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The pelagic environment is characterized by a great spatial and temporal heterogeneity.
For phytoplankton, this heterogeneity encompasses the availability and distribution of
resources, the direction and intensity of water movements, and grazer composition and
activity [1]. The considerable diversity in phytoplankton morphology represents a suc-
cessful adaptive strategy designed to cope with this pelagic environmental and biological
variability [2]. There is a robust connection between phytoplankton cell morphology and
physiological and metabolic processes [3–7]. In this regard, the morpho-functional traits
of phytoplankton have been recognized as powerful tools to explain the development of
specific phytoplankton groups in defined environmental conditions [8,9]. Despite this,
improving our knowledge of phytoplankton morpho-functional trait distribution along
natural environmental gradients is still challenging due to the overlap and interaction of
environmental and biological forces in aquatic environments. In addition, the extent of
phytoplankton intraspecific morphological variability and its role in community responses
to environmental changes remain almost unknown.

For this Special Issue titled “New Insights on Phytoplankton Morpho-Functional
Traits”, we collected both experimental laboratory and field studies from marine and fresh-
water ecosystems. Our aim is to provide novel information on phytoplankton responses
to interactions between multiple stressors, focusing on phytoplankton morpho-functional
trait diversity at both inter- and intraspecific levels.

Paul et al. [10] explored the combined effects of elevated temperatures and CO2 on
a natural phytoplankton community from the Baltic Sea, dividing phytoplankton into
edible and inedible cell size classes for mesozooplankton grazers. They showed how the
composition and dominance of specific phytoplankton size classes and groups can help
forecast how temperate summer plankton communities will respond to complex climate
changes. They also underlined the importance of size-trait-based analyses to distinguish
between indirect responses from the edible group via zooplankton grazing and direct
responses from the inedible group.

Charalampous et al. [11] designed a mesocosm experiment to study a natural phyto-
plankton community from the Baltic Sea. The plankton were first subjected to mesozoo-
plankton grazing to manipulate size structure, followed by nutrient addition and depletion.
Their findings highlighted that the mean cell size of a taxonomically complex phytoplank-
ton community can be used as an indicator trait to predict phytoplankton responses to
sequential environmental changes.

By examining long-term monitoring data collected by 80 stations located in the coastal
northern Baltic Sea, Lethinen et al. [12] explored potential connections between the morpho-
functional composition of phytoplankton and global climate change by analyzing physical
features of the environment, water quality features by analyzing catchment change, and
nutrient availability using nutrient loading. Their regionality analysis demonstrated that
traits should be calculated in both absolute terms (biomass) and proportions (share of
total biomass) to better understand phytoplankton community changes and to potentially
supplement environmental status assessments.
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In an in situ experiment, Le Noac’h et al. [13] manipulated water column stratification
in Croche Lake, Quebec, a temperate lake with multiple basins. The group investigated
how spatial overlap among major phytoplankton groups relates to overall taxonomic
and morpho-functional community diversity, accounting for time-varying changes in
environmental (thermal stratification) and biotic (zooplankton grazing) variables. They
demonstrated that spatial overlap among species was related to greater functional diversity
in resource acquisition and morphological traits, indicating that forced coexistence enabled
niche differentiation along trait axes to alleviate interspecific competition.

Titocci et al. [14] performed feeding trials in laboratory microcosms with size-fractionated
freshwater phytoplankton and two different consumer types: the cladoceran Daphnia
longispina, as a generalist unselective filter feeder, and the calanoid copepod Eudiaptomus
sp., as a selective feeder. The authors investigated alterations in phytoplankton morpho-
functional trait distribution caused by zooplankton grazing with contrasting food size
preferences and feeding behaviors. In doing so, they elucidated phytoplankton community
responses to herbivore grazing with respect to composition, size, and shape distribution.

Hamer et al. [15] experimentally modeled a community consisting of two morpho-
functionally different marine phytoplankton species, considering nine genotypes each of
Emiliania huxleyi and Chaetoceros affinis, cultivated separately and together under different
fluctuation and nutrient regimes. They detected significant intraspecific differences in C.
affinis cell size and in the E. huxleyi maximum nutrient uptake rate (Vmax) and demonstrated
that the intraspecific diversity of one species can be affected by the presence of another.
The authors concluded that the coexistence of species might play an important role in the
maintenance of intraspecific morpho-functional diversity.

The results derived from this Special Issue confirm the value of morpho-functional
trait-based approaches for evaluating phytoplankton responses to environmental change,
with a particular focus on grazing. Further studies are certainly needed, but this Special
Issue provides the knowledge needed to predict the effects of ongoing climatic change on
phytoplankton dynamics and its relative consequences for aquatic ecosystems.
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