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Abstract: During this century, a number of reports have described the potential roles of thermophiles
in the upper soil layers during high-temperature periods. This study evaluates the capabilities of these
microorganisms and proposes some potential consequences and risks associated with the activity of
soil thermophiles. They are active in organic matter mineralization, releasing inorganic nutrients (C,
S, N, P) that otherwise remain trapped in the organic complexity of soil. To process complex organic
compounds in soils, these thermophiles require extracellular enzymes to break down large polymers
into simple compounds, which can be incorporated into the cells and processed. Soil thermophiles
are able to adapt their extracellular enzyme activities to environmental conditions. These enzymes
can present optimum activity under high temperatures and reduced water content. Consequently,
these microorganisms have been shown to actively process and decompose substances (including
pollutants) under extreme conditions (i.e., desiccation and heat) in soils. While nutrient cycling is a
highly beneficial process to maintain soil service quality, progressive warming can lead to excessive
activity of soil thermophiles and their extracellular enzymes. If this activity is too high, it may lead to
reduction in soil organic matter, nutrient impoverishment and to an increased risk of aridity. This
is a clear example of a potential effect of future predicted climate warming directly caused by soil
microorganisms with major consequences for our understanding of ecosystem functioning, soil health
and the risk of soil aridity.

Keywords: thermophiles; soil; extracellular enzyme activity; enzyme persistence; climate warming;
drought; temperature; organic matter; nutrient cycling; aridity

1. Introduction

Soil health and function are strictly linked to microbial activity [1–5]. A large number
of processes are carried out mainly or exclusively by microorganisms, and this broad range
of activities represents a major asset for soil maintenance and response to multiple variables
leading to changing conditions. One of the main factors influencing the functional redun-
dancy of soil processes is microbial diversity [1,5–8]. Soils are highly heterogeneous, and
they present a huge microbial diversity and abundance [9,10]. Current estimates suggest
that 1 g of soil contains about 1010 prokaryotic cells and includes about 30,000 different
microorganisms [7,9,11]. The duplicity of metabolic capabilities allows soils to preserve
functionality, maintaining a stable environment, in spite of drastic changes. Otherwise,
a significant decrease in microbial diversity would represent a serious handicap on soils
being able to maintain current balances and activities, which would negatively affect soil
health and productivity [5,7].

Microorganisms 2023, 11, 1650. https://doi.org/10.3390/microorganisms11071650 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms11071650
https://doi.org/10.3390/microorganisms11071650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0003-4746-6775
https://orcid.org/0000-0002-5712-3939
https://orcid.org/0000-0002-3273-897X
https://doi.org/10.3390/microorganisms11071650
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms11071650?type=check_update&version=1


Microorganisms 2023, 11, 1650 2 of 16

Within the research on the almost unmeasurable high microbial diversity existing in
soils, most work has been carried out on their major components, while the low-abundance
microorganisms have been poorly considered. This represents a significant limitation
because a large number of microbial processes with high relevance to, for instance, the
biogeochemical cycling of elements are performed by minority microorganisms. This is,
for example, the case for ammonium oxidation, denitrification, metal reduction/oxidation,
sulfur oxidation, sulfate reduction, methanogenesis and the decomposition of specific
recalcitrant pollutants; these processes are generally carried out by groups represented
within the minorities of the natural microbial communities [12].

Within the vast microbial diversity of soils, a permanent component consists in ther-
mophilic bacteria. Although thermophiles are expected to inhabit high-temperature envi-
ronments, such as hot springs, geothermal areas or compost piles, different reports have
confirmed the ubiquitous presence of thermophiles in all examined soils from a wide range
of latitudes [13–18]. Cold and temperate soils hold thermophiles including distinctive taxa,
but the major representatives are Geobacillus-related genera [13–16,18]. This study will focus
on the potential role and consequences of these soil thermophiles within a perspective of
global climate warming.

A question has arose about the timing available for thermophiles to grow, assuming
these microorganisms are inhabiting the upper soil layers of cold or temperate environ-
ments. Previously, an analysis of average number of hot days against latitude [15,18,19]
suggested the occurrence of a significant number of hot days (e.g., above 100 hot days/year,
around 37◦ N, in Seville, Spain) [18,19] when soil thermophiles would have an opportunity
to grow and show significant activity. At higher latitudes (i.e., above 50◦ N), the number
of hot days is generally low (e.g., around 1–2 hot days/year, around 52◦ N, at Cambridge,
UK) [18,19], but this could be enough to provide time for maintaining thermophile pop-
ulations and a minimum extracellular enzyme stock in the soil environment. These soil
thermophiles survive well through low-temperature periods [20].

Another group of microorganisms that must be mentioned when considering microor-
ganisms thriving under periods of increased temperatures are the thermophilic fungi [21]
also present in soils. The role of these fungi in soils during high-temperature events has
not been clearly defined yet [21], and additional research is required. Nevertheless, ther-
mophilic fungi can have a role in compost piles, where high temperatures are maintained
for much longer time periods than in upper soil layers. Compost piles typically contain a
high organic matter load and generate, as a result of microbial growth, a high-temperature
environment [22–25].

Soil organic matter is a major reservoir of C with the potential to greatly influence
global climate [3,4]. Most organic carbon is present in the upper soil layers [26]. Rich soils
contain a high content of organic matter, represented by a variety of complex compounds.
Soil organic matter, besides its carbon content, also includes other elements, some of them
critical for plant and microbial growth, such as nitrogen, sulfur and phosphorous, often
required as major soil fertilizers [27,28]. Furthermore, complex organics such as humic
acids can complex with those elements as well as with metals [29,30]. Within the soil
organic matter, large polymers and humic acids need to be broken into smaller compounds
or monomers for microorganisms to be able to be taken up and processed as sources
of energy and/or biomass [31–33]. This breaking down of complex compounds into
smaller ones is mediated by extracellular enzymes. In fact, the bottle-neck for soil organic
matter mineralization is this step involving the extracellular enzymes [3,19,34]. Microbial
extracellular enzyme activity is highly related to organic matter mineralization in soils
and has been proposed as a major indicator to evaluate the sink-link issue with the soil–
atmosphere C balance [3,4], a critical parameter for modeling climate predictions [5,35–38].

Extracellular enzyme activity has been proposed as an indicator of soil microbial
activity [39–41], and it is commonly measured in ecological studies [37,40–44]. Soil ther-
mophiles have been reported as a major source for extracellular enzymes dominating the
pool of enzymes in soils [19] because they present higher total activity than the correspond-
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ing enzymes from mesophiles (Figure 1) [18,19,45]. Thus, high-temperature events are
expected to enhance soil organic matter processing due to the activation of extracellular
enzymes from thermophiles. In addition, the current scenario of global warming suggests
an expected increase in frequency and duration of high-temperature events in the com-
ing years [4,5,7,46]. As well, high temperature in soil upper layers implies an increased
evaporation and therefore a decrease in water content in soils, leading to increased des-
iccation. Recent reports have also proposed that some soil microorganisms (including
some thermophiles) have adapted to dryness by developing extracellular enzymes and
metabolisms able to work optimally under dry conditions (at water activity, aw, between 0.3
and 0.8) [43,45]. The levels of desiccation showing maximum extracellular activity by soil
thermophilic xerophiles can occur at values below the reported limit for microbial growth
(aw 0.605) [47]. Besides extracellular enzyme activity by thermophiles, these cells have
been reported to actively decompose recalcitrant pollutants at high temperature [17,48–51]
and under dry conditions [43,45,48], suggesting that cell activity is significant under those
extreme conditions in soil upper layers, where these microorganisms can be potential
important bioremediation agents [17,48–53].
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Figure 1. Extracellular enzyme activity in soils over a broad range of temperatures (5 ◦C to
95 ◦C). Maximum activity was observed at temperatures in the thermophilic microorganisms range
(55–75 ◦C). Data averaged from Gonzalez et al. [19]. Blue squares, glucosidase; red squares, protease.
Error bars, one standard deviation.

Current modeling of global warming shows important limitations on the incorporation
of microbial parameters into model predictions [3,53–55]. Under these circumstances of
novel microbial activities and microorganisms with previously under-studied capabilities,
current previsions from global warming perspectives should be re-examined by incorpo-
rating these novel views and the current knowledge on the direct influence of previously
underestimated microorganisms. This study will present some potential positive and nega-
tive consequences of the activity of soil thermophiles from the perspective of maintaining
soil health and productivity.

2. Singularity of Soil Thermophiles and Thermophilic Extracellular Enzymes

Soil thermophiles represent a singularity in the microbial communities from cold
and temperate soils. However, thermophiles are ubiquitous inhabitants of soils, and their
presence as viable cells with an important role and capabilities to survive under those con-
ditions have been reported [14,15]. Thus, thermophiles thriving in temperate environments,
depending on periodic/sporadic high-temperature events, can show some growth and
produce extracellular enzymes that are required to process organic matter [18,19]. These
extracellular enzymes might persist in the environment [56] and become active under heat
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events. Consequently, these extracellular enzymes actively participate in soil organic matter
decomposition [19,43,56].

Mesophilic microorganisms present extracellular enzymes with optimum activity at
moderate temperatures (i.e., generally measured around 30 ◦C or below) [57–59], but the
extracellular enzymes from thermophiles present optimum activity at temperatures above
50 ◦C [19,45]. Thus, the activity by extracellular enzymes from thermophiles can be easily
detected by carrying out enzyme assays at high temperature (50 ◦C to 70 ◦C), and therefore,
mesophilic and thermophilic activities can be differentiated. Results discriminating the
activity over a range of temperatures (from 5 ◦C to 95 ◦C) in a variety of soil samples
showed unexpected results [19]. The results clearly indicated that thermophilic activities
were always higher than mesophilic ones in all soils tested (Figure 1) [18,19]. This suggests
that thermophilic extracellular enzyme activities are dominant in soils. It is important to
note that the pioneering work [19] and some subsequent studies [43,45] included samples
from soils exposed to hot temperatures and others from cold environments. Additional
studies have shown significant roles of thermophiles at higher latitudes [16,17,49–52],
corroborating that soil thermophiles can also show significant environmental activity in
relatively cold climate zones.

Because soil thermophiles represent a minority fraction of the total microbial commu-
nity in cold and temperate soils [13,15,18,43], it is required to look for different potential
scenarios to explain that large activity measured in the thermophile temperature range.
An easy explanation would be that soil thermophiles show a very high production of
extracellular enzymes and/or these enzymes present higher activity than their mesophilic
counterparts. Although enzymes from thermophiles have been reported to present higher
activity than those from mesophiles [60,61], the difference is not likely to be able to explain
the much higher total activity measured in soils due to thermophiles (a minority group)
than due to the total mesophilic microbial community, which presents a much higher
abundance. According to previous estimates [15], the fraction of thermophiles in soils is
generally below 1% of the total community. A potential justification for that large activity
at high temperatures in soils could be that soil thermophiles could produce a large amount
of extracellular enzymes during hot periods or extreme heat events. Soil thermophiles,
such as Geobacillus related taxa, require extracellular enzymes to access complex organic
matter in soils and grow, so a high production of enzymes is needed for their development.
Nevertheless, the relatively low abundance of thermophiles suggests that the production of
thermophilic extracellular enzymes could not be as high as needed—in relationship to the
production by mesophiles showing equivalent metabolism—to explain the higher activity
in the thermophile temperature range. The level of extracellular enzyme production that
could be potentially needed to explain that scenario is likely to be out of reach for the soil
thermophilic cells. Otherwise, during hot periods, thermophiles could respond to heat
events by growing and producing a moderate amount of enzymes that would persist in the
environment over time. This could result in a progressive accumulation of thermophilic
enzymes in the environment. These enzymes should be able to persist in the environment
at least until the next hot event, and, at that moment, the thermophilic enzymes will show
their full activity. For this to be a reasonable explanation, the thermophilic extracellular
enzymes should show longer persistence in the soil environment. The potential for accu-
mulation of extracellular enzymes in soils could represent a singular strategy that would
allow thermophilic cells to start growing rapidly when the right growth conditions arrive
in the ecosystem (e.g., an extreme heat event or hot days during the summer period). A
rapid response would take advantage of even the shortest periods at high temperature to
recover and grow. During these hot periods, those thermophilic enzymes could decompose
soil organic matter, allowing a variety of organisms (both microorganisms and plants)
to profit from that release of smaller compounds (and monomers) readily available as
substrates for growth and energy [62]. A mechanism facilitating a rapid growth response to
high-temperature events (i.e., extracellular enzyme accumulation) represents an interesting
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adaptive feature for thermophiles to thrive in cold and temperate environments. This type
of strategy has not been reported before for microorganisms.

For extracellular enzymes to accumulate in the environment, two aspects need to be
fulfilled: a relatively long production of extracellular enzymes and a long persistence in the
environment. Generally, enzymes from thermophiles (as well as from other extremophiles)
have been reported to present higher durability than those from mesophiles, resulting from
a higher stability and resistance to external factors (detergents, denaturants, decomposition,
etc.) [60]. Assuming enzymes are produced at a relatively high rate and then show a long
persistence in the environment, they could progressively accumulate in soils [56]. In this
way, thermophilic extracellular enzymes could generate an active enzymatic pool in soils,
readily available to catalyze complex organic matter decomposition as soon as temperatures
rise. A recent report [56] has shown that extracellular enzymes from thermophiles are able
to persist for a longer time in soils than those from mesophiles (Figure 2). Thermophilic
extracellular enzymes maintain their activity in soils even at the highest temperatures
and desiccation levels reached in the upper soil layers (Figure 2). Mesophilic enzymes
are rapidly denatured during extreme heat events, including summer periods, and their
persistence is lower than that for soil thermophiles [56,63]. Thus, the extracellular enzymes
from thermophiles are able to persist in the environment, representing a soil asset that could
allow the rapid growth of microorganisms, both mesophiles and thermophiles, and so
promote soil health and functioning. This unique strategy proposed for soil thermophiles
represents a singular mechanism to survive in environments (i.e., cold and temperate soils)
considered adverse for thermophiles.

High temperature of upper soil layers implies increased evaporation, leading to a
reduction in water content and desiccation. It has been generally thought that dried
soils present poor or near-null biological activity. Nevertheless, recent work has shown
that specific microorganisms present optimum extracellular enzyme activity under dry
conditions [43,45,64,65]. This is the case for some soil thermophiles, among other mesophilic
bacteria (i.e., Deinococcus). Deinococcus radiodurans, a wide spread soil bacterial species,
has been reported to be a model microorganism for resistance to desiccation [66], and
some of its extracellular enzymes can present optimum (maximum) activity under dried
soil conditions (aw 0.40–0.55) (Figure 3) [45]. Soil thermophiles, those inhabitants of soils
frequently exposed to high temperatures and droughts, exhibit an interesting feature: they
present optimum extracellular enzyme activities at very low water content (aw 0.3–0.7).
Some thermophilic enzymes from sites exposed to hot climate have been shown to reach
optimum activities under dry conditions (aw < 0.7), but thermophiles from cooler locations
present optima under wet conditions (aw > 0.9). Most mesophilic enzymes in those natural
soil samples always presented optimum values in aqueous solutions (aw > 0.9). These
results showed that soil thermophiles can adapt to thrive in a variety of environments and
have the capacity to adapt their enzyme activities to extremely dry conditions [43,45].

Furthermore, these thermophiles survive and remain viable under these dry conditions
(aw 0.5), as shown by a comparative study on pollutant decomposition by Geobacillus
(showing maximum pollutant decomposition at aw 0.5) compared to Rhodococcus spp.
(showing maximum decomposition at aw > 0.9) [48]. This qualifies soil thermophiles from
hot and dry environments as some of the most xerophilic cells reported on Earth. So far, the
lowest water activity allowing growth is 0.6 for the fungus Xeromyces bisporus [47], and most
microorganisms do not show growth below aw 0.8 [67]. Some soil thermophiles can show
optimum extracellular enzymatic activity [43,45] and ability to decompose pollutants [48] at
aw around 0.5. Consequently, singular features of soil thermophiles include their potential
adaptability to extreme drought and high temperatures, which are valued because of their
consequences for the environment [43,45,56], providing evidence of optimal activity under
those extremes (Figure 3), as well as a great potential for biotechnological applications in
high-temperature and non-aqueous treatments and processes [68–71].
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Figure 2. Decay rate of natural extracellular enzymes in soils at different temperatures, 20 ◦C
(light colors) and 60 ◦C (dark colors), corresponding to the mesophilic (blue) and thermophilic
(red) microorganisms, respectively, over a wide spectrum of water contents (water activity, aw)
for 3 different enzyme activities: (A), glucanase; (B), phosphatase; (C), protease. High decay rate
indicates short persistence, and low decay rate shows long persistence. Data averaged from Gomez
et al. [56]. Error bars, one standard deviation.
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Figure 3. Natural extracellular enzyme activity from Southeastern Spain soils versus water activity.
A couple of examples showing optimum extracellular enzyme activity under severe desiccation.
Red squares and lines, soil samples collected from Coria del Rio (Seville); blue squares and lines,
soil samples collected from Benaocaz (Cadiz). (A), glucanase; (B), phosphatase; (C), protease. Data
extracted from Gomez et al. [43]. Error bars, one standard deviation.

3. Organic Matter Decomposition

Soil organic matter is largely processed by microorganisms and dependent on concentra-
tion, composition and a variety of biotic and abiotic factors [3,35,37,40,41,59]. Most research
has been performed to understand microbial organic matter decomposition in soils during
standard conditions (temperature and high-water-content conditions) [3,35,37,40,41,59] and
after wetting events [72–76], but scarce information is available on the potential of microbial
activity under extreme events (i.e., high temperature, desiccation) [15,19,43,77]. Soil ther-
mophiles are able to thrive under periodic or sporadic hot and dry periods (and survive in the
cold), unlike what is assumed for most microorganisms. The relevance of thermophiles in
soil ecosystems during those extreme events must be evaluated so that researchers and tech-
nologists can incorporate the information into current local and global system management,
models and predictions.
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Microbial organic C processing in soils was thought to be inhibited during extreme
events (i.e., high temperature and desiccation) [57,58,78–80]. In the last decade, researchers
have started to understand that some microorganisms are able to occupy niches that are not
able to support growth of others, leading to alternating feast–famine cycles in the environ-
ment [81–83]. As an example, different microorganisms packed tightly along a temperature
gradient [84] and thedistinctive taxa naturally distributed according to the environmental
conditions and outcomes of competition with other microorganisms. Soil thermophiles
have been confirmed [13,15,18,43] to present optimum activity under extreme conditions
in which other microorganisms do not grow. During the temperate and cold periods,
those soil thermophiles persist under near-zero or maintenance growth stages [14,62,85].
In fact, periods of growth limitation and even inhibition have been reported to be the
most common conditions for most microorganisms in nature [86,87]. Thus, growth limi-
tation and the wait for appropriate conditions to arrive should be considered as general
features for microorganisms in the environment and, specifically, a way of living for soil
thermophiles [14,19].

Organic matter is a parameter of major importance to determine soil health and
productivity [88,89]. Microorganisms are major participants in maintaining soil function-
ing [90–92], including the working of biogeochemical cycles of elements sustaining plant
growth and interactions with plants [27,90,92–94]. During extreme events (i.e., extreme
temperature and desiccation), soil thermophiles can perform some of these functions dur-
ing periods when other microorganisms are inhibited. Soil thermophiles (as mentioned
above) utilize extracellular enzymes to start the decomposition of complex organic matter
in soils. This first step is generally the limiting bottle-neck for soil organic matter mineraliza-
tion [3,19,34]. The decomposition of organic matter into smaller compounds or monomers
that can directly be incorporated by cells fosters microbial growth. During growth, aerobic
respiration generates CO2 as a result of complete organic matter mineralization [32], and the
metabolism of those organic molecules leads to the release of other inorganic compounds
(i.e., ammonium, sulfate, phosphates) [15,32,85,93]. Thus, the role of soil thermophiles,
both those thriving at high temperatures and those adapted to thrive under dry conditions,
should be accounted for when evaluating microbial activity and the consequences on local
and global scales, in order to fully understand ecosystem functioning and the fate of C at
the soil–atmosphere equilibrium of relevance and thereby achieve reasonable predictions
on climate impact [4,5].

Soil organic matter, including humic acids, presents a significant content of nitro-
gen [29,30,95–98]. Proteinaceous compounds contain nitrogen, and the consumption of
these compounds represents an important source of N for microorganisms. Excess N from
this metabolism can be released into the environment, generally in the form of ammonium,
and it can be a substrate for other bacteria directly involved in critical steps of the biogeo-
chemical cycle of N (e.g., anammox, nitrifiers, denitrifiers) [99]. The inorganic N released,
with synthesis of ammonium, nitrate and nitrite, represents a significant source of N for
all soil organisms, specifically plants. Inorganic N is frequently a growth-limiting nutrient
for plants [100]. Soil thermophiles have been cited to release N as ammonium at a rate
similar to that reported for super-ammonifiers in the mesophile temperature range. Thus,
this source of inorganic N can be maintained and potentially enhanced during extreme
heat and dryness periods by the role of soil thermophiles and their decomposition of soil
organic matter.

Processing of soil organic matter, besides C and N, affects other elements. One of
the elements most relevant for plant and microbial life is sulfur. S is often required in
plant cultures as a fertilizer because the availability of S in soils is frequently low. In this
respect, most S in soils is part of soil organic matter (about 90% of total soil S) [101–103], for
example, integrated in humic acids and proteinaceous compounds [29,30]. Nevertheless,
the capacity of most soil bacteria (analyzed at 20 ◦C, in the mesophile temperature range) to
mineralize organic S has been shown to be highly limited [101,102] and has been suggested
to be frequently unable to support the S requirements for soil organisms (microorganisms
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and plants). Soil thermophiles, during extreme heat and desiccation periods, can process
soil organic matter releasing inorganic S, mainly as sulfate [15,85,104]. A significant release
of sulfate has been reported for soil thermophiles at a much higher rate than that by soil
mesophiles [15]. A putative pathway involved in the release of inorganic S (i.e., sulphate)
has been described [85,104], supporting the potential for S cycling in soils carried out mostly
by thermophiles within the phylum Firmicutes, bacteria closely related to the Geobacillus
genus. These soil thermophiles could reduce S limitation in soils during high-temperature
and dry periods by increasing the recycling rate of organic S [85,104].

Another major microbial growth-limiting nutrient is P. Phosphates are relatively abun-
dant in soils, but they are generally complexed into organic matter and minerals [105–110].
Numerous microorganisms are able to release phosphates, making P freely available for bi-
ological utilization and incorporation into the cell metabolism of both microorganisms and
plants [32,107]. The role of phosphatases is important for the solubilization of phosphates in
soils [32,43,107]. Some soil thermophiles (i.e., Geobacillus related strains) have been shown
to solubilize phosphates during growth, which represents an additional feature of relevance
for the working of soil ecosystems during high-temperature and desiccation periods.

Soil thermophiles metabolism, as shown above, is directly implicated in a number of
features related to the cycling and processing of organic matter. The role of their extracel-
lular enzymes is critical and limits the rate of the subsequent pathways and metabolism
performed by the thermophilic cells. An additional aspect of interest is the capability of
soil thermophiles to decompose recalcitrant pollutants under extreme conditions. This has
been shown by various research teams. An example is the ability of microorganisms in
natural soil samples and of Geobacillus strains isolated from soils to decompose halocom-
pounds (e.g., chlorophenol) under high-temperature and low-water-activity conditions [48].
Another example was reported of the major role of thermophiles in the decomposition
of bituminous hydrocarbons in soils in a relatively cold climatic zone (59 ◦N) [17]. The
degradation of n-hexadecane in soil has been carried out by thermophiles [51]. Another
report pointed out the role of thermophiles in crude oil degradation in soils [50]. The
decomposition by thermophiles of oily food residues in soils has also been confirmed [49].
Thus, soil thermophiles expand the time when and conditions under which bioremediation
could be carried out in soils [17,48–52], including periods of high temperature and drought
in upper soil layers.

Herein, the role of thermophiles has been summarized in relationship to natural soil
systems. However, similar roles are to be expected if these processes are incorporated
into bioreactors [50,111] or composting [112–115]. Under these technological scenarios,
thermophiles could be functioning under most defined and optimum conditions, showing
increased relevance to organic matter processing, inorganic nutrient release and pollutant
decomposition. Biotechnological processes can significantly profit from the capabilities of
soil thermophiles.

4. Positive Implications (Services)

The use of soil thermophiles as potential biofertilizers has been suggested and is
supported by the evidence shown above. Soil thermophiles could significantly contribute
to C processing and the release of inorganic ammonium, sulfate and phosphate, which can
be directly utilized by plants [62,85,93]. As a consequence of this active participation of soil
thermophiles in nutrient cycling, one could suggest that periods of extreme climate events
also contribute to maintaining soil health and productivity, for example, by enriching soil
with available inorganic nutrients that can be readily used for plant growth.

Soil thermophiles’ activity during hot and dry periods can represent an additional level
of redundancy that enhances the role of microbial diversity by providing pathways leading
to nutrient cycling and sustainability during extreme conditions [1,94,104,116,117]. Soil
health requires microbial diversity so that changes can be compensated through different
alternative pathways and soil functioning can continue providing similar services [6,8,118].



Microorganisms 2023, 11, 1650 10 of 16

In order to confirm soil thermophiles’ positive effects on plant growth, a series of
studies have shown the potential capabilities of those soil thermophiles to enhance plant
growth [62,85,93] and drought tolerance [62,94]. These reports showed that plants sig-
nificantly benefit from soil thermophiles’ activities, which contribute to compensating
nutrient deficits by increasing decomposition of soil organic matter and releasing essential
plant nutrients.

In addition to the participation of soil thermophiles in the biogeochemical cycling of
elements (C, N, S, P), these microorganisms can provide bioremediation services under
high-temperature and dry conditions. Previously, the potential bacterial decomposition
of pollutants during extreme heat and dry events had been considered to be highly lim-
ited [119,120]. Studies on soil thermophiles have shown the importance of soil thermophiles
in these processes, contributing significantly to decomposing pollutants under these con-
ditions [17,48–51]. In fact, high temperature, for example, can contribute to increasing
solubility of some pollutants, increasing the accessibility to thermophilic cells [121]. Simi-
larly, drought enhances evaporation, and this can lead to pollutant concentration, which
can facilitate decomposition by overcoming affinity issues at low concentrations [122].
Thus, thermophiles offer enhanced potential as soil bioremediation tools [17,48,51].

As mentioned above, soil thermophiles under moderate average conditions thrive
in the environment when periodically or occasionally they are able to grow and show
significant activity, thus contributing moderately to the sustainability and productivity of
the soil ecosystem. Caution must be taken because uncontrolled increased exposure of soils
to extreme climate events could lead to differential effects considered below.

5. Negative Implications (Risks)

Above, we have presented a number of positive implications of and services potentially
provided by soil thermophiles during extreme heat and drought events. However, there
are potential negative effects that need to be considered.

Excessive organic matter decomposition can lead to soil impoverishment [123,124].
Although additional research is required, Santana and Gonzalez [18] have suggested a
potential correlation between the activity of soil thermophiles and soil organic content
throughout Europe. Lower latitudes present higher temperatures, and it is expected
that soil thermophiles show higher activity there; Southern Europe generally presents
lower soil organic matter content than Northern Europe. Higher latitudes correspond
to cooler climatic zones, so soil thermophiles and their extracellular enzymes will show
limited activity.

Based on current climate change predictions, raising temperatures will likely result in
a higher frequency and duration of extreme temperature events and droughts [3,4,124,125].
If so, the periods and duration of hot days and periods of drought will increase, leading
to increased opportunities for growth of soil thermophiles and the enhanced activity of
thermophilic extracellular enzymes. This potential increase in thermophilic activity could
lead to excessive organic matter decomposition, with two major aspects to be considered.

A potential increased soil organic matter decomposition could lead to soil impover-
ishment due to a decrease in soil organic matter content. Extreme heat and dry periods
could lead to increased activity derived from soil thermophiles. Future climatic scenar-
ios and predictions suggest that the expected conditions will lead to an increase in soil
thermophile-derived activities, which could potentially pose a significant risk of progres-
sive soil impoverishment and CO2 release to the atmosphere, due to excessive organic
matter mineralization. Increased extreme climatic conditions might lead to poor plant
health and plant coverage reduction as a result of high temperature and reduced water
availability [46,94,119,126,127]. Soils poorly covered with vegetation will be increasingly
affected by radiation, heat and desiccation [128–131]. Thus, increased climate warming
would lead to increased soil thermophile activity, which may result in an increased risk of
soil aridity.
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A second potential aspect that needs to be considered is that the above-mentioned
enhanced soil organic matter decomposition should result in the increased release of
inorganics (i.e., ammonium, sulfate, phosphate). Because plants under extreme heat and
drought conditions might be under severe stress situations, plant uptake of inorganic
nutrients might be poor, and so those available inorganic compounds might be easily
lost, for example, in runoff water [132,133]. This might enhance nutrient loss and lead to
increased risk of soil impoverishment and aridity.

Under the current global climate warming scenario, an increase in the activity of soil
thermophiles is expected. If plants’ growth and potential adaptations are not supported by
the warmer climatic conditions expected to occur in the future [125,134,135], a reduction in
plant coverage of soil surface and an increased activity of soil thermophiles are suggested
to result in a progressive soil impoverishment and risk of aridity. A large amount of
thermophilic extracellular enzymes accumulated in soils [19,43,45] leads to the hypothesis
that soils would experience a reduction in their organic matter content if temperatures
and dryness increase through climate warming. These risks should be proportional to
climate events, and these effects will be related to latitude and altitude, among other
factors influencing environmental conditions in different soil systems [135–137]. Although
moderate soil thermophile activity can result in positive benefits for soil sustainability and
health, an excessive or enhanced activity of soil thermophiles could certainly have strong
negative effects on soils. Evaluating these effects and potential consequences requires
further investigation.

6. Conclusions

Within the huge microbial diversity existing in soils, some minority components could
present a significant potential and certainly provide highly relevant value by expressing
functional redundancy and warranting soil response to potential changes and drastic
events, including climate changes predicted in a near future. In this study, we have focused
on one minority group of soil communities, the soil thermophiles, and analyzed potential
benefits and risks derived from expected climate changes.

Soil thermophiles can contribute positively to nutrient cycling by processing soil
organic matter, including recalcitrant compounds and pollutants, and releasing inorganic
nutrients complexed within the organic matter. During hot and dry periods, thermophiles
can grow, consuming organic matter and producing extracellular enzymes to decompose
organic complexes. Those enzymes can persist in the environment and show activity
during hot periods. As a consequence of this organic matter mineralization, inorganic
nutrients (ammonium, sulfate and phosphate) will be made available to soil organisms,
including plants.

Nevertheless, poorly covered soils can be exposed to increased radiation. Increased
soil temperature and droughts as a result of climate change will lead to increased activity of
soil thermophiles, which might induce undesirable effects such as nutrient impoverishment
(as a result of a decreased reduction in soil organic matter and potential runoff of soluble
inorganics) and an increased risk of soil aridity.

At present, current previsions on climate warming barely incorporate direct effects
of microbial activity on a global scale. Herein, we provide evidence and information
suggesting that potentially significant effects of microorganisms can occur. Additional
investigation is required to confirm the likelihood of those services and risks within future
climate scenarios. A minority group in the microbial communities, the soil thermophiles,
could potentially switch from positive (current/past scenario) to negative (potential future
scenario) effects as a result of predicted climate changes. Climate change predictions foresee
increased temperature and droughts, which could result in a spiral fostering negative effects
and risks, decreasing soil health and productivity.
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