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Abstract: Background: The respiratory microbiome is dynamic, varying between anatomical niches,
and it is affected by various host and environmental factors, one of which is lifestyle. Few studies
have characterized the upper respiratory tract microbiome profile according to lifestyle. We explored
the association between lifestyles and microbiota profiles in the upper respiratory tract of healthy
adults. Methods: We analyzed nasal samples from 110 healthy adults who were living in Santiago,
Chile, using 16S ribosomal RNA gene-sequencing methods. Volunteers completed a structured
questionnaire about lifestyle. Results: The composition and abundance of taxonomic groups varied
across lifestyle attributes. Additionally, multivariate models suggested that alpha diversity varied in
the function of physical activity, nutritional status, smoking, and the interaction between nutritional
status and smoking, although the significant impact of those variables varied between women
and men. Although physical activity and nutritional status were significantly associated with all
indexes of alpha diversity among women, the diversity of microbiota among men was associated
with smoking and the interaction between nutritional status and smoking. Conclusions: The alpha
diversity of nasal microbiota is associated with lifestyle attributes, but these associations depend on
sex and nutritional status. Our results suggest that future studies of the airway microbiome may
provide a better resolution if data are stratified for differences in sex and nutritional status.

Keywords: microbiota profile; upper respiratory tract; nose; healthy adults; sex; nutritional status

1. Introduction

The human microbiota is composed of thousands of different microorganism genes
and different bacterial communities that are known to be involved in a diverse array of
physiological functions, such as immune system development [1–3], nutrition [4,5], and
resistance to colonization by pathogens [6,7], among others.
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The microbiota can be determined by people’s lifestyles. Some factors studied are
diet and stress, physical activity, and smoking habits both in the gut and respiratory
microbiota [8,9]. In a recent study, the nasopharyngeal profile of young children with
overnutrition was characterized by an over-representation of pathogenic bacteria and
proinflammatory cytokines [10].

Although intestinal microbiota has been extensively investigated [11–15], fewer studies
have characterized the microbiome profile of the upper respiratory tract, particularly
the nostrils. Understanding the microbiota and how it may change is relevant due to
its role in physiological functions, especially in healthy people. Far from the historical
concept of a sterile environment of the lungs, the lung microbiota significantly contributes
to airway tolerance and immune responses to respiratory infection [16,17]. The upper
respiratory tract is now recognized as a reservoir of pathogens, and some studies have
suggested that it may play a role in the development of allergies and asthma by modifying
airway mucosal inflammation and stimulating the formation of the upper respiratory
tract immune regulation [1,18]. However, the microbiota could also prevent the entry
of pathogens [19], implying that different conditions could determine how the upper
respiratory tract microbiota interacts with its host. Specific sites in the respiratory tract
contain specialized bacterial communities that are thought to have a significant role in
human health, but also intervene in the anatomical development and maturation of the
human respiratory tract, both in prenatal and postnatal life. Similarly, upper respiratory
microbiota plays an important role in immune training, organogenesis, and the maintenance
of immune tolerance, suggesting that adequate microbiota sensing is essential for immune
maturation and consecutive respiratory health [20]. For example, the immunomodulatory
species of Prevotella promote lung homeostasis. The pro-inflammatory environment in the
lung enhances the growth of various Gram-negative bacteria, such as gammaproteobacteria,
through nutrient enrichment processes [21].

With the current SARS-CoV-2 pandemic, the respiratory tract microbiota has become
even more relevant. A review suggested associations between gut and respiratory tract
microbiota, host antiviral immunity, and influences of dietary, nutritional, and lifestyle
interventions in preventing the clinical course toward more severe SARS-CoV-2 disease [22].
Moreover, a sex gap exists in respiratory diseases such as cystic fibrosis and chronic obstruc-
tive pulmonary disease [23,24] where the pathophysiology of the sex difference has been
poorly characterized to date. In recent years, studies have revealed the presence of a resi-
dent microbiome in the respiratory tract and its central role in respiratory disease, achieving
a new way to explore and understand the observed sex gap in respiratory diseases.

Therefore, identifying the type of bacteria present and determining their relative
abundance will provide critical information on aspects of the microbiota that correlate
with human health and lifestyles. To achieve potentially effective treatments against
respiratory pathogens, it will be necessary to understand the dynamics of the upper
respiratory microbiota profile, its interaction with the host, and the environmental factors
that modify it.

In this study, our main goal was to analyze the microbiota profile of the upper respira-
tory tract and estimate its association with the lifestyle attributes of healthy adults. We also
compared the associations of microbiota profiles and lifestyle attributes between men and
women, as well as between different nutritional statuses. As a case study, we used samples
of healthy adults living in Santiago, Chile.

2. Materials and Methods
2.1. Study Design and Participants

A total of 110 urban volunteers who were living in Santiago, Chile, were recruited
by the citizen science project carried out at the Universidad Autónoma de Chile in 2017.
Participants were selected based on the following inclusion criteria: healthy adults (over
18 years of age) who did not have a respiratory infection at the time of sample collection and
who had not taken an antibiotic in the previous two weeks were included. No exclusion
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criteria were considered. Volunteers were asked to (i) complete a structured questionnaire,
and (ii) collect a nasal sample. The questionnaire gathered information on sociodemo-
graphic and lifestyle attributes, including physical activity (classified as sedentary, active,
and vigorous lifestyle, according to the World Health Organization (WHO) [25], size and
weight, smoking, medication use, alcohol consumption, sex, and age (Supplementary
Table S1)). Nutritional status was determined by BMI (body mass index) stratified by the
WHO, defined as: underweight (<18.5 kg/m2), normal weight (18.5–24.9 kg/m2), over-
weight (25.0–29.9 kg/m2), and obese (≥30.0 kg/m2) [26]. In total, 110 out of 120 samples
were selected based on DNA quality.

2.2. DNA Extraction and 16S rDNA Gene Sequencing

DNA extraction, sequencing, and taxonomic assignments were performed at the
uBiome facilities (San Francisco, CA, USA) in March 2018 according to previous instruc-
tions [27]. Amplicons analysis and taxonomical assignment were also performed as pre-
viously established [27,28]. After sequencing, forward and reversed 16S rRNA gene V4
sequence reads were demultiplexed, and reads were filtered using an average Q-score > 30
and merged after primer removal. The most abundant sequence per cluster was con-
sidered the real biological sequence and was assigned the count of all reads in the clus-
ter. Only samples with at least 10,000 high-quality reads were used in the analysis [28].
Chimeras were removed using VSEARCH [29] and clustered using Swarm [30]. The result-
ing clusters were then compared to a curated version of the SILVA database, release 132.0
(https://www.arb-silva.de/documentation/release-132, accessed on 15 June 2023) [31],
using 100% identity over 100% of the length. The relative abundance of each taxon was de-
termined by dividing the count linked to that taxa by the total number of filtered reads [27],
performed following the pipelines described by Almonacid et al. [27] and Bik et al. [28]. In
both cases, the experimental procedure followed the Standard Operating Procedures in a
Clinical Laboratory Improvement Amendments (CLIA) licensed and College of American
Pathologists (CAP)-accredited laboratory (as mentioned by Vera-Wolf et al. [32]). Since the
taxonomic assignment was made from comparisons “using 100% identity over 100% of
the length”, this method was very conservative for the assignments and served to discard
sequence contaminations.

2.3. Microbiota Data Analyses

The matrix comparing microbial taxonomic groups among samples (from superking-
dom to genus levels) was used for PCA analysis using the prcomp instruction in R. The
relationships between samples and variables were plotted using the factoextra package of
R. Hierarchical clustering (average linkage) and dendrograms were elaborated using the
hclust instruction and the ggdendro package (v. 0.1.23) from R v.4.2. Plots were elaborated
using the ggplot2 package in R v.4.2.

Taxonomic relative abundance matrices were utilized to search for taxonomic markers
via LefSe v.1.1.2 [33] using default options (involving a p-value > 0.05 and an LDA > 2 or
LDA <−2). The classes considered in different comparisons were: sex (female/male), smok-
ing (smoker/non-smoker), alcohol consumption (yes/no), or nutritional status (normal-low
weight/overweight–obese).

2.4. Microbial Diversity Analysis

Alpha diversity was calculated for all taxonomic groups, using Shannon entropy H, the
number equivalent of taxonomic groups (exp H), Simpson’s sum of squared probabilities
R, and the inverse of Simpson R. We used the “entropyetc” package [34] in Stata 14.1
(Statacorp, 2016, College Station, TX, USA). The indexes were calculated for all participants
in the study.

https://www.arb-silva.de/documentation/release-132
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2.5. Statistical Analyses

Ordinary least-squares multivariate models were adjusted to estimate the associations
between indexes of alpha diversity, as outcome variables, and participants’ attributes, as
explanatory variables, such as physical activity, nutritional status, smoking, medication,
consumption of alcohol, age, and sex. Different interactions between the explanatory vari-
ables were tested in the multivariate regressions. Since the interaction between nutritional
status and smoking was significantly associated with the alpha diversity indexes, it was the
only interaction included in the informed model. Hube and White’s estimator of variance
was used to obtain robust standard errors. The models were adjusted for all 110 samples,
differently for sex (63 women and 44 men) and for nutritional status (66 underweight–
normal weight and 44 overweight–obese). The level of significance was set at 5% with a
confidence interval of 95%. The analysis was performed in Stata 14.1 (StataCorp, 2016).

2.6. Ethical Regulations

This study was approved by the ethics committees of the Universidad Autónoma de
Chile (CEC 52-22). An exception of informed consent was solicited and approved. The
use of lifestyle and microbiological databases included in this study did not violate the
dignity of the subjects that could have been involved, ensured the right to privacy and
anonymity, and guaranteed the protection of the confidentiality of the data and the custody
of the information and the use that was given to it.

3. Results
3.1. Participant’s Sociodemographic and Lifestyle Attributes

In total, 63 (or 57%) out of the 110 participants who joined the study were female,
and the average age of the participants was 33.7 (std. dev. = 10.9, range 18–71) years
old (Supplementary Table S1, Participant’s information). On average, the BMI of the
participants was 24.4 (std. dev. = 3.5) kg/m2. According to nutritional status, 65 participants
out of 110 were classified as normal weight (60%), whereas 36 (33%) and 8 (7%) participants
were classified as overweight and obese, respectively. Only one person had a BMI (18.3)
slightly lower than 18.5, and he was included in the group of normal weight for the
statistical analyses. Regarding physical activity, 70 (64%) out of the 110 participants reported
engaging in sedentary activity and 19 participants declared engaging in active activity.
Twenty-one persons reported vigorous physical activity. Seventy-six (69%) participants
reported consuming alcoholic drinks, whereas eighteen (16%) participants were smokers.

3.2. Microbiota Characteristics of the Nose with Overall Properties

The first approach to studying the deep amplicon sequencing-derived samples was
the taxonomic assignment analysis, using the uBiome pipeline (see Section 2, Materials and
Methods). The different phyla and families represented in the 110 samples are represented
in Figure 1. The taxonomic assignment results revealed that most samples were dominated
by members of the Proteobacteria, Firmicutes, and Actinobacteria phyla (Figure 1A). Other
phyla represented in some samples included Fusobacteria, Bacteroides, and Acidobacteria.
Thaumarcheota was the archaeal phylum primarily found among samples. Despite that
general trend, some samples showed strong dominance of one particular group: some
samples were mainly composed of one of Firmicutes, Actinobacteria, or Proteobacteria.
According to the same analysis, the most important families detected among samples
(Figure 1B) were Corynebacteriaceae, Staphylococcaceae, Moraxellaceae, and Carnobacteri-
aceae, and to a lesser extent, Leuconostocaceae, Comamonadaceae, Propionibacteriaceae,
and Brucellaceae. In the case of taxonomic genera, only 17 of them were found in more
than 10% of the samples (Table 1). Six of them (Staphylococcus and Anaerobacillus from
Firmicutes, Corynebacterium and Propionibacterium from Actinobacteria, and Delftia and
Ochrobactrum from Proteobacteria) were found in more than half of the samples. It was
noticeable that some of the 17 genera had high standard deviations in comparison to their
medians, suggesting a very high heterogeneity in their abundance.
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Figure 1. Barplots taxonomic groups representing the most abundant phyla (A) and the most
abundant families (B) among the samples analyzed from the healthy adults in Santiago, Chile. Most
abundant phyla were considered from a minimum of 1% in at least one sample, whereas most
abundant families were considered those groups with a minimum abundance of 5% in at least
one sample.
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Table 1. Most prevalent genera among nose samples. Prevalence was estimated as the percentage of
samples in which each taxonomic group was detected.

Genus Phylum Median Standard Deviation Prevalence (%)

Staphylococcus Firmicutes 17.23 20.95 89.09
Corynebacterium Actinobacteria 18.11 23.33 82.73
Propionibacterium Actinobacteria 6.38 6.77 79.09

Delftia Proteobacteria 17.67 15.43 64.55
Ochrobactrum Proteobacteria 9.05 7.90 56.36
Anaerobacillus Firmicutes 8.49 6.28 54.55
Anaerococcus Firmicutes 3.30 3.48 49.09
Peptoniphilus Firmicutes 2.72 2.69 36.36

Dolosigranulum Firmicutes 14.96 16.38 34.55
Streptococcus Firmicutes 2.11 2.93 25.45

Bacillus Firmicutes 2.04 1.38 25.45
Moraxella Proteobacteria 8.64 26.60 20.91
Finegoldia Firmicutes 2.70 1.89 19.09

Mesorhizobium Proteobacteria 1.69 0.84 13.64
Citrobacter Proteobacteria 1.51 0.50 12.73

Sphingomonas Proteobacteria 1.40 1.15 12.73
Rhizobium Proteobacteria 1.40 0.88 11.82

3.3. Differences PCA between Lifestyle Attributes at Cluster Level

The information from all taxonomic predictions among the samples (except those at
the species level) was used for principal component analysis (PCA) in order to reduce
the dimensionality of the data and to visualize differences between the samples. This
analysis revealed a “triangular”-like distribution of the samples based on their taxonomic
composition; the first two principal components could explain 44.04% and 29.48% of the
total variation, respectively (Supplementary Figure S1A). When k-means (k = 6) clustering
was applied according to the results of a sample cladogram, the clustering patterns in
the plot did not have an obvious pattern (Supplementary Figure S1A,B). In agreement
with this clustering pattern, if samples distributed in the PCA profile were colored by
different aspects of their metadata, such as sex (Supplementary Figure S1C), nutritional
status (Supplementary Figure S1D), alcohol use (Supplementary Figure S1E), or physical
activity (Supplementary Figure S1F), they did not reveal any evident clustering pattern
either. This could also be a signal of the high heterogeneity of microbial composition among
the samples.

In order to explore which variables were the most relevant in how samples are sepa-
rated, the variables were interrogated using the “fviz_pca_biplot” instruction of the R fac-
toextra package (Supplementary Figure S2). These results suggest that there are three main
directions influencing the shifting of the samples through the plane, influencing the previ-
ously mentioned “triangular”-like distribution: the first shifting effect, produced towards
the negative side of PC2 and the negative side of PC1, was driven by Proteobacteria and
several derived groups (mainly Betaproteobacteria, Burkholderiales, Comamonadaceae,
Delftia, Alphaproteobacteria, and Rhizobiales) as well as Anaerobacillus and Bacillaceae
from Firmicutes. The second one, produced towards the negative side of the PC2, was
driven by Firmicutes and other related groups, such as Bacillales, Bacilli, Dolosigranulum,
Carnobacteriaceae, Lactobacillales, Staphylococcus, and Staphylococcaceae. Finally, the
third shift (towards the positive coordinates of PC1) was driven by Corynebacteriaceae
and Actinobacteridae. This may reflect that the microbial composition of some taxonomic
groups is more relevant for sample differentiation rather than the properties of the human
subjects. This may reflect how internal properties in the study group could lead to the
predominance of different characteristic groups.
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3.4. LDA: Linear Discrimination Analysis and Principal Components Analysis at Multilevel

Previous results have suggested the presence of different taxonomic groups as “shifters”
in the dimensional reduction in sample composition. These results also suggested that
there are no clear clusters from the results of PCA. In order to establish specific taxonomic
markers comparing different groups, compositional data were analyzed by the use of LefSe
(Linear discriminant analysis effect Size). LefSe is a commonly used method for identifying
differentially abundant features between two or more groups in microbiome datasets using
linear discrimination analysis (LDA) tool LefSe [33]. Each analysis was conducted with
default parameters since these values (alpha < 0.05 and LDA < 2) have already been eval-
uated as strong parameters to ensure very low false positive rates [33]. Additionally, no
sub-classes were defined in each analysis to ensure that inter-class comparison considered
each sample without the need to search for internal differences among sub-classes.

In this study, several dichotomic comparisons were performed from compositional
data among different metadata criteria. The first comparison was performed between sam-
ples from both women and men (Supplementary Figure S3). Interestingly, LDA showed
taxonomic markers differentiating male and female samples: Lachnospiraceae and Blautia
were found as markers in female samples, whereas a set of 20 taxonomic groups (including
the Prevotella, Actinobacillus, Gemella, Finegoldia, Streptococcus, Anaerococcus, Peptoniphilus,
and Corynebacterium genera) were found as sex-specific markers from male samples. Com-
paring samples with different nutritional states and grouping normal and low-weight
subjects with all subjects with a higher BMI (overweight or obese), we could observe
that the taxonomic groups Haemophilus, Bacteroidia, Bacteroidales, Leuconostoc, and Leu-
conostocaceae were markers associated with normal weight; conversely, Negativicutes,
Selenomonadales, Veillonellaceae, Rothia, Lachnospiraceae, Pasteurellaceae, Pasteurellales,
Streptococcus, Streptococcaceae, and Moraxella were found as markers for obese–overweight
samples. Other comparisons were also made in the general population set (Supplementary
Figure S3): comparing samples from people with low-sedentary activity and people with
active-vigorous activity identified that several groups associated with the Proteobacteria
phylum (the gamma- and alpha-proteobacteria classes, and the Ralstonia and Sphingomonas
genera, among other groups) were found as markers for sedentary activity, but no marker
was found for active-vigorous activity. When comparing smokers and non-smokers, Aci-
dobacteria and related groups (at different taxonomic levels) were found as markers for
the smoking lifestyle. Citrobacter was found as the only marker group when we compared
microbiota samples from alcohol consumers with samples from non-alcohol consumers.

The presence of several different markers by sex suggests that the possibility of the
differential behavior of other metadata aspects (e.g., normal-low weight vs. overweight–
obese) is influenced by the host’s sex. In order to evaluate this possibility, we separately
performed LDA in men-only and women-only samples against other behavior statuses
(Supplementary Figures S4 and S5, respectively). Interestingly, we noticed that several
markers observed in women-only and men-only samples were present in the overall
comparison, as mentioned in the paragraph above. For example, when nutritional status
(low-normal vs. overweight-obese) was compared, in male-only samples, five taxonomic
groups (Rothia, Micrococcineae, Moraxella, Moraxellaceae, Pseudomonadales) were found
as markers associated with the obese–overweight group, whereas in female-only samples,
ten markers were found to be associated with the obese–overweight status (Haemophilus,
Selenomonadales, Negativicutes, Veillonellaceae, Pasteurellales, Pasteurellaceae, Blautia,
Rothia, Lachnospiraceae, and Corynebacterineae). Interestingly, Rothia (separately found in
female and male samples) was also found in the general comparison. Moreover, Haemophilus
(found as a marker of normal weight in the general comparison) was found as an obese–
overweight marker in female samples.

Other comparisons were performed for male- and female-only samples (Supplemen-
tary Figures S4 and S5). When comparing smoking status, in male samples, only one
taxonomic group (Lachnospiraceae) was found as a marker for non-smokers and Acidobac-
teriaceae was found for men who smoked; on the other hand, in women, six groups—four
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of them found as makers in the general population—were found in non-smokers (Pseudoal-
teromonas, Pseudoalteromonadaceae, Acidobacteria, Acidobacteriia, Acidobacteriales, and
Fibrobacterales–Acidobacteria group) and two markers (Microbacteriaceae, Microbacterium)
were found in smokers. In terms of physical activity level, men and women also showed
different markers: samples from men showed six taxonomic groups derived from Firmi-
cutes as markers of active/vigorous activity, whereas women showed a set of eight markers
associated with Proteobacteria and related (with the exception of Bacillus) as markers of
sedentary activity. Finally, in the case of alcohol consumption status, the same observation
was noticed in men samples; one group was found as a marker for alcohol consumption
(Sphingomonales), and in women, three groups (Citrobacter, Enterobacteriaceae, and En-
terobacteriales) were found as markers for alcohol consumption. This case is particularly
interesting since, when no sex differentiation was considered, only Citrobacter was found
(see above).

All of these results suggest that LefSe analysis could show differentiative features even
if those groups have no well-established clustering patterns. These results also suggest that
in some cases, groups separated by sex can contain distinctive markers that cannot be seen
in the general population.

3.5. Different Prevalent Taxa across Different Comparisons

Previous comparisons suggest the presence of marker taxonomic groups among differ-
ent lifestyles in the cohort dataset. The presence of different taxons primarily detected in
most samples may also be useful to distinguish different conditions. In order to evaluate
which taxonomic groups could distinguish those lifestyles, we present Venn diagrams rep-
resenting common and distinctive groups among lifestyles (Supplementary Figures S6–S8),
only considering “top prevalent groups” (i.e., all taxonomic groups that are present in at
least 75% of the samples of each category or lifestyle).

The main highlights of the comparison within the general population (men and
women) showed that, in some cases, few groups were distinct between two different
conditions (Supplementary Figure S6). For example, one and seventeen groups were
distinct in women and men, respectively. In the case of smoking status, this was more
evident, with 62 distinctive groups present in smokers but none in non-smokers, and
65 groups could differentiate between people with sedentary physical activity but none in
active-vigorous physical activity. A set of 23 groups were distinctively present in people
who reported not drinking alcohol but none in alcohol drinkers. Finally, seventeen groups
were found in normal-low weight subjects in comparison with only one in the overweight-
obese group.

This approach also found differences when men-only or women-only groups were
used (Supplementary Figures S7 and S8). The main highlights of the comparison within
the general population (men and women) showed that, in some cases, few groups were
distinct between two different conditions. In the case of smoking status, the comparison
showed 17 and 29 distinct groups for non-smokers in men and women, respectively. In
men and women, 26 and 27 groups, respectively, could differentiate between people with
no alcohol consumption from those who consumed alcohol. In the case of physical activity,
the comparison showed 37 and 47 distinct groups for active-vigorous activity in men and
women, respectively. Finally, in men and women, nine and forty-two groups, respectively,
could differentiate overweight-obese people from those who were not. In the case of
women, nine groups were also distinctive for normal weight status (and zero groups in
men). The existence of different groups between men and women across different lifestyle
comparisons also suggests the potential presence of markers associating nostril microbiota
composition with different lifestyles, in a sex-dependent manner.

3.6. Associations of Alpha Diversity with Lifestyle Attributes at the Individual Level

Multivariate models suggested that alpha diversity varied in the function of physical
activity, nutritional status, smoking, and the interaction between nutritional status and
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smoking, although the significant impact of those variables varied between women and
men. While physical activity and nutritional status were significantly associated with all
indexes of alpha diversity among women, the diversity of microbiota among men was asso-
ciated with smoking and the interaction between nutritional status and smoking (Table 2).
For instance, women who reported sedentary and vigorous levels of physical activity had
0.25 (p = 0.006; 95% CI = [−0.43, −0.08]) and 0.34 (p = 0.01; 95% CI = [−0.60, 0.09]) units
decreased on the predicted Shannon index, respectively, compared with women with active
physical activity (Table 2). Similarly, a decrease of 4.77 (p = 0.004; 95% CI = [−7.94, −1.60])
and 6.03 (p = 0.008; 95% CI = [−10.43, −1.64]) of the predicted equivalent number of
taxonomic groups was observed among women who reported sedentary and vigorous
physical activity, respectively, compared to women who reported active physical activity
(Table 2). The Simpson’s index and the inverse of the Simpson’s index showed similar
results for physical activity among women. Nutritional status was also only significantly
associated with alpha diversity among women, where women with obesity, compared
with those of normal weight, showed a 0.18 unit increase in the predicted Shannon’s in-
dex (p = 0.01, 95% CI = [0.03, 0.32]), 3.0 higher equivalent numbers of taxonomic groups
(p = 0.01, 95% CI = [0.65, 5.36]), a 0.01 unit decrease in Simpson’s index (p = 0.04, 95%
CI = [−0.02, <0.00]), and a 1.31 unit increase in the inverse Simpson’s index (p = 0.05, 95%
CI = [>0.00, 2.6]) (Table 2).

Table 2. Association between alpha diversity indexes of microbiota and lifestyle attributes of women
(n = 63) and men (n = 47).

Variables Shannon’s Equivalent Number Simpson Inverse of Simpson

Lifestyle Attributes Women Men Women Men Women Men Women Men

Physical activity
Sedentary vs. active −0.25 ** −0.01 −4.77 ** −0.39 0.02 ** −0.00 −3.09 ** 0.25

(−0.43,
−0.08)

(−0.35,
0.33)

(−7.94,
−1.60)

(−5.92,
5.13)

(0.01,
0.03)

(−0.03,
0.02)

(−4.77,
−1.41)

(−3.18,
3.68)

Vigorous vs. active −0.34 ** 0.07 −6.03 ** 0.94 0.02 * −0.01 −3.68 ** 1.07
(−0.60,
−0.09)

(−0.26,
0.39)

(−10.43,
−1.64)

(−4.42,
6.30)

(0.01,
0.04)

(−0.03,
0.02)

(−6.10,
−1.26)

(−2.31,
4.46)

Nutritional status
Overweight vs. normal

weight −0.03 −0.10 −0.56 −1.80 0.00 0.01 −0.39 −1.03

(−0.20,
0.15)

(−0.32,
0.12)

(−3.42,
2.31)

(−5.57,
1.97)

(−0.01,
0.01)

(−0.01,
0.02)

(−1.99,
1.22)

(−3.25,
1.19)

Obese vs. normal weight 0.18 * 0.06 3.00 * 1.00 −0.01 * −0.00 1.31 * 0.31
(0.03,
0.32)

(−0.22,
−0.35)

(0.65,
5.36)

(−3.94,
5.94)

(−0.02,
<0.00)

(−0.02,
0.01)

(>0.00,
2.62)

(−2.48,
3.10)

Smoking −0.11 −0.38 ** −2.10 −6.36 ** 0.00 0.02 * −0.80 −3.46 *
(−0.31,
0.10)

(−0.64,
−0.11)

(−5.57,
1.36)

(−10.42,
−2.30)

(−0.01,
0.02)

(0.00,
0.04)

(−2.86,
1.25)

(−6.08,
−0.83)

Interaction between
nutritional status and

smoking
Overweight and smoking 0.01 0.57 * −0.65 10.04 * −0.00 −0.03 * −0.58 5.35 *

(−0.33,
0.34)

(0.12,
1.02)

(−6.69,
5.40)

(1.40,
18.68)

(−0.02,
0.02)

(−0.06,
−0.01)

(−3.98,
2.82)

(1.14,
9.56)

Obese and smoking ˆ 0.23 ˆ 4.10 ˆ −0.01 ˆ 1.44
(−0.31,
0.77)

(−5.27,
13.47)

(−0.05,
0.03)

(−3.57,
6.44)

R-squared 0.15 0.20 0.19 0.21 0.13 0.15 0.21 0.18

Note: Cells show ordinary least-square coefficients and, in parenthesis, the confidence interval at 95%. Coefficients
report the change in the index of alpha diversity for a unit change in the lifestyle attribute. Statistically insignificant
variables were omitted from the table, such as the consumption of alcohol, medication use, age, and square of age.
ˆ refers to variables omitted in the analysis. ** and * refer to p < 0.01 and p < 0.05, respectively.

Smoker men were associated with a lower Shannon’s index (OLS coefficient = −0.38,
p = 0.007, 95% CI = [−0.64, −0.11]), lower numbers of equivalent taxonomic groups (OLS
coefficient = −6.36, p = 0.003, 95% CI = [−10.42, −2.30]), a higher Simpson’s index (OLS
coefficient = 0.02, p = 0.04, 95% CI = [>0.00, 0.04]), and a lower inverse Simpson’s index
(OLS coefficient = −3.46, p = 0.01, 95% CI = [−6.08, −0.83]) compared with non-smoker
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men (Table 2). The models also suggested that the associations between alpha diversity
and lifestyle attributes depend on nutritional status. The diversity of the microbiota of
people with normal weight is affected by physical activity, smoking, and the consumption
of alcohol, while the increase in the diversity of microbiota is only associated with the
consumption of alcohol among overweight and obese people (Supplementary Table S2).
The results suggest that sedentary and vigorous physical activity decreased the diversity
compared with active physical activity among people of normal weight (Supplementary
Table S2). Smokers with normal weight had lower diversity of microbiota than non-smokers
with the same nutritional status (Supplementary Table S2). A similar association was found
with the consumption of alcohol (Supplementary Table S2). Other interactions between
lifestyle attributes were also tested, but they were not statistically significant. The results of
the multivariate regressions for all samples are offered in Supplementary Table S3.

4. Discussion

The microbiota in the human body has unique characteristics; their influence on our
health has been gradually revealed. Despite the upper respiratory tract microbiota being
the primary source of the lung microbiome, studies of the microbiota present in the airways
have been dominated by works focused on the lower airways. On the contrary, the nasal
microbiota has been scarcely explored [17,35].

This study revealed that the alpha diversity of nasal microbiota is associated with
lifestyle attributes, but these associations depend on sex and nutritional status. Thus,
by separating our initial data into groups of males and females, we observed that the
nutritional status and the amount of physical activity in females changed the alpha diversity
of the nasal microbiota. In contrast with males, we observed that only smokers or males
who were overweight with or without smoking had a change in the diversity of the nasal
microbiota, not according to other lifestyle factors such as physical activity, nutritional
status, or alcohol consumption.

As a very external part of the upper respiratory tract, with extensive contact with the
skin, the nares contain a microbiome mainly composed of members of Firmicutes (cur-
rently Bacillota), Actinobacteria, and Proteobacteria (currently Pseudomonadota) [36,37].
The main genera found in the nares communities have been previously described [36,37]
and include Staphylococcus, Corynebacterium, Propionibacterium, and Streptococcus, as well
as Cutibacterium, Lawsonella, Anaerococcus, Moraxella, and Dolosigranulum [38]. Our data
showed similar general behavior, despite these samples also showing the presence of Anaer-
obacillus, Ochrobactrum, and Delftia. The taxonomic genera found in half of the samples
analyzed in this study were Staphylococcus, Anaerobacillus, Corynebacterium, Propionibac-
terium, Delftia, and Ochrobactrum. Staphylococcus, Corynebacterium, and Propionibacterium
are commonly found in the human nasal microbiota, and they are all part of the phylum
Actinobacteria or Firmicutes [39,40]. Anaerobacillus, on the other hand, is a genus of anaero-
bic bacteria, which seems to be depleted, like other anaerobic bacteria, in patients infected
by SARS-CoV-2, suggesting that the nasopharyngeal microbiota, as in any respiratory
infection, plays a role in the clinical course of the disease [41]. On the other hand, a re-
duced relative abundance of Anaerobacillus has been described in bronchoalveolar lavages
of patients with lung tumors; however, its role in the microbiota and its possible impact
on health or disease is not clear [42]. Delftia and Ochrobactrum are both members of the
phylum Proteobacteria, and they have been identified in the human nasal microbiota, but
they are less abundant compared to Actinobacteria and Firmicutes [43,44]. On the other
hand, according to LDA analysis, the Acidobacteriales order was highly represented in
the smoking volunteers. However, to the best of our knowledge, this family has not been
reported in nasal samples. Acidobacteriales are associated with soil samples [45,46], and
only one case has been described in association with humans in a feces sample [47].

Within the results obtained when making comparisons only using the top prevalent
groups, we were struck by the presence of unique taxonomic groups in some of these
comparisons. When we compared the taxonomic groups between men and women, we
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could see that, in women, the Phyllobacteriaceae group was exclusive. Although there are
no previous reports indicating a role for Phyllobacterium in disease, Wen et al. observed
a higher abundance of Phyllobacterium spp. in nasopharyngeal samples from children
infected with influenza A virus [13], and similarly, an increase in the Phyllobacterium genus
was detected in the throat microbiota of children with cystic fibrosis, in whom a dysfunction
of their immune system in the airway has been reported [48].

Regarding the association of Phyllobacterium in women, very few studies have ad-
dressed its detection in women. For example, Li et al. described the vaginal microbiota
in healthy women during different gestation periods, observing that Lactobacillus is the
dominant bacterium, and the species composition is relatively constant during normal
pregnancy, being replaced after pregnancy by different bacteria, including Phyllobacterium,
possibly associated with fluctuations in estrogen levels, birth trauma, and vaginal surgery,
increasing the possibility of infection [49,50]. On the other hand, Onywera et al. described
the cervical microbiota of South African women of reproductive age with and without a
high risk of human papillomavirus (HPV) infection, where the Phyllobacterium genus was
significantly abundant in women without a high risk of HPV infection [51]; our study is the
first work that associates the presence of this atypical pathogen with the nasal microbiota
of women.

Another interesting result obtained in this type of comparison was when comparing
only women who did and did not participate in physical activity. Observing Burkholderi-
aceae as the only taxonomic group in the condition of sedentarism, the results were similar
to those observed in the LDA. The relationship between this family of bacteria and the
nasal microbiota is discussed below.

In our study, we found differences between males and females according to their
lifestyles. Sex effects have been described to exist in the association of airway microbial
markers and asthma [52]. Differences in the microbiota composition between males and
females have been widely described in the gut [53–58], mainly due to the differences ob-
served between the sexes in the human intestine [23]. Sex differences in the gut microbiome
are partially driven by sex hormones, contributing to sex differences in immunity and
susceptibility to infections and chronic diseases [57,59–63]. The interaction between mi-
crobiota, sex hormones, and the immune system is denominated as microgenderome, and
it involves bidirectional interactions between the microbiota, hormones, immunity, and
disease susceptibility [57,60,61].

A loss of microbiota diversity has been associated with several diseases [64,65], while
increased diversity is associated with a better state of health [66]. An increase in microbiota
diversity has been reported in professional sportspeople [67] and also in animal models
in which physical activity was vigorous [68,69]. Contrary to this, our findings indicate
that vigorous activity, as well as sedentary activity, produced a decrease in microbiota
diversity in females and an increase in microbiota diversity in those with vigorous levels of
activity. Our findings might be an example of the intermediate disturbance hypothesis [70]
in upper respiratory tract microbiota. The intermediate disturbance hypothesis predicts
that the diversity of taxonomic groups is expected to be highest at intermediate levels of
disturbances, explained by the active levels of physical activity influencing the competition–
colonization trade-off, wherein less competitive taxonomic groups are able to reproduce
and colonize the respiratory tract before being eliminated by more competitive taxonomic
groups, resulting in a coexistence of the two with the higher diversity of taxonomic groups.
Complementing this information when carrying out the LDA score, four taxonomic groups
as markers associated with sedentary activity groups were only found for females; these
groups were Bacillus, Sphingomonas, Burkholderiaceae, and Ralstonia. All of these genera of
bacteria have previously been found to be present in the human nasal microbiota, although
their prevalence and abundance may vary between individuals [71,72]. Some species of
Sphingomonas are considered possible causes of nosocomial infections [73]. Burkholderi-
aceae is a family that includes several genera, including Burkholderia, Paraburkholderia, and
Caballeronia. Burkholderia sp. is known for its ability to degrade a wide range of organic
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compounds [74], and it can play a role in the breakdown of mucins as a carbon source for
growth [75]. Some Burkholderia species are considered opportunistic pathogens, such as
the case of the Burkholderia cepacia complex (Bcc), which is a group of genetically distinct
but phenotypically similar bacteria divided into at least nine species, which, in patients
with cystic fibrosis, induce the local release of pro-inflammatory factors and immunopatho-
logical disorders [76]. Moreover, Ralstonia can be found in a wide range of environments,
including soil, water, and the human respiratory tract. Although some species of Ralstonia
can cause infections in humans or be associated with chronic diseases [77], the exact role of
these bacteria in the nasal microbiota and their impacts on human health is not yet fully
understood. In the case of the genera Ralstonia, Sphingomona, Burkholderia, and Rhizobium,
it cannot be ruled out that their detection stems from the possibility of contamination by
manipulation in the DNA extraction or by the use of contaminated DNA extraction kits, as
previously reported by Salter et al. [78] in samples of low-biomass microbiota. Unfortu-
nately, due to this type of analysis, no samples of individuals can be considered negative
controls. However, the possibility of contamination is reduced thanks to the random order
processing of the samples [78].

On the other hand, multivariate models have also suggested that the diversity of
microbiota in men is associated with smoking and the interaction between being overweight
and smoking. Our results support that the nose microbiota of adults has been proven to
be altered in those with obesity [79]. Obesity induces changes in the composition of
the microbiota, whereas an additive effect is observed in obese asthma patients. The
microbiome has become a fundamental topic to include in the assessment of nutritional
status and, therefore, in the study of human health. Therefore, the study of healthy
adults has been promoted as a reference population. In the LDA score, five taxonomic
groups (Rothia, Micrococcineae, Moraxella, Moraxellaceae, and Pseudomonadales) were only
found as markers associated with the obese-overweight nutritional status in males. These
taxonomic groups are all genera or orders of bacteria that are commonly found in the nasal
microbiota of both men and women [80]. There is little evidence of any specific effect of
these taxonomic groups on the male nasal microbiota. Most studies have considered groups
of people without segregating by sex. The Rothia genus, which belongs to the Microccineae
family, has been shown to produce antimicrobial compounds that can inhibit the growth
of pathogenic bacteria, such as M. catarrhalis, and it is therefore thought to contribute to
protection against respiratory infections [81,82]. Increasing evidence regarding the role of
Moraxella in the respiratory tract microbiota has accumulated in recent times. Moraxella
and Moraxellaceae have been associated with respiratory infections, including acute otitis
media in children [81,83], and even its detection in infants with wheezing has been strongly
associated with the development of persistent asthma in adulthood [81,84]. However,
Moraxella can also be associated with a protective role as part of the nasal microbiota. Yu
et al. observed that Moraxella occupied the largest proportion of healthy children, and the
authors suggested that Moraxella may be associated with better outcomes after COVID-19
infection by modulating inflammation through the regulation of amino acid metabolism
pathways [85]. Additionally, some species of Pseudomonas, such as Pseudomonas aeruginosa,
have been described as an opportunistic pathogen associated with respiratory infections,
particularly in immunocompromised individuals [86]; a high abundance of Pseudomonas
in the nasal microbiome may predispose the host to severe respiratory viral infection [87].
Recently, Rhoades et al. observed that, in nasal swabs from SARS-CoV-2 individuals, the
abundance of Pseudomonas aeruginosa and other pathobionts increases with SARS-CoV-2
viral RNA load, which could contribute to the increased incidence of secondary bacterial
infection [87].

In conclusion, the composition and diversity of the microbiota of the upper respiratory
tract are associated with lifestyles, but the associations depend on sex and nutritional
status. Future studies of the airway microbiome may provide a better resolution if data are
stratified for differences in sex and nutritional status.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11071635/s1, Figure S1: Clustering (PCA) profile
of the nose microbiome; Figure S2: Variant representation influencing PCA behavior of the samples;
Figure S3: Marker sets found for general comparisons among different dichotomies from metadata
categories from the adult samples; Figure S4: Marker sets are found for comparisons among different
dichotomies from metadata categories from the adult male samples.; Figure S5: Marker sets are
found for comparisons among different dichotomies from metadata categories from the adult female
samples. Figure S6: Venn Diagrams representing the differences across “top prevalent groups” be-
tween samples across different host properties and lifestyles; Figure S7: Venn Diagrams representing
the differences across “top prevalent groups” between samples across different host lifestyles in
men samples; Figure S8: Venn Diagrams representing the differences across “top prevalent groups”
between samples across different host lifestyles in women samples; Table S1: Descriptive statistics
of alpha diversity indexes of microbiota and lifestyle attributes of the participants (n = 110); Table
S2: Associations between alpha diversity of microbiota and lifestyle attributes of individuals with
normal weight (n = 66) and overweight-obese (n = 44); Table S3: Associations between alpha diversity
of microbiota and lifestyle attributes among healthy adults (n = 110).
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