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Abstract: Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas
including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental
remediation. The interest in them is primarily due to their unique structure and properties such as
biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant,
anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review
summarizes the current research progress on bacterial EPSs including their properties, biological
functions, and promising applications in the various fields of science, industry, medicine, and
technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains.
This review provides an overview of the latest advances in the study of such important industrial
exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and
future directions are discussed.

Keywords: bacterial exopolysaccharides; bacterial strains; xanthan; levan; bacterial cellulose;
environmental remediation

1. Introduction

Bacterial exopolysaccharides (EPSs) have recently received significant attention due
to their unique structure and properties and the prospects for use in various fields of
science, industry, medicine, and technology [1–6]. The term exopolysaccharide was first
introduced by Sutherland in 1972 [7] for high molecular weight carbohydrate biopolymers
produced by microorganisms. Bacterial EPSs have a diverse structure and are secreted
by a wide range of bacteria [8]. Depending on their localization, bacterial EPS are di-
vided into capsular polysaccharides that are closely associated with the cell surface, and
free slime polysaccharides loosely attached or even totally secreted into the extracellular
environment [3,9]. EPSs synthesized by bacteria have an advantage over those isolated
from plants (cellulose, starch, and pectin), animals (glycogen and chitin), and algae (agar,
fucoidan, carrageenans, and alginates). Bacterial EPSs can be obtained regardless of
the season and weather conditions on an industrial scale. They are extracellular slime
that is easily released from cells into the environment. Therefore, the methods for their
extraction from the cell-free supernatant are quite simple and cost-effective. Bacteria mul-
tiply rapidly and are characterized by metabolic flexibility and a variety of physiological
and biochemical properties. By means of the methods for optimizing cultivation condi-
tions, genetic and metabolic engineering, it is possible to modulate the yield as well as
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the structural and functional properties of bacterial EPSs [9–12]. Bacterial EPS are char-
acterized by the presence of a large number of functional groups (hydroxyl, carboxyl,
carbonyl, acetate, etc.), that enable them to modify their molecules in order to impart
new valuable properties to them [13]. Therefore, recent interesting reviews by Aditya
et al. and Aziz et al., have presented the modification of bacterial cellulose (BC) using
chemical and physical methods to obtain nanocomposites and fabricate materials with im-
proved functionality for biomedical applications [13,14]. Generally, EPS are classified into
two types: homopolysaccharides, which are either unbranched or branched and composed
of single-type monosaccharides such as glucose and fructose linked through glycosidic
bonds, and heteropolysaccharides, which contain two or more units of different monosac-
charides (glucose, fructose, galactose, mannose, rhamnose, fucose, N-acetylglucosamine,
and uronic acids) [4,8]. Homopolysaccharides are divided into α-D-glucans (dextran, al-
ternan, and reuteran), β-D-glucans (bacterial cellulose), fructans (levan and inulin), and
polygalactans. Heteropolysaccharides are polymers such as xanthan, alginate, hyaluronic
acid, kefiran, and gellan [4,15]. EPSs biosynthesis in bacteria occurs intra- and extracellu-
larly. There are four general mechanisms for EPS biosynthesis in bacterial cells; they are
the Wzx/Wzy-dependent pathway, the ABC transporter-dependent pathway, the synthase-
dependent pathway, and extracellular biosynthesis by sucrase protein [2,4]. Homopolysac-
charides are usually synthesized using the synthase and extracellular synthesis pathways,
while heteropolysaccharides are synthesized by the Wzx/Wzy-dependent pathway and
the ABC transporter-dependent pathway.

EPS-producing bacteria belong to different phylogenetic groups and include Gram-
negative bacteria of such classes as the Alphaproteobacteria class including Acetobacter,
Gluconobacter, Gluconacetobacter, Komagataeibacter, Kozakia, Neoasaia, Agrobacterium,
Rhizobium, and Zymomonas genera; the Betaproteobacteria class including Alcaligenes and
Achromobacter genera; and the Gammaproteobacteria class including Azotobacter, Pseudomonas,
Enterobacter, Alteromonas, Pseudoalteromonas, Xanthomonas, Halomonas, Erwinia, Vibrio, and
Klebsiella genera. They also include Gram-positive bacteria of such classes as Bacilli includ-
ing Bacillus, Paenibacillus, Lactobacillus, Leuconostoc, and Streptococcus genera; class Clostridia
including Sarcina sp.; and class Actinomycetia including Bifidobacterium, Rhodococcus genera,
and others [2,16,17]. Some of the most commonly used EPSs are xanthan from the genus
Xanthomonas, dextran from the Leuconostoc, Streptococcus, and Lactobacillus genera, alginate
from the Azotobacter and Pseudomonas genera, curdlan from Alcaligenes faecalis, Rhizobium
radiobacter, and Agrobacterium sp., gellan from the Sphingomonas and Pseudomonas genera,
hyaluronan from Streptococcus sp., levan from Bacillus sp., Paenibacillus sp., Halomonas sp.,
and Zymomonas sp., bacterial cellulose from Komagataeibacter sp., and others. There are also
known polysaccharides such as fucogel produced by Klebsiella pneumoniae, clavan produced
by Clavibacter michiganensis, fucoPol produced by Enterobacter sp., and kefiran produced
by Lactobacillus kefiranofaciens [6]. The importance attached to the commercial applications
of EPSs contributes to the rapid search for new producers’ isolation, characteristics, and
the production of new EPSs in order to obtain novel functional materials with a wide
range of applications. Therefore, novel EPSs from extremophilic and marine bacteria have
attracted researchers’ attention for their potential to be used in various fields including
medicine, food, environmental protection, etc. [18,19]. In addition, recently, researchers
have paid significant attention to EPSs produced by probiotic bacteria (Lactobacillus, Lacto-
coccus, Bifidobacterium, Streptococcus, and Enterococcus) for various applications, particularly
in medicine [15,20–24].

The biological role of bacterial EPSs is diverse. They protect cells against extreme
temperature [25,26], salinity [27], aridity [28], UV-rays, unfavorable pH values, osmotic
stress, phagocytosis, and chemical agents (antibiotics, heavy metals, and oxidants) [2].
Most marine bacteria secrete polysaccharides, which are important for their survival in
the marine environment [25]. EPSs have a cryoprotective effect, in particular, for arctic
bacteria [26]. The bioethanol producer Zymomonas mobilis is able to grow in media with
an alcohol concentration of up to 16% that can be explained by the protective effect of
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the EPSs formed by it; the first of them consists of mannose, and the second contains
galactose [29]. EPSs play an important role in bacterial adhesion, aggregation, and biofilm
formation and are the main fraction of the biofilm matrix both in Gram-positive and Gram-
negative bacteria [30–32]. EPSs of the biofilm matrix promote horizontal gene transfer,
and intercellular interactions prevent the dehydration of bacteria and provide protection
against external agents including antibiotics. Therefore, biofilm formation is associated
with higher antibiotic resistance and is an important surgical problem. Understanding
the composition of biofilms and each component function is crucial to the development of
new therapeutics against infections caused by pathogens (Staphylococcus aureus, Klebsiella
pneumoniae, Pseudomonas aeruginosa, Enterococcus faecium, and Enterobacter sp.). Therefore,
the review by Balducci et al. (2023) described the structure and the role of different
EPSs in bacterial biofilms of pathogens and provided an overview of potentially novel
antimicrobial therapies capable of inhibiting biofilm formation by targeting EPS [32]. EPS
plays an important role in controling virulence not only of human pathogens but also those
of plants. Xanthan produced by the phytopathogenic bacteria Xanthomonas spp. is one of
the virulence factors involved in the specific interaction of bacteria with the plant [33,34].
EPSs of pathogenic Agrobacterium species are also involved in the adhesion of bacterial cells
during infection [35,36].

The growing number of publications devoted to bacterial EPSs in the last decade
is primarily related to the prospects for their practical application (Figure 1). Bacterial
EPSs have many unique beneficial properties such as biocompatibility, biodegradability,
non-toxicity, the ability for gelation, high adhesive ability, viscoelasticity, pseudo-plasticity,
and thixotropic nature. EPS also showed the potential to withstand various environmental
stresses such as elevated temperature, extreme pH, freeze-thaw, and high salt concentra-
tions. Therefore, they have extensive commercial applications in food, pharmaceutical,
cosmetic, chemical, textile, oil, and gas industries as thickeners, emulsifiers and suspension
stabilizers, flocculants, and additives improving the quality of various products [37]. In
addition, some bacterial EPSs also possess antitumor [38–41], antioxidant [41,42], anti-
inflammatory, antibacterial, antiviral, cholesterol-lowering, prebiotic [43], wound healing,
and immunomodulatory activities [44]. The biocompatibility and functional properties of
EPSs are important factors that promote their use in various biomedical applications [45],
such as tissue engineering [46,47], wound dressing [48,49], and drug delivery systems [50,51].
EPSs have shown good biocompatibility, biodegradability, and mechanical strength, which
are beneficial to form biological scaffolds [43]. EPSs are potential carriers for valuable
medicine, including growth factors and antitumor drugs [52–54]. Antibiotics are widely
used as a model for drug delivery release with bacterial EPSs [55]. New bacterial polysac-
charides have been obtained for the treatment of Alzheimer’s disease [56] and diabetes [51].
EPSs can also be used for wastewater treatment from heavy metals and organic pollutants
including dyes, pharmaceutical compounds, and petroleum products [57–62]. EPSs are
attracting special attention as biopolymers to produce new biocomposite materials for a
wide range of applications. The composites based on EPSs can be given antibacterial, wound
healing, conductive, magnetic, optical, and other properties [14,63–65].

Despite the unique properties of bacterial EPS, and great prospects for their practical
application, the number of them that are industrially produced is extremely limited. This is
primarily due to the low productivity of bacterial strains, which have not yet reached the
industrial application level, and, consequently, the high cost of the resulting products. In
general, bacterial EPSs are formed in an amount from 0.29 to 65.27–100 g/L depending on
their type, the type of microorganism, and the cultivation conditions. The maximum EPSs
yield is observed in the producer of levan (up to 100 g/L) [66], dextran (up to 66 g/L) [67],
kurdlan (up to 48 g/L) [67], and xanthan (up to 40 g/L) [67]. The bacteria forming bacterial
cellulose and hyaluronic acid have low productivity (usually not more than 10 g/L) [68].
Therefore, further research is needed to set up a highly efficient production of EPSs. The
main ways to reduce costs include cheap culture media usage, the isolation of novel highly
productive strains, and the creation of more productive strains using genetic engineering.
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Genetic and metabolic engineering strategies are currently employed to increase EPSs
production. In addition, EPSs production can be increased through the development
and improvement of technological processes. The yield, structure, and physical-chemical
properties of EPSs depend on many factors such as the cultivation condition, source of
carbon, C/N ratio, pH of media, and cultivation time. The cultivation conditions of the
producer (temperature, pH, amount of oxygen, and bioreactor type) have a significant
effect on EPS biosynthesis. It is generally accepted that the production of most bacterial EPS
requires a high content of a carbon source in the medium and limited nitrogen nutrition.
To obtain bacterial EPS, the main carbon sources that are used are glucose and sucrose.
Since the cost of culture media is about 30% of the cost of the entire fermentation process, a
large number of media are currently offered based on industrial and agricultural waste [68].
Biocatalytic technologies are also a promising direction for obtaining bacterial EPS. An
interesting review by Efremenko et al. (2022) presents recent results and achievements
in biocatalysis [67]. The authors note that a common feature of all these catalysts in such
processes is an increased concentration of cells and their transition to a quorum sensing
(QS) state. QS provides the activation of EPSs synthesis [69,70] as protective, stabilizing,
and reserve substances for highly concentrated microbial populations, which is a natural
mechanism to increase the amount of these biopolymers and can be used as a nature-
like technology in their industrial production. Therefore, the aim of this review was to
summarize the current research progress on bacterial EPSs with special attention paid to
the bacterial cellulose-, xanthan-, and levan-producing bacteria.
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2. Bacterial Cellulose-Producing Bacteria

Cellulose is the most abundant polymer on earth and is primarily produced by plants;
however, some microorganisms are also the producers of this polysaccharide. Bacterial
cellulose (BC) has attracted much attention over the last years as a unique biomaterial with
ultrafine fibrous network architecture and exceptional physicochemical and mechanical
properties including high purity, high surface area, high polymerization degree (up to
8000), and high crystallinity (up to 90%) as well as superior mechanical properties (Young’s
modulus about 15–35 GPa and tensile strength of 200–300 MPa), high water-holding
capacity, lightweight, transparency, flexibility, good biocompatibility, good biodegradability,
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renewability, and non-toxic, non-immunogenic features [12,71–75]. Furthermore, most
properties of BC are superior to plant-derived cellulose. Among others, BC fibers are about
100 times thinner than plant-derived cellulose (20–100 nm) and can hold water that exceeds
a hundredfold their dry weight [12]. Bacterial celluloses’ unique properties are highly
dependent on bacterial species.

BC is produced by Gram-negative bacteria of the genera Komagataeibacter (Gluconace-
tobacter) [76,77], Acetobacter [78], Gluconobacter [79], Agrobacterium [80], Achromobacter [81],
Enterobacter [82,83], Rhizobium [84], Pseudomonas [85], Salmonella [86], and others, as well
as Gram-positive bacteria of the genera Bacillus [87], Sarcina, and Rhodococcus [88]. The
most common and highly productive BC producers are acetic bacteria species of the Koma-
gataeibacter genus such as K. xylinus and K. hansenii. The Komagataeibacter genus belongs to
the Acetobacteraceae family, class Alphaproteobacteria, phylum Proteobacteria. It was named
after the famous Japanese microbiologist Dr. Kazuo Komagata, a Professor at the University
of Tokyo, who made a great contribution to the taxonomy of bacteria, especially acetic
bacteria. Komagataeibacter genus was separated from the plant-associated Gluconacetobacter
on the basis of a 16S rRNA gene sequence and several morphological and physiological
properties such as the inability to produce 2,5-diketo-d-gluconate as well as water-soluble
brown pigment from glucose [89–91]. As of April 2023, the List of Prokaryotic names
with Standing in Nomenclature (LPSN) includes the Komagataeibacter genus containing
19 species: K. cocois, K. diospyri, K. europaeus, K.hansenii, K. intermedius, K. kakiaceti, K. kom-
buchae, K. maltaceti, K. medellinensis, K. melaceti, K. melomenusus, K. nataicola, K. oboediens,
K. pomaceti, K. rhaeticus, K. saccharivorans, K. sucrofermentans, K. swingsii, and K. xylinus.
Table 1 presents the type strains of the species of Komagataeibacter genus, the sources of their
isolation and general properties of the genome sequences [90–99]. In addition, complete
genome sequences were obtained of the following strains of the genus Komagataeibacter:
K. xylinus NBRC 3288 [100], K. nataicola RZS0111 [101], K. hansenii ATCC 53582 [102], K. xyli-
nus E25 [103], K. xylinus CGMCC 2955 [104], K. xylinus E26, and K. xylinus BCRC 12334 [105],
K. xylinus CGMCC 17276 [106], K. rhaeticus ENS9b [107], K. rhaeticus ENS 9a1a [108],
K. nataicola RZS01 [109], K. saccharivorans JH1 [109], K. europaeus GH1 [110], and K. in-
termedius ENS15 [111]. All Komagataeibacter genomes are characterized by a high % GC
content, which is the highest for K. rhaeticus LMG 22126T (63.5%) and the lowest for
K. hansenii JCM 7643T (59.3%) [112].

Table 1. General properties of the type strains of species of the genus Komagataeibacter.

No Species Sources of Isolation Number of Bases (bp) DNA G + C Content (mol%) Ref.

1 K. cocois WE7T (CGMCC 1.15338T;
JCM 31140T)

Contaminated coconut
milk, China 3,406,946 62.7 [92]

2
K. diospyri MSKU 9T

(NBRC 113802T;
TBRC 9844T)

Persimmon, Thailand 3,762,373 60.4 [93]

3
K. europaeus LMG 18890T

(ATCC 51845T; DES 11T;
DSM 6160T)

Submerged culture
vinegar generator,

Germany
4,227,398 61.3 [90]

4 K. hansenii JCM 7643T (DSM 5602T;
ATCC 35959T; BCC 6318 T)

Vinegar, Israel 3,710,965 59.3 [94]

5

K. intermedius TF2T (DSM 11804T;
BCC 36457T; JCM 16936T; LMG

18909T; BCC 36447T; BCRC 17055T;
CIP 105780T)

Kombucha beverage,
Switzerland 3,883,532 61.6 [95]
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Table 1. Cont.

No Species Sources of Isolation Number of Bases (bp) DNA G + C Content (mol%) Ref.

6

K. kakiaceti JCM 25156T

(DSM 24098T; G5-1T;
LMG 26206T; NRIC 798T;

BCRC 80743T)

Kaki vinegar, Japan 3,133,102 62.1 [96]

7 K. kombuchae LMG 23726T

(MTCC 6913T; RG3T)
3,483,869 59.6 [94]

8
K. maltaceti LMG 1529T

(IFO 14815T; NBRC 14815T; NCIB
8752T; NCIMB 8752T)

Malt vinegar
brewery acetifier 3,638,012 63.2 [96,97]

9
K. medellinensis NBRC 3288T

(IFO 3288T);
Kondo 51T; LMG 1693T)

Vinegar, Japan 3,136,818 60.9 [96,98]

10
K. melaceti AV382T (ZIM B1054T;

LMG 31303T;
CCM 8958T)

Apple vinegar 3,629,663 59.14% [99]

11
K. melomenusus AV436T (ZIM

B1056T; LMG 31304T;
CCM 8959T)

Apple cider Vinegar,
Kopivnik, Slovenia [99]

12
K. nataicola LMG 1536T

(BCC 36443T; JCM 25120T;
NRIC 616T)

Nata de coco,
Philippines 3,672,972 61.5 [90,98]

13

K. oboediens LMG 18849T

(BCC 36445T; CIP 105763T; DSM
11826T JCM 16937T; NCIMB

13557T; LTH 2460T;BCRC 17057T)

Submerged red wine
vinegar, Germany 3,777,265 61.4 [90]

14
K. pomaceti T5K1T

(CCM 8723T; LMG 30150T;
ZIM B1029T)

Apple cider
vinegar, Slovenia 3,449,370 62.5 [94]

15
K. rhaeticus LMG 22126T

(DSM 16663T, BCC 36452T; JCM
17122T; DST GL02T;CIP 109761T)

Apple juice, South Tyrol
region, Italy 3,465,200 63.5 [90,98]

16

K. saccharivorans LMG 1582T (BCC
36444T; JCM 25121T; NRIC 614;

CIP 109786T; CECT 7869T; NCCB
29003T;NRIC 0614T)

Beet juice, Germany 3,350,941 61.6 [90,98]

17

K. sucrofermentans LMG 18788T

(DSM 5973T; BCC 7227T;
JCM 9730T;

BPR 2001T; ATCC 700178T; BCRC
80162T; CECT 7291T;CIP 106078T)

Black cherry,
Tokyo, Japan 3,363,922 62.3 [90]

18
K. swingsii LMG 22125T

(DSM 16373T; BCC 36451T; JCM
17123; DST GL01T; CIP 109760T)

Apple juice, South Tyrol
region, Italy 3,732,982 62.4 [90]

19

K. xylinus LMG 1515T (ATCC
23767T; DSM 6513T; BCC 7226T;

JCM 7644T; NBRC 15237T;
NCIMB 11664T; BCRC 2952T;

CCM 3611T;
CCUG 37299T; CECT 7351T; CIP

103107T; IFO 15237T; NCTC 4112T;
VTT E-97831T)

Mountains ash berries 3,660,954 66.2 [90,98]

Cellulose-producing bacterial cells of the genus Komagataeibacter are Gram-negative, rod-
shaped, and single or paired; some of them are in the form of short chains, and their size
is about 0.4–1.2 µm in width and 1.0–3.0 µm in length [77,113]. The colonies of cellulose-
synthesizing strains are jelly-like, rounded, and uplifted in the center (Figure 2B) [77,114,115].
The dissolution of calcium carbonate on the Acetobacter agar plate indicates the presence
of acid-forming bacteria. Numerous recently isolated BC producers belong to the genus
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Komagataeibacter. Many strains were isolated from the kombucha community: K. kombuchae
LMG 23726T [94], K. hansenii GH-1/2008 (VKPM B-10547) [116], K. xylinus B-12068 [117],
K. rhaeticus P 1463 [118], K. rhaeticus K3 [119], K. intermedius AF2 [120], K. sucrofermentans B-
11267 (Figure 2) [77], and others. The kombucha community (Medusomyces gisevii J. Lindau)
is a symbiotic culture of bacteria and yeast that is commonly abbreviated as SCOBY [121].
The microbial community in kombucha varies between geographic origin and cultural
conditions [122,123]. According to the literature data, kombucha microflora may contain
over 22 species including acetic acid bacteria of the family Acetobacteraceae and lactic acid
bacteria of the genus Lactobacillus, as well as yeasts Zygosaccharomyces spp., Saccharomyces
spp., Dekkera spp., and Pichia spp. [124]. Recently, a number of studies have been per-
formed using metagenomics, comparative genomics, synthetic community experiments,
and metabolomics to quantify community microbial diversity [122,125,126]. Therefore,
Landis et al. (2022) determined the taxonomic, ecological, and functional diversity of
23 distinct kombuchas in the United States and demonstrated the bacterium Komagataeibac-
ter rhaeticus and the yeast Brettanomyces bruxellensis to be the most common microbes
in these communities [122]. In addition, Kahraman-Ilikkan showed that the dominant
bacterium in kombucha samples from Turkey was Komagataeibacter obediens, and the domi-
nant fungus was Pichia kudriavzevii, and also found propionic and butyric acid-producing
bacteria such as Anaerotignum propionicum and Butyrivibrio fibrisolvens [123].

Komagataeibacter strains are highly acetic acid resistant (15–20%) and the dominant species
in vinegar production processes [127]. Therefore, many strains were isolated from vinegar
including Komagatabacter (Gluconacetobacter) sp. RKY5 [128], K. medellinensis LMG 1693T [129],
K. medellinensis [130], K. europaeus LMG 20956 [130], K. melaceti AV382T [99,130], K. hansenii
DSM 5602T [130], and others. Therefore, Marič et al. (2020) isolated the two novel strains
AV382 and AV436 from a submerged industrial bioreactor apple cider vinegar production in
Kopivnik (Slovenia) [99]. These strains represent novel species of the genus Komagataeibacter,
with the names K. melaceti sp. nov. and K. melomenusus being proposed for them, respectively.
The type of strain of K. melaceti is AV382T (=ZIM B1054T = LMG 31303T = CCM 8958T) and
that of K. melomenusus is AV436T (=ZIM B1056T = LMG 31304T = CCM 8959T). Recently,
Ni et al. (2022) conducted a study with three new strains isolated from rice vinegar, among
which Acetobacter pasteurianus MGC-N8819 showed a relatively high BC yield of 6.6 g/L
on the Hestrin–Schramm (HS) medium [78]. Greser and Avcioglu (2022) isolated the
strain K. maltaceti from grape vinegar and the strain K.nataicola from apple vinegar, which
formed BC in amounts of 6.45 g/L and 5.35 g/L, respectively [131]. K. intermedius [132],
G. swingsii [133], K. rhaeticus DSM 16663T [130], G. rhaeticus [133], Komagatabacter (Gluconace-
tobacter) sp. gel_SEA623-2 [134], Gluconacetobacter sp. F6 [135], K. maltaceti SKU 1109 [130],
K. diospyri MSKU 9T [93], and K. saccharivorans JH1 [109] were isolated from fruit and fruit
juices; K. cocois WE7T was isolated from coconut milk [92]; K. nataicola LMG 1536T was
isolated from “Nata-de Coco” [130]; and K. hansenii B-12950 was isolated from the Tibicos
symbiotic community [77]. A new species of thermotolerant bacterium Komagataeibacter
diospyri sp. nov. designated MSKU 9T was isolated from persimmon [93].

BC plays an important role in bacterial physiology and ecology [136–142]. For example,
BC film on the medium surface ensures the maintenance of an aerobic environment [141].
The water-holding capacity of vegetable cellulose reaches 60%, while the water-holding
capacity of BC is 100% of its dry weight. Thus, it protects the cells from drying out. BC is
supposed to form a kind of “framework” protecting cells against external agents including
antibiotics, heavy metal ions, and UV exposure [137]. BC producers can exhibit symbiotic
or pathogenic relationships with plants, animals, or fungi. And in this case, BC serves as a
kind of molecular glue to ensure interactions in nature [136]. For example, BC is involved
in the adhesion of bacterial cells of the genus Rhizobium during symbiosis with legumi-
nous plants, Agrobacterium and Salmonella in infection, contributing to the colonization of
plants providing protection against competitors [35,84,86]. Cellulose and its derivatives are
important components of biofilms and play a significant role in regulating the virulence
of plant and human pathogens [32,137,138]. Biofilm formation is an effective strategy by
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which bacterial cells establish relationships in a unique environment [32]. The role of
BC-containing biofilms is to establish close intercellular and host-bacteria interactions. A
biofilm gives bacteria the ability to undergo horizontal gene transfer, which provides antibi-
otic resistance, inhibits bacterial dehydration, and protects them from extreme conditions
such as mechanical stress and antibiotic treatment. Cell-to-cell communications in a biofilm
proceed, among other things, with the participation of a regulatory mechanism called
“quorum sensing” (QS). Information is exchanged using specialized chemical signaling
molecules, through which the microbial community acts as a single organism [142]. Cyclic
diguanylate (c-di-GMP) is an intracellular signaling molecule that regulates the transition
from a planktonic state in the environment to a surface-associated biofilm for many bacteria
including Agrobacterium sp., Rhizobium sp., Salmonella sp., Vibrio sp., Pseudomonas sp., and
others [80,84,140,143]. The review by Augimeri et al. (2015) highlighted the diversity of
BC biosynthesis and regulation and its role in environmental interactions by discussing
diverse biofilm-producing Proteobacteria [136]. The review by Balducci et al. (2023) de-
scribed the exopolysaccharides that are most commonly found in the biofilm matrix of
pathogens causing infections in humans and their functions in forming and maintaining
the EPS matrix. Biofilms are an important surgical issue since they can form on a chronic
wound or implantable medical devices [32]. E. coli and Salmonella sp. are among the most
studied pathogenic bacteria producing cellulose. Recently, E. coli and Salmonella species
have been discovered to produce chemically modified cellulose with phosphoethanolamino
groups. This modification seems to have multiple functions in the extracellular matrix:
it is required to form long cellulose fibrils and a tight nanocomposite with curli fibers, it
may confer resistance against attacks by cellulase-producing microorganisms, and it can
prevent curli from hyper stimulating immune responses [144]. Finally, there are bacteria
known to secrete cellulose; however, specific secretion mechanisms have not been identi-
fied so far. For example, pathogenic Mycobacterium tuberculosis has been shown to secrete
biofilm-promoting cellulose both in vitro and in granulomatous lesions in the lungs of
infected hosts in vivo [145]. These data suggest that the cellulose-rich extracellular ma-
trix contributes to mycobacterial drug tolerance, simultaneously protecting the pathogen
against triggering immune responses in the host.

Despite the biological and practical significance of BC, the molecular mechanism of
its biosynthesis is only just starting to emerge due to the improvement of next-generation
sequencing technologies, the publication of the genome sequences of numerous BC pro-
ducers, and the increased availability of genetic tools [112,137]. Recently, many reviews of
the latest advances in structural and molecular biology in BC biosynthesis have been pub-
lished. The review by McNamara et al. (2015) presented a detailed molecular description
of cellulose biosynthesis [146]. The review by Li et al. (2022) showed the research progress
of biosynthetic strains and pathways of bacterial cellulose [88]. Abidi et al. (2022) reviewed
current mechanistic knowledge on BC secretion with a focus on the structure, assembly,
and cooperativity of BCs secretion system components [147]. An interesting review by
Manan et al. (2022) provided a comprehensive overview of the molecular regulation of the
intracellular biosynthesis of cellulose nanofibrils, their extracellular transport, and their
organization into highly ordered supramolecular structures [12]. The authors discussed
in detail the role of different operons involved in BC biosynthesis and their regulation
to achieve high yield and productivity through the genetic engineering of BC-producing
strains. The review by Ryngajłło et al. (2020) discussed the current progress in the systemic
understanding of Komagataeibacter physiology at the molecular level [112]. The authors
presented examples of the approaches, as well as genetic engineering strategies for strain
improvement in terms of BC synthesis intensification.



Microorganisms 2023, 11, 1541 9 of 31Microorganisms 2023, 11, x FOR PEER REVIEW 8 of 33 
 

 

 

Figure 2. K. sucrofermentans B-11267 isolated from the kombucha community (A). The colony 

morphology (B). Cell morphology (scale bar: 5 µm) (C). Gel film obtained in static conditions (D). 

Gel film after purification (E). AFM (atomic force microscopy) image of BC (F). BC agglomerates of 

various shapes formed in agitated culture conditions (G,H). BC aerogel (I). 

Komagataeibacter strains are highly acetic acid resistant (15–20%) and the dominant 

species in vinegar production processes [127]. Therefore, many strains were isolated from 

vinegar including Komagatabacter (Gluconacetobacter) sp. RKY5 [128], K. medellinensis 

LMG 1693T [129], K. medellinensis [130], K. europaeus LMG 20956 [130], K. melaceti AV382T 

[99,130], K. hansenii DSM 5602T [130], and others. Therefore, Marič et al. (2020) isolated 

the two novel strains AV382 and AV436 from a submerged industrial bioreactor apple 

cider vinegar production in Kopivnik (Slovenia) [99]. These strains represent novel spe-

cies of the genus Komagataeibacter, with the names K. melaceti sp. nov. and K. melomenusus 

being proposed for them, respectively. The type of strain of K. melaceti is AV382T (=ZIM 

B1054T = LMG 31303T = CCM 8958T) and that of K. melomenusus is AV436T (=ZIM B1056T = 

LMG 31304T = CCM 8959T). Recently, Ni et al. (2022) conducted a study with three new 

strains isolated from rice vinegar, among which Acetobacter pasteurianus MGC-N8819 

showed a relatively high BC yield of 6.6 g/L on the Hestrin–Schramm (HS) medium [78]. 

Greser and Avcioglu (2022) isolated the strain K. maltaceti from grape vinegar and the 

strain K.nataicola from apple vinegar, which formed BC in amounts of 6.45 g/L and 5.35 

g/L, respectively [131]. K. intermedius [132], G. swingsii [133], K. rhaeticus DSM 16663T 

[130], G. rhaeticus [133], Komagatabacter (Gluconacetobacter) sp. gel_SEA623-2 [134], Glu-

conacetobacter sp. F6 [135], K. maltaceti SKU 1109 [130], K. diospyri MSKU 9T [93], and K. 

saccharivorans JH1 [109] were isolated from fruit and fruit juices; K. cocois WE7T was iso-

lated from coconut milk [92]; K. nataicola LMG 1536T was isolated from “Nata-de Coco” 

[130]; and K. hansenii В-12950 was isolated from the Tibicos symbiotic community [77]. A 

new species of thermotolerant bacterium Komagataeibacter diospyri sp. nov. designated 

MSKU 9T was isolated from persimmon [93]. 

Figure 2. K. sucrofermentans B-11267 isolated from the kombucha community (A). The colony mor-
phology (B). Cell morphology (scale bar: 5 µm) (C). Gel film obtained in static conditions (D). Gel film
after purification (E). AFM (atomic force microscopy) image of BC (F). BC agglomerates of various
shapes formed in agitated culture conditions (G,H). BC aerogel (I).

In general, bacterial cellulose biosynthesis comprises three steps including uridine
diphosphate glucose synthesis through a series of enzymatic reactions, cellulose molecular
chain synthesis under the function of cellulose synthase, and cellulose crystallization and
polymerization. The cellulose synthase (CS) complex is encoded by cellulose synthase
operons known as bcs operons. The bcs operons regulate intracellular biosynthesis, extracel-
lular transport across the cellular membranes, and in vitro assembly of cellulose fibrils into
highly ordered structures [12]. In Gram-negative bacteria, CS is comprised of a four-subunit
transmembrane complex, where the BcsA, BcsB, and BcsC subunits are responsible for the
synthesis and extracellular transport of glucan chains, while the fourth one, BcsZ (formerly
known as BcsD), resides in the periplasm and performs the endo-β-1,4-glucanase activity.
One of the well-characterized mechanisms regulating cellulose biosynthesis is the allosteric
activation of BcsA with a cyclic di-GMP (c-di-GMP) molecule, a universal bacterial second
messenger discovered in K. xylinus [112]. The independent research revealed an impor-
tant regulatory role of c-di-GMP for motility, virulence, and biofilm formation [137]. An
interesting article by Liu et al. (2018) presented a comprehensive approach to studying the
molecular mechanisms of BC biosynthesis and metabolism regulation based on a complete
genome analysis of Gluconacetobacter xylinus CGMCC 2955 and other BC producers whose
genomes were sequenced completely [104]. A complete genome sequence is needed as
background information for genetic engineering to achieve precise control of BC biosyn-
thesis based on metabolic regulation. The authors made a comparison of the arrangement
and composition of BC synthase operons (bcs) with those of other BC-producing strains. In
addition, they demonstrated the presence of QS in G. xylinus CGMCC 2955 and proposed a
possible regulatory mechanism action of QS on BC production [104].
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Despite numerous studies conducted in recent years, the large-scale production of BC
remains quite expensive. This is mainly due to the low productivity of bacterial strains,
which, as a rule, do not exceed 5 g/L BC. According to the review by Li et al. (2022), the
maximum BC yield did not exceed 20 g/L, which has not yet reached the level of industrial
application [88]. Recently, several reviews on the genetic modification of bacterial strains
for enhancing BC production were reported [148,149]. The review by Singhania et al.
(2021) presented the mechanisms and targets for genetic modifications in order to achieve
the desired changes in the BC production titer as well as its characteristics [148]. The
authors note that the lack of studies on a genetic modification for BC production is due
to the limited information on the complete genome and genetic toolkits; however, over
the past few years, the number of studies in this area has increased, since the whole
genome sequencing of several strains of Komagataeibacter has been performed. Genetic
engineering enables the modification of the genetic material of Komagataeibacter to increase
the product yield, reduce the risk of deleterious mutations, and improve or change cellulose
properties such as crystallinity, mechanical strength, and porosity, which is suitable for
specific applications. Along with the above-mentioned advantages, there are certain
problems including methodological problems of transformation and the issues related to the
regulatory process complexity, when each gene can express a protein performing more than
one function [148]. However, there have been several attempts at genetic engineering for
BC-producing bacteria. For example, Kuo et al., generated a G. xylinus mutant by knocking
out the membrane-bound glucose dehydrogenase gene via homologous recombination of a
defect in the gene, which led to the formation of cellulose from glucose without generating
gluconic acid and a 40% increase in BC production [150]. Japanese scientists obtained the
recombinant E. coli bacteria capable of forming BC resulting from the transfer of G. xylinus
genes [151]. A new stable efficient plasmid-based expression system of recombinant BC in
the E. coli DH5_ platform has currently been developed [152].

Furthermore, BC production can be increased through the development and improve-
ment of technological processes, such as the optimization of the nutrient medium, culture
conditions, cultivation methods, and the development of cell-free culture systems. About
30% of the total cost of the process is known to be the cost of the nutrient medium [153]. The
most frequently used medium is the Hestrin–Schramm (HS) medium, which includes some
expensive components, such as glucose, yeast extract, peptone, citric acid, and disodium
phosphate, resulting in costly production. In order to reduce the cost, researchers attempted
to produce cellulose from various alternative substrates, particularly, agro-wastes, pulp
mills and lignocellulosic wastes, biodiesel industry wastes, acetone-butanol-ethanol fermen-
tation wastewater, and others [68,154,155]. BC production also depends on a cultivation
technique. Under static cultivation, bacteria form cellulose in the form of a film on the
medium surface (Figure 2D). Under agitated conditions, most strains form cellulose in
the form of agglomerates of various shapes depending on the medium composition and
mixing modes (Figure 2G,H) [77,156–158]. There are many reports analyzing static and
agitated conditions for cellulose production by Komagataeibacter as well as other bacteria,
where a static culture generally gave higher yields compared to agitated cultures [159],
but there are reports of higher BC yields with the agitated culture [160]. However, such
a comparison is not always justified without taking into account the time and growing
conditions. Furthermore, cell-free culture, the synthesis without living cells, shows great
development prospects [161–163]. Cell-free culture could reduce the cost of BC production,
decrease the metabolic inhibitors, and significantly improve the efficiency of enzymatic re-
actions [162]. In addition, an effective co-cultivation of Komagataeibacter with the producers
of other polysaccharides was reported, which led to an increased BC yield, and can be used
to obtain nanocomposites with improved functional characteristics [164].

Highly efficient BC production will enable the expansion of the scope of the polysac-
charide with unique properties. BC is an attractive biopolymer for a number of applications
including food, biomedical, cosmetics, and engineering fields. The review by Cubas et al.
(2023) reported BC to be a new era in Green Chemistry products [165]. In the past five
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years, there have been many interesting, detailed reviews describing BC production, prop-
erties, and applications [43,65,68,71–74,76,166–179]. BC has great potential to be used in
medicine [2,3,43,71–74,166–172,179] as a biomaterial for wound dressing [180–186], tissue
engineering [187–192], and drug delivery systems [51,193–197]. In addition, BC can be used
in the food industry as a nutritional component, food packaging, an emulsion stabilizer, and
novel food [165,198–200]. BC is known as a fiber-rich natural food that offers many health
benefits and reduces the risk of chronic diseases, such as diabetes, obesity, and cardiovascu-
lar diseases [199]. In 1992, BC was recognized safe by the Food and Drug Administration
(FDA), and in 2019, the species K. sucrofermentans was included in the list of Qualified Pre-
sumption of Safety (QPS) recommended biological agents and intentionally added to food
(novel food) [199]. Furthermore, BC can be used in the cosmeceutical industry [65,201,202];
the environmental industry as a matrix to immobilize catalysts, enzymes, and other sensory
materials, both to detect environmental pollutants and also decompose various wastes from
heavy metals, fluorine, organic pollutants including dyes, pharmaceutical compounds,
and petroleum products [68,203–206]; in nanoelectronics (sensors, optoelectronic devices,
flexible display screens, energy storage devices, and acoustic membranes) [167,207–213];
for microbial enhance of oil recovery [83]; in the textile industry [214]; and in biocatalytic
technologies as a carrier for microorganisms or enzymes for various approaches [67,68,71].

3. Levan-Producing Bacteria

Levan is one of the most promising microbial EPSs for a wide range of biotechnolog-
ical applications due to its beneficial functional properties such as anticancer [215–217],
antioxidant [218], antibacterial [215,218], anti-inflammatory, immunomodulatory [219],
and prebiotic activities [220], as well as unique physicochemical properties such as high
adhesive strength, low intrinsic viscosity, high water solubility, film-forming ability, heat
stability, and high biocompatibility [221–223]. Levan is a neutral homopolysaccharide
composed of fructose units connected by β-2,6-glycoside bonds in the backbone and β-2,1
in its branches.

Many bacteria are capable of synthesizing levan, including Gram-negative bacteria of
the class Alphaproteobacteria, Acetobacter, Gluconobacter [224–226], Komagataeibacter (Gluconace-
tobacter) [227], and Zymomonas [228–230] genera, and those of the class Gammaproteobacteria,
Pseudomonas [231], Halomonas [232,233], and Erwinia [234] genera, as well as Gram-positive bac-
teria of the class Bacilli: Bacillus [235–245], Paenibacillus [246–260], Lactobacillus [261], Leuconos-
toc [262] genera, etc. Currently, more than 100 bacteria species have been shown to produce
levan [222]. The most studied levan producers among Gram-positive bacteria are the species
of the class Bacilli including Bacillus subtilis [243–245], Bacillus licheniformis [241], Paenibacil-
lus polymyxa [246,248,250,256–260], Lactobacillus reuteri [261], Leuconostoc citreum [262], and
others. These bacteria were isolated from different sources. Therefore, the probiotic Bacillus
tequilensis-GM was isolated from Tunisian fermented goat milk [235]. B. siamensis was
isolated from fermented soybeans and was found to produce levan at high sucrose con-
centrations [236,237]. A new EPS-producing Gram-positive bacterium B. paralicheniformis
was isolated from the rhizosphere of Bouteloua dactyloides (buffalo grass), which produced
a large amount (~42 g/L) of levan having a high weight average molecular weight of
5.517 × 107 Da [238]. Many species of marine bacteria of the genus Bacillus can synthesize
levan. For example, a strain of Bacillus sp. SGD-03 produces a levan with a molecular
weight of 1.0 × 104 Da with a maximum yield of 123.9 g/L [239]. B. paralicheniformis ND2
was isolated from the seawater of the Mediterranean Sea, Egypt, followed by screening
for levan-type fructan production, which yielded 14.57 g/L [240]. Levan produced by the
B. aryabhattai GYC2-3 strain had a high average molecular weight (5.317 × 107 Da) [242],
while levan from B. licheniformis 8-37-0-1 had a low molecular weight (2.826 × 104 Da) [241].
The sucrose concentration was found to be the critical component in modulating the molec-
ular weight of synthesized levan. Using a low sucrose concentration (20 g/L) in a culture
of B. subtilis (natto) Takahashi resulted in predominantly high molecular weight levan
(>2 × 106 Da). In contrast, low molecular weight levan (6–9 × 103 Da) was the prevalent
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EPS when a high sucrose concentration (400 g/L) was used [243]. Bacteria of the genus
Bacillus can synthesize a significant amount of levan. It was shown that in cultivation
for 21 h in media supplemented with 20% sucrose, B. subtilis (natto) can produce up to
40–50 g/L of levan [244]. During batch and continuous cultivation in a bioreactor, the
levan yield was 61 and 100 g/L, respectively [243]. Moreover, the B. subtilis strain CCT
7712 was able to synthesize up to 111.6 g/L of levan from 400 g/L sucrose media during
16 h cultivation [245].

Paenibacillus polymyxa, the type species of the genus Paenibacillus, is mainly isolated
from plant-associated environments. For example, P. polymyxa 92, isolated from wheat
roots, produced large amounts (38.4 g/L) of exopolysaccharide in a liquid nutrient medium
containing 10% (w/v) sucrose and may serve as a basis for eco-friendly low-cost soil-
remediation technologies owing to levan production exhibiting metal-binding ability, low
viscosity in an aqueous solution, and plant-growth-regulating activity [246]. The P. lautus
strain was isolated from Obsidian Hot Spring in Yellowstone National Park [247]. A
new strain of P. polymyxa S3 with an antagonistic effect on 11 major fish pathogens was
screened from the sediment of fishponds [248]. P. antarcticus IPAC21, the psychrotolerant
bioemulsifier levan-producing strain, was isolated from the soil collected in Ipanema, King
George Island, Antarctica [249]. Its genome was sequenced using Illumina Hi-seq, and a
search for genes related to the production of bioemulsifiers and other metabolic pathways
was carried out. The IPAC21 strain has a genome of 5,505,124 bp and a G + C content of
40.5%. Mamphogoro et al. (2022) reported the whole-genome sequence of P. polymyxa
SRT9.1, a plant growth-promoting bacterium consisting of 6,754,470 bp and 7878 coding
sequences, with an average G + C content of 45% [250]. Revin and Liyaskina et al. obtained
a highly productive strain Paenibacillus polymyxa 2020, first isolated from wasp honeycombs
capable of producing a greater amount of levan compared to the known P. polymyxa strains
(Figure 3) [66]. The complete genome sequencing and methylome analysis of P. polymyxa
2020 were performed. The complete genome sequence of P. polymyxa 2020 is also available
in GenBank with the accession numbers: CP049598-CP049599. The original sequence
reads have been deposited at NCBI under SRA: SRR11236808; SRR11236809; SRR11236810;
SRR11236811. Biosample: SAMN14247689. Bioinformatic analysis identified a putative
levan synthetic operon. SacC and sacB genes were cloned; their products were identified as
glycoside hydrolases and levansucrase. The highest levan yield of 68.0 g/L was obtained on
a molasses medium with a total sugar concentration of 200 g/L. The highest yield of EPS in
the sucrose medium was 53.78 g/L with 150 g/L sucrose at 96 h. Additionally, compared to
the media with sucrose, in the molasses medium, the maximum polysaccharide production
was achieved over a shorter time interval (48–72 h).

Paenibacillus spp. EPSs recently have attracted great attention due to their biotech-
nological potential in different industrial and wastewater treatment processes [251,252].
As of April 2023, according to the website List of Prokaryotic names with Standing in
Nomenclature (LPSN), the genus Paenibacillus contains 374 species. The type of strain of
P. polymyxa ATCC 842T (=DSM 36T = KCTC 3858T) has been deposited in a number of
microbial collections. The bacterium was very often associated with the plant root micro-
biome, where it participates in bioprotection by the synthesis of antibiotics, phytohormones,
hydrolytic enzymes, and EPS [256]. The genome sequences of 212 strains of Paenibacillus
representing 82 different species are available [251]. The genome sizes range from 3.02 Mb
for P. darwinianus Br isolated from Antarctic soil [253] to 8.82 Mb for P. mucilaginosus K02
implicated in silicate mineral weathering [254], and the number of genes varies from 3064
for P. darwinianus Br to 8478 P. sophorae S27. The insect pathogens P. darwinianus, P. larvae,
and P. popilliae have smaller genomes from 4.51 and 3.83 Mb, respectively, which is likely
to reflect their niche specialization. The GC content of Paenibacillus DNA ranges from 39 to
59% [255]. Complete genome sequencing and assembly has been done for strains such as
P. polymyxa E681 [257], P. polymyxa SC2 [258], P. polymyxa ATCC 842T [259], P. polymyxa
2020 (isolated from wasp honeycombs) [66], P. polymyxa KF-1, soil isolated producer of
antibiotics [260], and Paenibacillus sp. Y412MC10 [247], isolated from Obsidian Hot Spring
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in Yellowstone National Park, Montana, USA. Most of the deposited genome sequences are
still in shotgun form.
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An EPS synthesizing potentially probiotic Gram-positive bacterial strain Lactobacillus
reuteri was isolated from fish guts, and its EPS was structurally characterized. Based on
molecular weight (MW) distribution, two groups of levan were found to be produced
by the isolate FW2: one with a high MW (4.6 × 106 Da) and the other having a much
lower MW (1.2 × 104 Da). The isolate yielded about 14 g/L levan under optimized
culturing parameters [261]. The levan yield of the strain Leuconostoc citreum BD1707 reached
34.86 g/L with an MW of 2.320 × 107 Da within 6 h cultivation [262].

Many Gram-negative acetic acid bacteria (AAB) of the Alphaproteobacteria class are
also levan producers. Acetobacteraceae are known for their production of high-value ho-
mopolysaccharides such as levan [224–226]. Gluconobacter japonicus LMG 1417 is a potent
levan-forming organism. A cell-free levan production based on the supernatant of the
strain under study led to a final levan yield of 157.9 ± 7.6 g/L, and the amount of secreted
levansucrase was more than doubled by plasmid-mediated homologous overproduction
of LevS1417 in G. japonicus LMG 1417 [224]. K. xylinus, the producer of bacterial cellulose
can also produce levan [227]. The good levan producer Pseudomonas fluorescens strain ES,
with promising antioxidant and cytotoxic activity against different kinds of cancer cells,
was isolated from soil in Egypt [231]. Possible levan producers were also identified among
Gram-negative halophilic Gammaproteobacteria of the Halomonas genus [232] including
Halomonas smyrnensis AAD6T [233]. Their ability to grow in high concentrations of NaCl
can be used to solve the problem of sterility in an industrial setting. The type of strain
H. smyrnensis sp. nov. AAD6T (=DSM 21644T = JCM 15723T) was isolated in Turkey [233].
Zymomonas mobilis also produces levan. The strains ZAG-12 [228] and ATCC 31821 [229]
were able to produce levan with approximate yields of 14.67 and 21.69 g/L, respectively. In
continuous cultivation of Z. mobilis CCT4494, when immobilized in Ca-alginate gel, the
amounts of levan were reported to be able to range from 18.84 up to 112.53 g/L depending
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on the incubation time [230]. Levan-type EPS is also produced by such Gammaproteobacteria
as Pantoea agglomerans ZMR7. The maximum levan production (28.4 g/L) was achieved
when sucrose and ammonium chloride were used as carbon and nitrogen sources, respec-
tively, at 35 ◦C and an initial pH of 8.0 [263]. Gammaproteobacteria Erwinia amylovora, the
causative agent of fire blight, is also a levan producer [234]. Several recombinant E. coli
and yeasts were developed to study the biochemistry of levan synthesis by cloning and
expression of levansucrase genes from L. mesenteroides and B. amyloliquefaciens [264–269].

Levan is synthesized by levansucrase (E.C 2.4.1.10), a fructosyltransferase belonging
to the family of glycoside hydrolases [221]. Levansucrase binds to a substrate, such as
sucrose, and adds fructose molecules to a growing fructose chain [221]. In Gram-negative
bacteria, levansucrase is secreted through a single peptide pathway, which promotes
sucrose hydrolysis and levan formation through transfructosylation activity [270]. A
high concentration of substrate has been found to inhibit levansucrases in Gram-negative
bacteria since the interaction of enzyme-substrate occurs in the periplasmic space resulting
in the accumulation of enzyme and product, while in Gram-positive bacteria, this is not
observed due to the presence of peptidoglycan wall [222]. In terms of its biological role,
levan is involved in biofilm formation in some bacteria [271,272] and also contributes to
the fitness and virulence of plant pathogens [221,273]. Further, in soil-resident bacteria,
levan promotes salt tolerance and desiccation, as well as the formation of cell aggregates
on abiotic surfaces [272]. In addition, levan can serve as a source of reserve substance
under starvation conditions [221]. Moreover, levan has been suggested to promote the
colonization of bacteria in the gut [274] and to act as a prebiotic in vitro [275,276].

Levan is an industrially important, functional biopolymer widely applied in food,
biomedicine, cosmetic, and pharmaceutical fields owing to its safety and biocompatibility.
In the food industry, levan can be used as a gelling agent, as well as a food supplement
with prebiotic properties [220,277,278]. Moreover, microbial levan can be a good source
of pure fructose production. The bio-degradable film obtained with levan has a high
potential to be used in different areas, especially in food packaging [279]. In the biomedical
sectors, levan has many applications due to its biocompatibility and antibacterial [215,218],
anticancer [215–217], antioxidant [218], anti-inflammatory, immunomodulatory [219], and
prebiotic activities [220]. Levan was described as an effective therapeutic agent in some hu-
man conditions, such as cancer, heart disease, and diabetes. Levan treatment is a promising
therapeutic strategy for neuroblastoma and osteosarcoma cells [216,217]. Levan is a promis-
ing biopolymer to develop nanomaterials. Due to its amphiphilic properties, the main
application of levan so far is the production of nanoparticles. For example, vancomycin
was encapsulated in levan nanoparticles of 200–600 nm [280]. Nanoparticle complexes
with levan could be proposed as potent drug delivery vehicles for cancer drugs, as well
as other drugs in prospective studies [281,282]. Kim et al., encapsulated a marker (indo-
cyanine green) in levan nanoparticles (100–150 nm) for tumor imaging [283]. Tabernero
et al., attached 5-fluorouracil on levan nanoparticles for colorectal cancer treatment [282].
Silver and gold nanoparticles were previously coated with this polymer to be used as a
catalyst [284] or a bactericidal system [222]. There were obtained from levan-based nanopar-
ticles with resveratrol, which can be used in drug delivery systems, wound healing, and
tissue engineering [285]. Levan nanoparticles can also be used as drug carriers for peptides
and proteins [280]. In addition, it can provide biocompatible surfaces, especially in tissue
engineering [286–288]. Sulfated levan can be considered a promising material for cardiac
tissue engineering applications [287]. It is related to its excellent biocompatibility and
anticoagulant activity. Gomes et al., developed self-adhesive free-standing multilayer films
from sulfated levan combined with alginate and chitosan [286]. The presence of sulfated
levan significantly improved the mechanical strength and adhesiveness of the constructed
adhesive films. The multilayer films were cytocompatible and myoconductive, which was
assessed through in vitro testing on a myoblast cell line, C2C12. Levan nanocomposite
films have the potential to be used in industrial and medical fields [289]. Levan also has
appropriate properties for cosmetic applications, for example, in safe and functional body
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wash cosmetics production [290,291]. Levan has a film-forming potential and high adsorp-
tion properties. Therefore, it can be used as an adsorbent for heavy metals in industrial
wastewater treatment [246]. Furthermore, levan has higher adhesive properties than car-
boxymethyl cellulose and can be used for wood bonding. Its availability as a biological
binder to obtain wood biocomposite materials was shown [292]. The resulting composites
were demonstrated to have a more uniform structure and good strength characteristics.
Levan is a promising material for obtaining biocomposites. It can be processed with other
polysaccharides or functionalized to produce fibers or gels. For example, a sulfated deriva-
tive of levan was processed with polycaprolactone (PCL) and polyethyleneoxide (PEO)
using electrospinning technology. The obtained microfibers (1–5 microns in diameter)
improved blood clotting by adding levan. The work indicated the potential of using levan
in blends to produce anti-thrombogenic compounds [288].

4. Xanthan-Producing Bacteria

Xanthan is one of the industrially most relevant bacterial polysaccharides. Compared
to other microbial polysaccharides, its price is competitive, and, therefore, its production
is cost-effective [293]. Xanthan is an important industrial biopolymer, which, due to its
beneficial properties, has found application in food, oil, pharmaceutical, mining, textile,
and other industries [294–297]. It is environmentally friendly, non-toxic, and has the fol-
lowing unique properties: stability at high temperature and salinity, pseudoplasticity,
highly viscous even at very low concentrations, chemical stability for oil well conditions,
biodegradability, reasonable cost, and environmental friendliness [298]. The global xan-
than gum market was valued at ~USD 1 billion in 2019 and is expected to reach ~USD
1.5 billion in 2027 [4]. Xanthan is an anionic heteropolysaccharide consisting of a cellulose-
like backbone of β-1,4-linked glucose units, substituted alternately with a trisaccharide side
chain, which is composed of two mannose units separated by a glucuronic acid, where the
internal mannose is mostly O- acetylated and the terminal mannose may be substituted by
a pyruvic acid residue. Due to the presence of glucuronic and pyruvic acid in the side chain,
xanthan represents a highly charged polysaccharide with a very rigid polymer backbone. It
has a high molecular weight of about 2 × 106 to 2 × 107 g mol−1.

Xanthan is produced by different Xanthomonas sp. The genus Xanthomonas belongs to
the class Gammaproteobacteria of the phylum Proteobacteria. As of April 2023, according to the
website List of Prokaryotic names with Standing in Nomenclature (LPSN), the genus Xan-
thomonas contains 53 species, some of which cause economically important diseases in more than
400 host plants [33]. Xanthomonas sp. has two features: the formation of exopolysaccharide xanthan
and the formation of specific membrane-bound pigments—xanthomonadins that provide the
mucoid and yellow color of the colonies. Xanthomonas cells are usually rod-shaped single-cell ones
with a single polar flagellum. The type of strain is Xanthomonas campestris ATCC 33913T (=CFBP
2350T = CIP 100069T = DSM 3586T = ICMP 13T = LMG 568T = NCPPB 528T). The Xanthomonas
spp. differentiate further into pathovars depending on the host plant [34,299]. For example,
Xanthomonas campestris pv. campestris is the causal agent of black rot disease affecting
many crop plants from the Brassicaceae family [300]. The bacterium Xanthomonas oryzae
pv. oryzae causes rice bacterial leaf blight, one of the most destructive rice diseases [301].
Bacteria deploy a large arsenal of virulence factors to successfully infect the host plant. In
particular, xanthan protects bacterial cells against environmental stresses and supports
biofilm formation [299]. QS coordinates bacterial behavior including biofilm dispersal
and is required for disease [299]. Currently, Feng et al. (2023) provided a comprehensive
review of the recent advances in diffusible signal factor (DSF)-mediated QS in Xanthomonas
and reported the inhibitors that are proposed as bactericide candidates to target the RpfF
enzyme and control plant bacterial diseases [302]. The QS in Xanthomonas is associated
with rpf (regulation of pathogenicity factor) genes, among which, the main genes rpfF, rpfB,
rpfC, and rpfG encode proteins involved in DSF synthesis, turnover, sensing, and trans-
duction, respectively [302]. The Xanthomonas genus includes species such as X. campestris,



Microorganisms 2023, 11, 1541 16 of 31

X. arboricola, X. axonopodis, X. fragaria, X. gummisudans, X. juglandis, X. phaseoli, X.vasculorium,
and others. The Xanthomonas campestris bacterium is used in industrial production.

The complete genome sequences of many Xanthomonas strains have been determined
to date. Liyanapathiranage et al. analyzed 1740 complete genome sequences belonging
to 39 Xanthomonas spp. retrieved from the National Center for Biotechnology Informa-
tion (NCBI), a large proportion of them being from the species X. oryzae (396 genomes),
X. citri (195 genomes), X. phaseoli (97 genomes), X. perforans (151 genomes), and X. arboricola
(136 genomes) [303]. The authors studied the genetic organization and patterns of evo-
lution of several clusters of the type VI secretion system (T6SS) in order to understand
the contribution of T6SS toward the ecology and evolution of Xanthomonas spp. Recently,
Cuesta-Morrondo et al. (2022) reported that the resulting X. arboricola pv. pruni IVIA
2626.1 genome comprised two circular contigs, a 5.11 Mb chromosome and a 41.10 kb plas-
mid, while CITA 33 was composed of a 5.09 Mb chromosome and 41.11 kb plasmid [304].
In addition, Bellenot et al. (2022) reported on draft genome sequences of 17 strains repre-
senting eight of nine known races of the pathogen Xanthomonas campestris pv. campestris
causing black rot disease on Brassicaceae crops [305]. Revin et al. obtained a highly effi-
cient xanthan-producing strain, X.campestris M 28, which produced up to 28 g/L of the
polysaccharide on a molasses medium (Figure 4). Whole-genome sequencing of the strain
was performed using the Illumina method and nanopore sequencing. The genome of
X. campestris M 28 contained one chromosome of 5 102 828 nucleotides with an average
G + C content of 65.03% [306]. The genomes of the strains X. campestris NRRL B-1459 (ATCC
13951) [307], X. campestris pv. campestris B 100 [308], X. campestris JX [309], X. campestris
pv. campestris WHRI 3811 [310], and others, also have been completely described. The
size of X. campestris chromosomes was shown to range from 4.8 to 5.1 Mb [307–309]. The
content of GC bases in the X. campestris chromosome is 63.7–65.3% [307–309]. A number
of X. campestris strains were established to have plasmids of various lengths responsible
for resistance to antibiotics, metals, etc. Xanthomonas genomes comprise different mobile
genetic elements, such as transposons, insertion sequence, plasmids, and genomic islands
associated with virulence factors, genetic variations, and genome structure [311].

Xanthan is synthesized through a Wzy-dependent pathway, which comprises several
steps including the synthesis of exopolysaccharide precursors (nucleotide sugars GDP-
mannose, UDP-glucose, and UDP-glucuronic acid), repeat-unit assembly on a lipid carrier
located at the cytoplasmic membrane, membrane translocation to the periplasmic face,
polymerization by a block-transfer mechanism involving Wzy polymerase, and export [312].
The building of pentasaccharide units is under the control of the gum cluster comprising
12 genes involved in the pentasaccharide repeating unit assembly, its decoration with
substituents, polymerization, translocation, and secretion [312]. However, the key factors
for the xanthan’s precursors’ biosynthesis are the genes xanA and xanB, which are not
included in the gum cluster. The xanA and xanB genes are involved in UDP-glucose and
GDP-mannose biosynthesis.

Like other EPSs, xanthan yield and quality can be modified using different bacterial
strains and fermentation environments (e.g., carbon source, temperature, pH, mixing speed,
inoculum volume, and airflow rate). The carbon source is an essential factor in microbial
xanthan fermentation, which acts as an energy source and is used in EPS synthesis. Media
with complex compositions are most often used to obtain xanthan; these mainly include 2–
4% glucose and sucrose and 0.05–0.1% nitrogen sources, such as yeast extract, peptone, and
ammonium nitrate [297], and have quite a high cost. Media including various industrial
and agricultural wastes have been proposed to reduce the cost of xanthan [306,313]. This
also solves the environmental problems of waste disposal, which negatively affect the
environment condition. The immobilization of bacteria cells (e.g., X. campestris and X.
pelargonii) on calcium alginate-based beads showed higher xanthan yield compared to free
cells, irrespective of the carbon source [314].
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Xanthan is a biopolymer that has found application in food, petroleum, pharmaceuti-
cal, mining, textile, cosmetics, and other industries [3,294–298,315–319]. This polymer is
environmentally friendly and non-toxic and, therefore, used in the food industry for the
last 50 years as a stabilizer and thickener. Xanthan is a promising material for medical
applications since it is a biocompatible polymer and not cytotoxic. Recently, it attracted the
particular attention of researchers in connection with the prospects for its use in tissue engi-
neering, drug delivery, and obtaining biocomposites with regenerative and antibacterial
properties [4,316,317]. Recently, Barbosa et al. (2023) produced cell-friendly chitosan-
xanthan composite membranes incorporating hydroxyapatite to be used in guided tissue
and bone regeneration, in particular, for periodontal tissue regeneration [316]. The review
by Jadav et al. (2023) described xanthan applications of xanthan in delivering various
therapeutic agents such as drugs, genetic materials, proteins, and peptides [317]. Xanthan
can be used as a new green-based material to produce superabsorbents and for the remedi-
ation of contaminated waters. Sorze et al. (2023) developed novel biodegradable hydrogel
composites of xanthan gum and cellulose fibers to be used both as soil conditioners and
topsoil covers to promote plant growth and forest protection [318]. The rheological, mor-
phological, and water absorption properties of produced hydrogels were comprehensively
investigated. Specifically, the moisture absorption capability of these hydrogels was above
1000%, even after multiple dewatering/rehydration cycles. A recent review by Balíková
et al. (2022) highlighted xanthan prospects as green adsorbents for water decontamina-
tion [312]. A number of scientists have shown the functional groups of xanthan to be able
to bind heavy metals from aqueous solutions and effectively remove them. For example,
Wang et al. showed the superior adsorption capacity of xanthan produced by X. campestris
CCTCC M2015714 to detoxify lead (II), cadmium (II), and copper (II) polluted waters with
an efficiency of 50% in an hour [319]. The review by Dzionek et al. (2022) summarized
cross-linking methods that could potentially be used to reduce their toxicity to living cells
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and demonstrated xanthan availability for whole-cell immobilization with the prospect
of using it in bioremediation [320]. The polysaccharide xanthan is considered to be the
most commonly used polymer for enhanced oil recovery [298]. It is relatively more stable
under harsh conditions and has the necessary rheological properties. Recently, xanthan
has received attention for its application in 3D printing technology. At low concentrations,
xanthan has shear thinning capacity and required viscosity due to which it can function as
a rheological modifier, thus improving 3D printing potential [321,322].

5. Conclusions and Future Perspective

The present review summarizes the current progress in research on bacterial EPS,
mainly over the past 5 years, including their properties, biological functions, and promising
applications in various fields of science, industry, medicine, and technology. Such EPS
as BC, levan, and xanthan are described in detail. The information on the systematic
position, sources of isolation and properties of EPS-producing bacteria is presented. Bacteria
are characterized by metabolic flexibility and a variety of physiological and biochemical
properties. Therefore, using the techniques optimizing cultivation conditions, genetic,
and metabolic engineering, it is possible to modulate the yield as well as the structural
and functional properties of bacterial EPS. At present, the biochemical and molecular
basis of the biosynthesis of BC, xanthan, and levan are well studied. The genomes of a
large number of bacteria have been fully sequenced. All this is the basis for the metabolic
regulation of EPS biosynthesis and the creation of resistant genetically engineered strains
that have not yet been obtained for industrial production. The yield of the most known
bacterial EPS is still low enough for industrial production. Therefore, the isolation of
new producers and the production of highly productive strains by genetic and metabolic
engineering are very relevant. The investigation of unique polysaccharides from marine
bacteria and extremophiles is now the focus of scientific research. They have considerable
potential in bioremediation, water purification from heavy metal, and marine oil pollution
and also in pharmaceutical and biomedical fields as antioxidants, antifreeze, anti-cancer,
anti-inflammatory, antibacterial agents, etc. Although these EPS are well used in many
areas, there are relatively few studies on them compared to land microorganisms, especially
the studies on EPS formed in extreme marine environments, partially due to the difficulty
of isolation and culture conditions. Therefore, new and updated technical strategies are
needed to isolate producers and analyze novel marine microbial EPS. Since the study
of bacterial polysaccharides is partly hindered by the incapability of culturing methods,
metagenome-based techniques should be used to search for and study new bacterial
polysaccharides. In recent years, valuable information has emerged on QS mechanisms in
EPS producers. This area requires further study in terms of application for more efficient
EPS production. Due to the high cost of EPS production, a large number of publications
have recently suggested approaches to solve the problem, in particular, the use of various
agricultural and industrial wastes. At the same time, their disposal burning problem
is also being solved. Another promising area is biocatalytic technologies and cell-free
synthesis to obtain EPS more efficiently. Bacterial EPS are characterized by the presence
of a large number of functional groups (hydroxyl, carboxyl, carbonyl, acetate, etc.), which
enables them to modify their molecules in order to give them new valuable properties,
such as antimicrobial activity, etc. Therefore, a large number of EPS-based biocomposite
materials have been obtained. The already developed methodological approaches and the
accumulated data on their modification will enable the creation of an even greater number
of different functional and structural materials of a new generation with a wide range of
applications in the future.
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