in Figure 4.

3.3. Information Synthesis and Variable Categorization

For the construction of the categorical variable matrix, type 1 and 2 variables were
extracted from the text and included as possible predictive variables (Table 2). As for the
case of BDVs, type 3, a total of 74 bacterial variables were identified. However, 43 were
removed due to their occurrence in only one publication, leaving 31 BDVs as possible
response variables (Table 3).
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Table 2. Categorical variables used as possible predictives.

Type Variable Name Number of
Appearances References

1 Carbohydrates as food additive 12 [22–26,96,105,107,109,110,116,121]

1 Carbohydrates as functional components
(Functional carbohydrates) 34 [14–18,22–25,88,89,91,93,95,97,98,100–

104,106,107,110–113,115–119,122,125]

1 Carbohydrates naturally occurring in food
(Food components) 31 [14,17,18,23–25,89,91,93,94,96,98–

105,107,108,111,113,114,116,118–121,124,126]

2 Fungal polysaccharides 3 [100,102,114]

3 Polysaccharides with antioxidant capacity 10 [15,17,88,89,91,95,101,102,114,127]

3 Sulfated polysaccharides 3 [18,88,97]

3 Fructans 4 [104,115,119,122]

3 Inulin 4 [92,115,119,122]

3 Oligosaccharides 11 [14,18,24,95,98,104,106,109,111,113,122]

3 Polysaccharides 18 [15–17,88,89,91,93,97,100–
102,105,107,108,112,114,116,120]

3 Starch 11 [23,25,26,90,94,96,116–118,120,121]

3 Gelatinized starch 3 [23,90,94]

3 Resistant starch 11 [25,26,90,96,110,116–118,120,121,123]

3 Insoluble fiber 11 [89,90,92,93,97,99,103,108,110,111,124]

3 Soluble fiber 16 [22,24,89,90,92,93,97,98,103,108–
110,112,119,122,124]

Table 3. Table of type 3 bacterial diversity variables (BDVs) used as response variables.

Microorganism Taxa Decrease Increase

Actinobacteria 1 [101] 3 [22,111,128]

Actinobacteria_Bifidobacterium n/a 13 [14,17,23,24,90,95,104,113,115,117,119,120,122]

Bacteroidetes 2 [96,118] 8 [15,24,94,99,100,103,107,110]

Bacteroidetes odoribacter 2 [18,99] n/a

Bacteroidetes_Bacteroidales_oscillospira n/a 2 [16,107]

Bacteroidetes_Oscillospira_Ruminococcus n/a 4 [15,109,120,123]

Bacteroidetes_Alistipes n/a 2 [15,99]

Bacteroidetes _bacteroides n/a 7 [90,92,97,109,111–113]

Bacteroidetes_prevotellaceae n/a 3 [18,91,123]

Bacteroidetes_Prevotellaceae_prevotella n/a 4 [16,23,90,98]

Firmicutes 9 [24,94,99,100,107,108,110,111,124] 4 [91,94,96,118]

Firmicutes_Enterococcus 3 [24,97,104] n/a

Firmicutes_lactobacillus 3 [14,15,88] 10 [17,18,24,91,95,104,105,111–113]

Firmicutes_Clostridia n/a 2 [16,96]

Firmicutes_Clostridium 2 [111,113] 2 [116,124]

Firmicutes_Lachnospiraceae_blautia 3 [93,116,121] n/a

Firmicutes_Ruminococcaceae_Faecalibacterium n/a 2 [120,122]

Firmicutes_Coprococcus 2 [121,122] n/a

Firmicutes_Lachnospira 2 [115,121] n/a

Firmicutes_Roseburia n/a 3 [15,97,120]
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Table 3. Cont.

Microorganism Taxa Decrease Increase

Firmicutes_Turicibacter n/a 2 [25,97]

Proteobacteria 2 [94,114] 2 [91,108]

Proteobacteria_Sutterella n/a 2 [23,25]

Proteobacteria_Desulfovibrio n/a 2 [18,109]

Tenericutes 3 [25,101,122] n/a

Verrucomicrobia_Akkermansia n/a 3 [25,91,103]

Verrucomicrobia _Akkermansia_muciniphila n/a 2 [17,123]

3.4. Statistical Analysis and Co-Occurrence of Categorical Variables

As mentioned earlier, the number of bins for each possible combination of predictive
and response variables was computed, followed by the calculation of the WoE and IV score
for each pair of variables with at least one bin. Table 4 presents the number of bins and IV
for variable pairs that achieved an IV score of at least 0.5.

Table 4. Table of WoE-IV/Bins count.

Predictive Variable Response Variable BDV Information
Value (IV)

Number
of Bins References

Sulfated polysaccharides Lactibacillus reduction 1.808 1 [88]

Gelatinized starch Prevotella increase 1.781 2 [23,90]

Fructan Faecalibacterium increase 1.435 1 [122]

Sulfated polysaccharides Desulfovibrio increase 1.398 1 [18]

Fungal polysaccharides Proteobacteria decrease 1.398 1 [114]

Gelatinized starch Proteobacteria decrease 1.398 1 [94]

Sulfated polysaccharides Turicibacter increase 1.398 1 [97]

Sulfated polysaccharides Odoribacter increase 1.397 1 [18]

Fructan Coprococcus increase 1.144 1 [122]

Inulin Faecalibacterium increase 1.144 1 [122]

Oligosaccharides Lactobacillus increase 1.051 6 [18,24,95,104,111,113]

Insoluble fiber Actinobacteria increase 0.95 2 [111,129]

Starch Blautia decrease 0.948 2 [24,116]

Resistant starch Blautia decrease 0.948 2 [24,116]

Oligosaccharides Enterococcus reduction 0.947 2 [24,104]

Resistant Starch Firmicutes increase 0.947 2 [96,118]

Starch Firmicutes increase 0.947 2 [96,118]

Carbohydrates used as food additives Blautia decrease 0.842 2 [116,121]

Carbohydrates naturally occurring in food Bacteroides increase 0.828 2 [111,113]

Insoluble fiber Bacteroides increase 0.828 4 [90,92,97,111]

Insoluble fiber Firmicutes reduction 0.754 5 [99,108,110,111,124]

Soluble fiber Bacteroides increase 0.729 5 [90,92,97,109,112]

Sulfated polysaccharides Roseburia increase 0.677 1 [97]

Sulfated polysaccharides Enterococcus reduction 0.676 1 [97]

Inulin Bifidobacterium increase 0.538 3 [115,119,122]

Fructans Enterococcus reduction 0.509 1 [104]

Soluble fiber Actinobacteria increase 0.500 2 [22,89]
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4. Discussion

The trend of the studies herein included shows a scientific interest in identifying carbo-
hydrates that might have a nutraceutical or medical application; in other words, functional
carbohydrates—72.4% and considering carbohydrates naturally occurring in food—66%
(food components). In addition, the proportion of articles where an experimental design
was made using carbohydrates as food additives was 25.5%, indicating the interest in the
impact of these ingredients on the gut microbiota. It is important to remark that “car-
bohydrate use” variables are not mutually exclusive; they can be used as food additives
and used to improve the host’s health, as seen in guar gum and pectin carbohydrates, as
mentioned in the Results section.

The analysis performed indicates that the structure of carbohydrates has an important
IV on the gut microbiome composition, as shown in Table 4. Different starches, sulfated
polysaccharides, fructans, and inulins have different IVs with specific BDVs.

Based on the studies included, it was observed that the most frequently reported
bacterial taxa that showed changes during various dietetic interventions were the phylum
Firmicutes, the genera Bifidobacterium, and Lactobacillus, each mentioned 12 times. High IVs
were obtained only at the genus and phylum levels. For order, class, family, and species,
the data obtained were insufficient to achieve any significant result.

The analysis showed that the phylum Firmicutes decreased in nine studies and in-
creased in four studies. A decrease was observed with inulin and resistant starch in
rats [110], pectin oligosaccharides in mice [24], purple sweet potato in mice [107], a fun-
gal origin polysaccharide isolated from Flammulina velutipes in rats [100], a feruloylated
oligosaccharide from maize bran in rats [111], wheat starch in rats [94], insoluble dietary
fiber from pear pomace in rats [99], pigs fed with a diet rich in cellulose and xylose [108],
and human intervention with dietary fiber [124]. An increase was observed in physically
inaccessible resistant starch in mice [96], Lycium barbarum polysaccharide in mice [91],
resistant starch in healthy human adults [118], and in diets enriched with wheat starch [94].

Regarding the genus Lactobacillus, which belongs to the Firmicutes phylum, two of the
studies showed a decrease in this genre with the ingestion of Artemisa ordosica polysac-
charide in rats [15] and Sargassum fusiforme polysaccharide in mice [88], while the rest of
the studies in which this genus’ change was reported showed an increase in its relative
abundance, following the ingestion of different carbohydrates. An increase was observed
with the ingestion of pectin oligosaccharides in mice [24], bamboo-shaving polysaccharide
in mice [105], Lycium barbarum polysaccharide in mice [91], mannan oligosaccharides in
mice [95], oligosaccharides derived from dragon fruit (Hylocereus undatus) in mice [104],
maize bran oligosaccharides in rats [111] galactooligosaccharides in mice [113], and chon-
droitin sulfate oligosaccharide in mice [18]. These observations will be further discussed
according to the type of each polysaccharide.

The Bifidobacterium genus abundance increased by the ingestion of taro flour and starch
in rats [23], pectin oligosaccharides in mice [24], mannan oligosaccharides in mice [95]
resistant starch in human adults [117], and long-chain inulin in human aging adults [119].

Subsequently, the phylum Firmicutes and the phylum Bacteroidetes abundance were
modified in 10 studies, 2 showing a decrease and 8 showing an increase. A decrease was ob-
served in physically inaccessible resistant starch in mice [96] and resistant starch in human
adults [118]. An increase was observed in inulin and rats fed with resistant starch [110],
mice fed with pectin oligosaccharides (S. Zhang et al. 2019), mice fed with purple sweet
potato oligosaccharide [107], rats supplemented with Artemisia ordosica polysaccharide [15],
rats supplemented with a polysaccharide isolated from Flammulina velutipes [100], dietary
fiber isolated from sweet potato residue in rats [103], gelatinized wheat starch included in
mice diets [94], and dietary fiber from pear pomace administered to rats [99].

The following sections will address the significant changes observed in specific genera
and phyla, based on the classification of the polysaccharides studied.
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4.1. Sulfated Polysaccharides

Sulfated polysaccharides obtained a high IV (1.808, see Table 4) as a predictive variable
for the reduction in Lactobacillus. These results are shown in Chen et al.’s study [130] using
Sargassum fusiforme polysaccharide applied to mice [88] and Chen et al.’s fucoidan study
in rats, where this phylum decreased significantly. Nevertheless, this trend differs from
Gotteland et al.’s [131] review, which suggests that, by consuming sulfated polysaccharides,
this phylum might increase. Sulfated polysaccharides also show a high IV (1.397, see
Table 4) for predicting the increase in Odoribacter, as shown in Shang’s study [18] using
chondroitin sulfate oligosaccharide. This IV is only sustained by one bin, and no further
reference was found to sustain this IV so it will not be further discussed.

Sulfated carbohydrates also obtained a high IV (1.398, see Table 4), as a predictive
variable for the increase in Turicibacter, as mentioned in a study by Zhu et al. [97], where
mice were fed with sulfated carbohydrates from sea cucumbers and showed an increase in
this genus. These bacteria are SCFA producers and have shown high heritability, according
to Goodrich et al.’s study [43]. This genus showed a significant difference against the
control group, twice in the 47 studies included.

It was also possible to observe a high IV (1.398, see Table 4) and only one bin when us-
ing sulfated polysaccharides as a predictive variable to increase the abundance of Desulfovib-
rio [18]. This gram-negative genus is sulfate-reducing to produce hydrogen sulfide [132] in
the presence of sulfated carbohydrates. This bacterial taxon is considered to have a negative
impact on the gut microbiome and the host’s health.

4.2. Gelatinized Starch

The second highest IV (1.781) and two bins (see Table 4) were obtained by evaluating
gelatinized starch as a predictive variable for an increase in Prevotella abundance. The co-
occurrence of this type of polysaccharide with the Prevotella genus was found in [23], where
rats fed with taro (flour or starch) showed a significant increase in Prevotella compared to
the control group, as well as in Pi et al.’s study [90], where pigs fed with corn starch showed
a significant increase in the same genus. This trend was also consistent with Liu et al.’s
in vitro study’s findings [103].

This genus is very interesting as part of the gut microbiome. On the one hand, it is
related to plant-based diets, as mentioned by Martinez et al. [133], where different living
conditions in the United States of America and Papua New Guinea are compared, and gut
microbiota is associated with those environmental factors. Also, its relative abundance
is higher in certain dietary patterns, such as the Mediterranean diet, as observed in De
Filippis et al.’s studies [134]. This genus is reported to be a starch degrader and has been
correlated in various studies with a beneficial impact on the immune system.

On the other hand, certain species and strains within the Prevotella genus have been
associated with an increased risk of certain health conditions. For example, P. copri has been
linked to intestinal inflammation and insulin resistance [135]. Is has also been implicated in
rheumatoid arthritis [136] and shown to cause modifications that increase the inflammatory
response [137]. Additionally, P. copri, along with other strains of the same genus, are more
abundant in HIV-1 infected subjects [138]. These findings, coupled with the high genetic
diversity of the genus, lead to the current definition of some Prevotella species and strains
as possible pathobionts [135–139].

Gelatinized starch also obtained a high IV (1.398, see Table 4) as a predictive variable
for the reduction in Proteobacteria, as indicated in Do et al.’s study [94], where diets contain-
ing gelatinized wheat starch were related to a decrease in Proteobacteria. A high abundance
of this phylum has been linked to the host’s difficulty in maintaining a balanced gut mi-
crobiome, indicating that a high prevalence of Proteobacteria might indicate dysbiosis [140].
The role of Proteobacteria is discussed by Zhang et al. [141], Wang et al. [142], Everard et al.
“a” [143], Everard, et al. “b” [144], Ridaura, et al. [145], Larsen et al. [139], and Xiuying
Zhang et al. [146]. It is also important to mention that the Escherichia coli species belongs to
the Proteobacteria phylum.
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4.3. Fungal Polysaccharides

Mushroom and fungal polysaccharides also obtain a high IV (1.398, see Table 4) for the
reduction in Proteobacteria. This phylum includes several pathogenic bacteria, suggesting
that some of these polysaccharides might have a protective effect against dysbiosis [114,140],
indirectly improving the host’s health.

4.4. Oligosaccharides

A high IV (1.051 and six bins, see Table 4) for oligosaccharides as predictive variables
for an increase in Lactobacillus abundance was found; thus, the studies included have
very different sources of oligosaccharides: using pectin oligosaccharides [24], mannan
oligosaccharides [95], dragon fruit Hylocereus-undatus-derived oligosaccharides [104],
feruloylated oligosaccharides from maize bran [111], galactooligosaccharides [113], and
chondroitin sulfate oligosaccharide, all in murine models.

This genus consists of gram-positive bacteria, and some species have shown probiotic
activity modifying the gut environment and improving the host’s health [18,147–150]. The
IV and number of bins obtained also supports the idea that vegetable oligosaccharide
sources might have a prebiotic function [151–154].

Oligosaccharides also have a high IV (0.947 and two bins, see Table 4) for predicting
a decrease in Enterococcus; this genus is considered a commensal microorganism [24,104].

4.5. Insoluble Fiber

Insoluble fiber had a high IV (0.95 and two bins, see Table 4) for the increase in
the phylum Actinobacteria in feruloylated oligosaccharides from maize bran [111] and
alkali-soluble polysaccharides from Arctium lappa L. [89]. This phylum, along with the
Proteobacteria, represents approximately 10% of the gut microbiota and has been shown to
have a crucial role in the gut homeostasis [155]. It is also important to mention that the
Bifidobacterium genus is part of this phylum. Insoluble fiber also had an IV (0.828 and 4 bins,
see Table 4) when used as a predictive variable for Bacteroides increase, and an IV (0.754 and
5 bins, see Table 4) when used as a predictive variable for Firmicutes reduction. This result
is important, as the number of bins is high, reinforcing the already known relationship
between insoluble fiber and this genus.

4.6. Starch

A high IV (0.947 and 2 bins, see Table 4) has been found when using starch as a pre-
dictive variable for an increase in Firmicutes, possibly due to the physical inaccessibility
of resistant starch. Firmicutes are gram-positive bacteria, some of which are also butyrate
producers [96]; the IV is maintained when resistant starch is seen as the predictive variable,
as in Kaur et al.’s [96] results. It is believed that an increase in Firmicutes leads, inevitably,
to a decrease in the Bacteroidetes’ relative abundance [118].

4.7. Soluble Fiber

Soluble fiber scored an IV (0.729 and 5 bins, see Table 4) for predicting an increase in Bac-
teroides. The number of bins obtained reinforces the positive association between this phylum
and soluble fiber. This genus has a great capacity to degrade diverse carbohydrates [156].
Soluble fiber also scored an IV (0.500 and 2 bins, see Table 4) for predicting an increase in
Actinobacteria. This phylum is important for maintaining the gut homeostasis [155].

4.8. Inulin

Inulin has a moderate IV (0.5375, and 3 bins, see Table 4) for predicting an increase
in Bifidobacterium. This genre of microorganisms is considered probiotic; this effect was
observed in aging individuals [119], in a clinical trial using inulin-type prebiotics [122], and
in a human randomized crossover trial by using chicory inulin-type fructan contained in
snack bars [115]. This bifidogenic effect has also been observed in multiple in vitro studies,
such as those by the authors of references [154,157].
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4.9. Carbohydrates as Food Additives and Natural Food Components

The variables used to define carbohydrate use—food additive, functional carbohydrate,
and food component—do not seem to have a significant effect on the gut microbiome. Even
though these variables appeared frequently during the review, they only had two high
IVs; food additives for predicting Blautia decrease (0.842 and 2 bins, see Table 4). Blautia is
a bacterial genus that has shown prebiotic effects but also correlates with certain diseases
when it dominates the gut microbiota. More research about this genus and its specific
species and strains needs to be carried out in order to understand these microorganisms as
part of the gut microbiota [158].

The variable “carbohydrates naturally occurring in food” had a high IV for predicting
Bacteroides increase (0.828 and 2 bins, see Table 4), matching the fact that soluble and
insoluble fiber are common in different food sources. Bacteroides is a genus that metabolizes
carbohydrates very efficiently and contains several species that have a probiotic effect [159].

4.10. Carbohydrates as Functional Compounds (Functional Carbohydrates)

A high IV was not observed for any BDV and functional carbohydrates; this might
be because each one of these compounds interacts with the gut microbiome individually,
modifying specific BDVs.

To summarize, some pairs of predictive and response variables have four or more
bins, such as insoluble fiber with Firmicutes reduction, soluble and insoluble fiber with
Bacteroides increase, and oligosaccharides with Lactobacillus increase. These relationships
are already well-defined in microbiome studies. However, there are pairs of variables
with high IVs and two to three bins that are not already well established that point to
areas of opportunity for further research. For example: gelatinized starch and Prevotella
increase; resistant starch and Firmicutes increase; sulfated polysaccharides with an increase
in Desulfovibrio, Turicibacter, and Odoribacter and a decrease in Lactobacillus; gelatinized starch
with a reduction in Proteobacteria; inulin with a rise in Faecalibacterium; starch and resistant
starch with a reduction in Blautia; and inulin with an increase in Bifidobacterium (see Table 4).

This might point towards existing relationships that could become well-established by
future research if the results obtained are consistent with those obtained in this work. It would
be in the authors’ interest to monitor the publications on the topic continuously, to keep the
database growing and find more robust results. It is also essential to mention that this review
includes studies on both human and laboratory mammals. Although they are similar, their gut
microbiota might not react in the same way in the presence of different carbohydrates. Authors
should discuss the results and how they can be interpreted from the perspective of previous
studies and of the working hypotheses. The findings and their implications should be discussed
in the broadest context possible. Future research directions may also be highlighted.

5. Conclusions

The results obtained through the specific methodology used, for the first time, in
this weight of evidence systematic review reinforce previous observations suggesting that
differences in carbohydrate consumption have an important role in the host’s health by
impacting the composition of the gut microbiota and the microbiome environment.

To begin with, the SPIDER tool was used to determine the specific focus of the review
by defining the phenomenon of interest, inclusion and exclusion criteria, and research
type in order to establish a proper framework for identifying the key variables and later
binarizing them to enable the use of WoE.

The use of WoE as the primary statistical approach allowed the obtaining of results
that align with well-known relationships between specific carbohydrates and their effect
on BDVs in the gut microbiome, such as oligosaccharides and Lactobacillus increase. The
fact that these relationships were observed and corroborated by this approach not only
strengthens previous knowledge but also provides evidence that the entire methodology is
effective. However, this might open new research interests for continuing to study and feed
this model and, in this way, establish new carbohydrate–bacterial diversity relationships.
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