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1 Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life
Sciences—SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland;
iwona_scibisz@sggw.edu.pl

2 Professor E. Pijanowski Catering School Complex in Warsaw, 04-110 Warsaw, Poland;
dorotazareba@gmail.com

3 Department of Chemistry, Institute of Food Science, Warsaw University of Life
Sciences—SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland;
mariola_kozlowska@sggw.edu.pl

* Correspondence: malgorzata_ziarno@sggw.edu.pl; Tel.: +48-225-937-666

Abstract: This study aimed to investigate the ability of lactic acid bacteria to remove cholesterol in
simulated gastric and intestinal fluids. The findings showed that the amount of cholesterol removed
was dependent on the biomass, viability, and bacterial strain. Some cholesterol binding was stable
and not released during gastrointestinal transit. The presence of cholesterol affected the fatty acid
profile of bacterial cells, potentially influencing their metabolism and functioning. However, adding
cholesterol did not significantly impact the survival of lactic acid bacteria during gastrointestinal
transit. Storage time, passage, and bacterial culture type did not show significant effects on cholesterol
content in fermented dairy products. Variations in cell survival were observed among lactic acid
bacteria strains in simulated gastric and intestinal fluids, depending on the environment. Higher
milk protein content was found to be more protective for bacterial cells during gastrointestinal transit
than fat content. Future research should aim to better understand the impact of cholesterol on lactic
acid bacteria metabolism and identify potential health benefits.

Keywords: lactic acid bacteria; gastric juice; intestinal juice; gastrointestinal transit; fatty acid profile;
cell survival; health benefits

1. Introduction

Changes in lifestyle and diet, as well as the development of civilization, have con-
tributed to an increase in so-called “civilization diseases,” also referred to as chronic
noncommunicable diseases. Ischemic heart disease, which is also known as coronary artery
disease, is an example of a lifestyle disease, with the main cause being the arteriosclerosis
of the coronary arteries, leading to their narrowing. Hypercholesterolemia, or elevated
LDL cholesterol levels, is one of the risk factors for atherosclerosis. Elevated cholesterol
has been identified as a crucial cardiovascular disease risk factor, and even a small reduc-
tion in cholesterol levels can reduce the risk of coronary artery disease [1–5]. Cholesterol
and oxysterols (the result of cholesterol oxidation) play a significant role in the process
of atherosclerotic plaque formation [5]. Atherosclerotic plaques, primarily composed of
cholesterol and other substances, are the main cause of narrowing blood vessels and the
development of blood clots, which can lead to serious cardiovascular complications such
as heart attack and stroke. Oxysterols have the ability to induce inflammation in the blood
vessel walls and promote lipid oxidation, contributing to the development and progression
of atherosclerosis [5].

Studies have shown that consuming fermented milk products, such as yogurt, can
lower cholesterol levels in humans [6,7]. As early as 1974, Mann and Spoerry [8,9]
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found reduced serum cholesterol levels in African Masai tribe men, attributed to the
consumption of large amounts of fermented milk containing wild strains of Lactobacil-
lus acidophilus. Lactic acid bacteria (LAB) present in fermented milk are responsible
for lowering serum cholesterol levels. Some laboratory studies have also shown that
traditional LAB used in the production of cheese, cream, butter, and sour milk can
lower cholesterol [1,6,9–17]. Much research is available in the literature on cholesterol-
lowering properties in laboratory conditions using model media, with most studies
involving lactobacilli [10–17]. Other types of bacteria that have shown similar properties
are Bifidobacterium, Streptococcus, Enterococcus, Lactococcus, and Leuconostoc [10,12,18–21].
This type of research has been conducted since the 1970s [8,17,22–27]. However, it is
important to note that despite the results of in vitro and in vivo animal and human
studies, due to possible methodological and technical errors and lack of reproducibility,
the ability of LAB to lower serum cholesterol levels cannot be confirmed or negated
unequivocally [28–33]. Additionally, the serum cholesterol level not only correlates
positively with the amount of cholesterol ingested with food but also depends on the
intake of saturated fatty acids and refined carbohydrates. Therefore, there is still no clear
confirmation of how LAB have a positive effect on cholesterol levels in humans [34–36].

Several hypotheses explain how LAB lower cholesterol levels. Information from the
literature suggests that these mechanisms primarily include cholesterol binding, the enzy-
matic deconjugation of bile salts, the production of exopolysaccharides, and the synthesis
of short-chain fatty acids [12,18,20,21,34,35,37–46]. It has been found that LAB can bind
cholesterol either through adhesion or assimilation [13,18,20,21,37,47–50]. Studies have also
shown that LAB can hydrolyze (deconjugate) bile salts and bind to cholesterol molecules,
thereby lowering cholesterol levels in the system [7,12,15,36,42,44,51–57]. Although the
exopolysaccharides produced by many species of LAB can bind cholesterol molecules, this
mechanism is still among the studied hypotheses [34,35,40,45,58,59]. In the context of re-
search on the impact of LAB on cholesterol levels, it is essential to consider the relationship
between reducing cholesterol levels and reducing the risk of atherosclerosis and cardiovas-
cular diseases [46,50]. This information will help readers understand the significance of
studying the effects of LAB on cholesterol levels and their potential therapeutic value in
the prevention of cardiovascular diseases.

The adhesion and assimilation of cholesterol by LAB can occur simultaneously when
the bacterial cells are alive and biologically active. However, it is also possible that choles-
terol only undergoes adhesion when the bacterial cells are dead. Understanding the factors
that affect cholesterol binding across the cell wall or membrane will help determine which
cholesterol-binding mechanism dominates under specific environmental conditions. The
removal of cholesterol from the culture medium may indicate the possibility of cholesterol
binding in the food product during fermentation or refrigerated storage. However, bound
cholesterol may still be bioavailable for the human body. Therefore, separate experiments
on the binding, removal, and persistence of cholesterol in the human gastrointestinal tract
should be performed to determine if the release of bound cholesterol occurs under these
conditions. Such research can be easily conducted in vitro using classical culture media
or conditions that simulate the human digestive system. These findings suggest that the
positive effects of LAB on cholesterol levels can also occur under in vivo conditions [29–33].

The aim of this study was to investigate the ability of LAB cells to remove cholesterol
from different in vitro conditions and to examine the impact of selected factors on the
quantity of cholesterol removed and the release of previously bound cholesterol.

2. Materials and Methods
2.1. Materials

The biological material used in this study consisted of four lactobacilli strains, namely
Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842, Lactobacillus helveticus LH-B01, Lacto-
bacillus delbrueckii subsp. lactis ATCC 4797, and Lactobacillus acidophilus La-5, which were
deposited in the institute’s collection. Before use, the strains were reactivated and propa-
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gated in MRS broth aliquots (at 37 ± 1 ◦C for 18 h). Their biomass was then prepared at
different cell concentrations: 10× concentrated biomass (10×), nonconcentrated biomass
(1×), and 10× diluted biomass (0.1×). To obtain 10-fold concentrated biomass, a 17 h broth
culture was centrifuged in an ultracentrifuge (model type 317a, Mechanika Precyzyjna,
Warsaw, Poland) for 7 min at 12,000× g at 4 ± 1 ◦C. In contrast, 10-fold diluted biomass was
obtained by diluting the initial 17 h broth culture (at 1-fold biomass concentration) 10 fold,
followed by mixing on a micro shaker. The number of viable bacterial cells in the culture
broth was determined using the deep plate method (MRS agar, 37 ± 1 ◦C, 72 h, anaerobic
conditions). Dead-cell biomass was obtained by sterilizing (121 ◦C/15 min) suspensions of
live bacterial cells in the culture broth.

2.2. Media and Other Reagents

The MRS broth (basic) was prepared in the appropriate amount according to the
manufacturer’s instructions (Merck, Darmstadt, Germany). A model MRS broth solution
with added cholesterol was also prepared by measuring a suitable amount of dissolved
sterile cholesterol solution into the basic sterile MRS broth to achieve the desired final
concentration of cholesterol in the broth. MRS agar, used to determine lactobacilli cell
counts, was prepared by dissolving a powdered MRS agar medium (Merck) in distilled
water, following the manufacturer’s instructions.

To prepare the cholesterol solution, powdered cholesterol with >99% chemical purity
(Sigma-Aldrich, St. Louis, MO, USA) was dissolved in a mixture of 99% ethanol and Tween
80 (Merck) in a 3:1 ratio. The dissolution was performed by placing the bottle containing the
prepared mixture of ethanol, Tween 80, and cholesterol in a hot water bath (approximately
95 ± 1 ◦C). The cholesterol concentration in the resulting solution was about 40 g/L. The
Cholesterol RTU® enzymatic cholesterol kit (BioMérieux Polska, Warsaw, Poland) was used
to determine the cholesterol concentrations in the culture samples.

The model gastric juice used in this study was carried out following the publication of
Clavel et al. [60]. To prepare the model gastric juice, 4.8 g NaCl (POCH Polish Chemicals
Reagents, Gliwice, Poland), 1.56 g NaHCO3 (POCH), 2.2 g KCl (POCH), and 0.22 g CaCl2
(POCH) were dissolved in 1000 mL distilled water. The resulting solution was then adjusted to
pH 2.4 ± 0.2 using a pH meter (model LPH330T, Grosseron, Tacussel Electronique, Coueron,
France) and a 1 M HCl (POCH) solution. The model gastric juice was sterilized in portions of
50 mL in an autoclave at 121 ± 1 ◦C for 15 min. In the experiments, a freeze-dried preparation
of pepsin (Sigma-Aldrich) with a potency of 3200–4500 units/1 mg protein was used. Pepsin
was added to the model gastric juice immediately before the experiments (2 mg crystalline
pepsin to 50 mL model gastric juice).

The intestinal juice model used in this study was prepared following the publication of
Marteau et al. [61], with some modifications. First, 2.5 g NaCl (POCH), 0.3 g KCl (POCH),
0.015 g CaCl2 (POCH), and 8.5 g bovine bile (Merck) were dissolved in 500 mL of the
previously prepared 1 M NaHCO3 solution. The pH of the solution after sterilization was
determined to be 7.0 ± 0.2 using a pH meter (model pHT 003, Eon Trading LLG, USA) and
1 M NaOH (POCH). The solution was then autoclaved at 121 ± 1 ◦C for 15 min. A sterile
solution of intestinal enzymes (750 mg pancreatin from bovine pancreas with an activity of
50,000 FIP units lipase, 40,000 FIP units amylase, and 3000 FIP units protease) was added
to 160 mL portions of the intestinal juice model immediately before use.

All the chemicals used in this study were of analytical grade or HPLC grades and
were purchased from Merck or Sigma-Aldrich Co. The standards used in this study to
identify fatty acids included oleic acid (Sigma-Aldrich), anteiso12-methyltetradecanoic acid
(Sigma-Aldrich), 2-hydroxytetradecanoic acid (Sigma-Aldrich), nonadecanoic acid (Sigma-
Aldrich), bacterial acid methyl esters (BAME; Sigma-Aldrich), GLC-674, and GLC-617
(Nu-Chek-Prep., Elysian, MI, USA). Additionally, the isomers of methyl esters of linoleic
acid 18:2 (cis-9,trans-11 and trans-10,cis-12; Nu-Chek Prep., Elysian, MN, USA) were also
utilized. In cases where other fatty acids were identified, comparisons were made with
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literature data [62–64]. For the determination of cholesterol in samples, 5α-cholesterol
(Sigma-Aldrich) was used as an internal standard.

2.3. Methods
2.3.1. Testing the Ability of Lactobacilli Cells to Remove Cholesterol under Gastric Juice
and Intestinal Juice Conditions

To determine the degree of cholesterol removal, the biomass compounds of the strains
were incubated in juice models containing the added cholesterol solution. First, the biomass
compounds were incubated in gastric juice (1:1) at 37 ◦C for 3 h, followed by incubation in
intestinal juice (1:1) at 37 ◦C for 5 h. The cholesterol concentration in the culture liquid was
determined using an enzymatic cholesterol determination kit at the beginning and end of
each incubation procedure. Separate experiments were performed using biomass from live
and thermally inactivated bacterial cells.

2.3.2. Testing the Ability of Lactobacilli Cells to Release Previously Bound Cholesterol
under Gastric Juice and Intestinal Juice Conditions

To allow for initial cholesterol binding, culture cell biomass samples were cultured in
MRS broth containing the added cholesterol at 37 ◦C for 24 h. After culture, the cholesterol
concentration in the postculture liquid was determined using an enzymatic cholesterol
determination kit, and the biomass samples were centrifuged in an ultracentrifuge (model
type 317a) for 7 min at 12,000× g at 4 ± 1 ◦C. The resulting biomass samples were then
incubated in juice models containing no added cholesterol solution. First, the biomass
samples were incubated in gastric juice (1:1) at 37 ◦C for 3 h, followed by incubation in
intestinal juice (1:1) at 37 ◦C for 5 h. The cholesterol concentration in the culture liquid was
determined using an enzymatic cholesterol determination kit at the beginning and end of
each incubation procedure. Separate experiments were performed using biomass from live
and thermally inactivated bacterial cells.

2.3.3. Testing the Ability of Lactobacilli Cells to Remove Cholesterol from Dairy Products
under Gastric and Intestinal Juice Conditions

Model dairy products were prepared using fresh skim milk (0.05% fat) with the
addition of cream (12% fat) or skimmed milk powder to adjust the fat and dry-matter
content (DM). Five variants of model dairy products were prepared: (1) fresh milk with
0.05% fat and 12% DM; (2) fermented milk with 0.05% fat and 12% DM; (3) fermented
milk with 0.05% fat and 20% DM; (4) fermented milk with 12% fat and 12% DM; and
(5) fermented milk with 12% fat and 20% DM. The fermentation of samples of selected
variants of model dairy products was carried out at 37 ± 1 ◦C for 5 h. The finished products
were then refrigerated at 6 ± 1 ◦C and stored for 4 weeks. After this period, samples of the
model dairy products were stored in juice models without the added cholesterol solution,
first in gastric juice (1:1, at 37 ◦C for 3 h) and then in intestinal juice (1:1, 37 ◦C for 5 h).
Simultaneously, the test strains were cultured in MRS broth with and without the addition
of cholesterol solution. After the completion of fermentation and cooling of the samples,
after 1 and 4 weeks of refrigerated storage, and after the end of storage under the conditions
of juice models (gastric and intestinal juice), the cholesterol content in the samples was
determined using a gas chromatograph model GC-MS QP 2010 (Shimadzu, SHIM-POL
A.M. Borzymowski, Warsaw, Poland). The GCMS Solution v.2.50 software (Shimadzu,
SHIM-POL A.M. Borzymowski, Warsaw, Poland) was used for analysis of the results. The
final cholesterol content results were converted to the starting amount of the model dairy
products, considering the dilution levels of the samples at each stage of the experiments.
The number of viable bacterial cells in the samples was determined using the plate depth
method (MRS agar, 37 ± 1 ◦C, 72 h, anaerobic conditions).
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2.3.4. Determination of Cholesterol Content in Model Dairy Products Using Gas
Chromatography Technology Combined with Mass Spectrometry

Fat extraction from the samples was carried out through direct saponification [65]. In
brief, 0.2 g of the sample was weighed into a tube, and 5 mL of 0.5 M methanolic KOH solution
was added. The tube was then capped and vortexed for 15 s. Subsequently, the tube was
heated in an 80 ◦C water bath for 15 min with vortexing every 5 min for 10 s. After heating, the
sample was cooled, and 1 mL of water and 5 mL of n-hexane (Merck, Darmstadt, Germany)
were added. Finally, the sample was vigorously vortexed for 1 min and centrifuged at 2000× g
for 1 min. An aliquot of the upper phase was then transferred to an autosampler vial and
analyzed using GC-MS QP 2010. The gas chromatograph operated under the following
conditions: a DB-type column measuring 30 m/0.25 m/0.25 mm; the initial temperature of
50 ◦C with an isotherm of 2 min; temperature increased by 25 ◦C/min to 270 ◦C with an
isotherm of 1 min; and temperature ramp of 5 ◦C/min to an end temperature of 320 ◦C with
an isotherm of 10 min. The analysis duration was 31.80 min. The retention time for cholesterol
was about 18.2 min, and for 5-cholestane, it was 15.7 min. The dispenser temperature was
260 ◦C, with injection in split mode, a split ratio of 1:30, column gas flow of 0.98 mL/min,
and a pressure of 52.3 kPa. The mass spectrometer operated under the following conditions:
ion-source temperature of 220 ◦C, the temperature of the connecting line between GC and
MS being 240 ◦C, a voltage of 1.13 kV at the detector, the ionization energy of 70 eV, and a
quadrupole filter sweep range of 100–600 m/z.

2.3.5. Determination of the Fatty Acid Profile of Lactobacilli Cells in MRS Broth with and
without the Addition of Cholesterol Solution

The fatty acids were extracted using the method described in the references [66–68] and
the gas chromatography coupled to a mass spectrometer was used for the chromatographic
separation of fatty acid methyl esters (GC-MS QP 2010), with a 007-23-30-0.2F polar column
(30 m/0.25 mm/0.20 m; Quadrex). The sample was injected at a split ratio of 1:25 with a
dispenser temperature of 230 ◦C. The chromatographic separation was carried out using
the following conditions: an initial column temperature of 60 ◦C with a 2 min isotherm, a
temperature ramp of 4 ◦C/min to 220 ◦C, and a 10 min isotherm. The carrier gas used was
helium, with a flow rate of 0.37 mL/min. The detector conditions used were as follows:
ion-source temperature of 200 ◦C, the temperature of the line connecting GC to MS of
220 ◦C, detector voltage of 1.45 kV, and quadrupole filter sweep range of 50–400 m/z.

2.4. Statistical Analysis

Each experiment was carried out in three independent replicates (n = 3), and each
replicate was measured twice. The data were subjected to a two-way analysis of variance
(ANOVA), and the mean differences between the statistical groups were tested at a signifi-
cance level of α = 0.05 using Tukey’s test. Multivariate analysis was employed to describe
the relationship of multiple variables for each sample at a significance level of α = 0.05.
The Statgraphics Centurion XVII program (Statgraphics Technologies, Inc., The Plains, VA,
USA) was used for statistical analyses.

3. Results and Discussion
3.1. Testing the Ability of Lactobacilli Cells to Remove Cholesterol under Gastric Juice and
Intestinal Juice Conditions

The experiments were conducted under in vitro conditions, and the results are pre-
sented in Figure 1a,c,e,g. The chosen experimental setup facilitated the simultaneous exam-
ination of cholesterol removal during the transit of lactobacilli cells through a segment of
gastric and intestinal juice models. It was assumed that LAB do not metabolize cholesterol,
and therefore, the loss of cholesterol from the culture broth should be directly proportional
to the amount of cell biomass that binds and removes cholesterol. Consequently, the impact
of bacterial biomass concentration and viability on the observed phenomena of cholesterol
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removal and release during the passage of lactobacilli cells through a section of gastric and
intestinal juice models was investigated.
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The initial concentration of cholesterol in the cultures of the lactobacilli strains tested
under gastric juice and intestinal juice conditions was 0.702 g/dm3. The findings revealed
that the removal of cholesterol by LAB cells under gastric juice and intestinal juice condi-
tions was significantly dependent on the biomass amount and viability of the bacterial cells
and also varied depending on the bacterial strain under study. Among the tested strains,
the viable bacterial cells of the L. helveticus strain LH-B01 exhibited the highest level of
cholesterol removal under the gastric juice condition, increasing the concentration 10 fold
(average 0.043 g/dm3, Figure 1g).

Liong and Shah [41] noted that the number of cells significantly impacts the differences
in the amount of cholesterol bound by LAB, whereas the growth dynamics of individual
strains determine the amount of cell biomass and differences in experimental results.
However, the absence of sufficient literature data in this area precludes a more detailed
discussion of the results obtained in this study. Nonetheless, our study revealed that
the initial concentration of bacterial cell biomass had a positive effect on the amount
of cholesterol removed from the culture medium. However, it was expected that as the
concentration of cell biomass decreased by a factor of 10, the amount of cholesterol removed
from the culture broth would also decrease proportionally, by 10 fold). Interestingly, little
difference was observed in the amount of cholesterol removed using biomass samples with
varying concentrations of living cells used. These results could provide clues to explain
the hypocholesterolemic effect of products containing LAB, an area that has been widely
investigated in the literature but with contradicting findings [8,9,22,69–72].

For bacterial cells to take up cholesterol molecules, their high biological activity
is necessary since, as demonstrated by Hosono and Tono-Oka [18], this phenomenon
occurs most intensely during the logarithmic growth phase in lactic acid streptococci. The
physical binding of cholesterol through the cell wall does not require cellular activity but
only requires a sufficiently long contact time between the cells and cholesterol molecules.
Additionally, the same researchers found that not only living but also dead (autoclaved)
cells of the tested strain could bind cholesterol. The fact that cholesterol removal occurs even
when bacterial cells are dead confirms that the physical binding of cholesterol molecules
through the cell wall (adhesion) is one of the mechanisms of cholesterol removal by LAB
cells [1,41,73–75]. These observations align with the experimental results presented in this
study (Figure 1a,c,e,g).

3.2. Testing the Ability of Lactobacilli Cells to Release Previously Bound Cholesterol under Gastric
Juice and Intestinal Juice Conditions

In addition to the phenomenon of cholesterol binding and removal, it is also crucial to
study whether bound cholesterol remains bioavailable to the human body. The experiments
carried out in this part of the study, the results of which are presented in this section,
addressed this issue. The objective of the experiments was to investigate whether the
cholesterol previously bound by LAB cells is released under gastric juice or intestinal juice
conditions. The results of the experiments are illustrated in Figure 1b,d,f,h. Initially, the
living- and dead-cell biomass samples of the tested lactobacilli were cultivated in MRS
broth with added cholesterol (average concentration of 0.647 g/dm3); after 24 h, the cell
biomass samples were transferred to a gastric juice model for 3 h, and thereafter to an
intestinal juice model for 5 h.

The results of the experiments suggest that cholesterol previously removed and
bound by cells of monocultures of LAB can be released. The experiments on the release
of cholesterol by lactobacilli cells during their passage through a section of gastric and
intestinal juice models revealed significant differences between the biomass of living
and dead bacterial cells. Among the living lactobacilli cells, the strain L. acidophilus
La-5 removed the most cholesterol from the initial amount of cholesterol in the MRS
broth (0.677 g/dm3), with an average of 0.104 g/dm3 (Figure 1g). However, during the
passage through a section of gastric and intestinal juice models, the same strain released
an average of 0.082 g/dm3 of cholesterol, which was significantly less than what was
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removed from the MRS broth. In contrast, the dead-cell biomass of the L. acidophilus
La-5 strain removed the most cholesterol from the MRS broth among the lactobacilli
strains tested, with an average of 0.056 g/dm3, and released an average of 0.044 g/dm3

of cholesterol during the passage through a section of gastric and intestinal juice models.
Statistical analyses showed that in this case, the amount of cholesterol released also
depended on the viability of the bacterial cells. The dead-cell biomass of the lactobacilli
strains released less bound cholesterol than the living-cell biomass, but they also removed
less bound cholesterol from the culture medium earlier.

The results suggest that a small portion of cholesterol bound by LAB cells is so firmly
bound that it is not released during the passage of lactobacilli cells through the section of
gastric and intestinal juice models. It can be assumed that the cholesterol bound in this
manner is not bioavailable to the human body [1]. This finding is consistent with those
of Albano et al. [1], Lee et al. [76], and Miremadi et al. [77] on structural changes in the
bacterial cell wall. The results obtained in this study can be related to studies on the binding
of aflatoxin B1 by LAB cells [76,78]. El-Nezami et al. [78] observed that the removal of
aflatoxin B1 (AFB1) from the culture medium using selected cultures of LAB depended on
their population and culture temperature. Lee et al. [76] also investigated the phenomenon
of binding and release of AFB1 bound using the living and dead cells of L. rhamnosus GG
and L. rhamnosus LC 705 and found similar relationships to those observed in this study
regarding the binding and removal of cholesterol using LAB cells. Lee et al. [76] also
concluded that the thermal killing of the bacteria altered the bacterial cell surface and
exposed additional binding sites for AFB1.

Most studies on the effect of LAB on cholesterol have been conducted using classic
culture broths, sometimes with the addition of bile salts [8,15,27,46,77,79]. However,
there are no studies available in the literature on the effect of LAB cells on cholesterol
binding under the conditions of an intestinal juice model. It is important to note that the
intestinal juice model used in our experiments contained bovine bile with both conju-
gated and deconjugated bile salts, meaning that the bile salt hydrolase activity produced
by most intestinal strains of LAB was not required to precipitate cholesterol with free
bile acids [27,36,42–44,51,54,55,80]. The bile salt that is not conjugated exhibits dimin-
ished solubility, lesser absorption efficiency, and reduced effectiveness in emulsifying
fat and facilitating the absorption of cholesterol [46]. The coprecipitates of cholesterol
with bile acids are known to form at low pH, below 5.5 [14,15,31,51,81]. Although the
intestinal juice model used in the present study had a pH above 7.0, it is possible that
the pH dropped to a level sufficient for the coprecipitation of cholesterol with free bile
acids due to the addition of viable bacterial cells. This is possible in stationary cultures
and is confirmed in the literature cited [15,27,36,42–44,52]. Such coprecipitates would
rapidly dissolve under in vivo conditions if the pH rose above 5.5 [14,16,34,42], as the
bile secreted by the liver travels to the duodenum, where it neutralizes the acidic chyme
leaving the stomach, and the pH in the small intestine is above 6.0. Therefore, the hypoc-
holesterolemic effect caused by the coprecipitation of cholesterol with deconjugated bile
acids is unlikely to occur under in vivo conditions. However, this does not mean that
lactobacilli are not beneficial in modifying other physiological parameters indicative
of markers of metabolic syndrome, including obesity, hyperlipidemia, hyperglycemia,
and insulin resistance, under in vivo conditions [29–31,82]. The passage of lactobacilli
cells through the section of gastric and intestinal juice models may have implications
for the hypocholesterolemic effect observed in this study. Therefore, when considering
the passage of lactobacilli cells through the section of gastric and intestinal juice models,
it is important to acknowledge the potential for pH changes and the coprecipitation
of cholesterol with bile acids. However, in a physiological setting, the dissolution of
such coprecipitates is likely, limiting the hypocholesterolemic effect of lactobacilli ob-
served in vitro. The hypocholesterolemic effect of some probiotics characterized by
high BSH enzyme activity in vitro has also been confirmed in vivo in both humans and
animals [8,32,33,46,83].
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3.3. Testing the Ability of Lactobacilli Cells to Remove Cholesterol from Dairy Product Models
under Gastric Juice and Intestinal Juice Conditions

The previous experiments conducted in this study demonstrated that lactobacilli cells
can effectively remove and bind cholesterol from both culture broth and digestive juice
models. This process is contingent upon the number of bacterial cells present and their
viability. It is worth noting that the consumption of fermented milk products involves the
ingestion of a significant amount of LAB cell biomass.

The objective of the current experiment was to assess the cholesterol-removing ability
of lactobacilli in dairy product models that vary in DM, fat content (0, 12, and 20%),
and acidity (fresh milk and fermented milk). The products were subjected to 4 weeks of
refrigerated storage and subpassage conditions in a section of gastric and intestinal juice
models. The results of this experiment are presented in Table 1.

The ability of specific lactobacilli cultures to lower cholesterol in culture broth has
not been shown to have a direct correlation with the reduction in cholesterol levels in
fermented milk products. In this study, it was found that the cholesterol content of the
dairy product models was only significant with the original total fat content of the samples.
Neither the length of cold storage nor the passage of gastric and intestinal juice models
had any significant effect on the reduction in cholesterol levels. It is worth noting that the
type of lactobacilli culture used did not have a significant impact on the cholesterol content.
This is to be expected since LAB cells are not capable of metabolizing cholesterol; instead,
they can only bind to it through the cell wall and/or incorporate it into the cell wall or
membrane simultaneously.

Table 1. Changes in cholesterol content of different model product systems during cold storage and
under digestive juice models (calculated as mg of cholesterol in 100 g of the primary product samples).

Strain Product Directly After
Preparation

After 1 Week
of Cold Storage

After 4 Weeks
of Cold Storage

Gastric Juice
Model after 3 h

Intestinal Juice
Model after 5 h

L. delbrueckii
subsp. bulgaricus

ATCC 11842

MRS broth 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00
MRS broth +
cholesterol 0.7 b ± 0.01 0.7 b ± 0.04 0.7 b ± 0.02 0.7 b ± 0.03 0.7 b ± 0.03

Fresh milk 0.05%
fat, 12% DM 1.7 c ± 0.04 1.6 c ± 0.02 1.6 c ± 0.04 1.7 c ± 0.05 1.6 c ± 0.05

Fermented milk
0.05% fat, 12% DM 1.7 c ± 0.04 1.6 c ± 0.02 1.6 c ± 0.04 1.7 c ± 0.05 1.6 c ± 0.05

Fermented milk
0.05% fat, 20% DM 1.6 c ± 0.04 1.5 c ± 0.02 1.5 c ± 0.04 1.6 c ± 0.05 1.5 c ± 0.05

Fermented milk
12% fat, 12% DM 40.6 e ± 1.07 39.4 e ± 0.41 38.5 e ± 1.02 40.5 e ± 1.13 39.0 e ± 1.13

Fermented milk
12% fat, 20% DM 37.5 d ± 0.99 36.5 d ± 0.38 35.6 d ± 0.95 37.4 d ± 0.97 36.0 d ± 0.97

L. helveticus
LH-B01

MRS broth 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00
MRS broth +
cholesterol 0.7 b ± 0.02 0.7 c ± 0.02 0.7 c ± 0.02 0.6 b ± 0.02 0.6 b ± 0.02

Fresh milk 0.05%
fat, 12% DM 1.6 c ± 0.04 1.6 c ± 0.06 1.6 c ± 0.01 1.6 c ± 0.05 1.6 c ± 0.05

Fermented milk
0.05% fat, 12% DM 1.6 c ± 0.04 1.6 c ± 0.06 1.6 c ± 0.01 1.6 c ± 0.05 1.5 c ± 0.05

Fermented milk
0.05% fat, 20% DM 1.5 c ± 0.04 1.5 c ± 0.05 1.5 c ± 0.01 1.5 c ± 0.04 1.4 c ± 0.04

Fermented milk
12% fat, 12% DM 39.3 e ± 0.93 38.1 e ± 1.39 39.1 e ± 0.23 39.3 e ± 1.15 37.2 e ± 1.15

Fermented milk
12% fat, 20% DM 36.4 d ± 0.85 35.3 d ± 1.28 36.2 d ± 0.22 36.4 d ± 1.09 34.5 d ± 1.09
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Table 1. Cont.

Strain Product Directly After
Preparation

After 1 Week
of Cold Storage

After 4 Weeks
of Cold Storage

Gastric Juice
Model after 3 h

Intestinal Juice
Model after 5 h

L. delbrueckii
subsp. lactis
ATCC 4797

MRS broth 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00
MRS broth +
cholesterol 0.6 b ± 0.03 0.7 b ± 0.01 0.7 b ± 0.02 0.6 b ± 0.01 0.6 b ± 0.01

Fresh milk 0.05%
fat, 12% DM 1.6 c ± 0.01 1.6 c ± 0.02 1.6 c ± 0.01 1.6 c ± 0.05 1.5 c ± 0.05

Fermented milk
0.05% fat, 12% DM 1.6 c ± 0.01 1.6 c ± 0.02 1.6 c ± 0.01 1.6 c ± 0.05 1.5 c ± 0.04

Fermented milk
0.05% fat, 20% DM 1.5 c ± 0.01 1.5 c ± 0.02 1.5 c ± 0.01 1.5 c ± 0.04 1.4 c ± 0.04

Fermented milk
12% fat, 12% DM 37.9 e ± 0.29 38.6 e ± 0.56 38.0 e ± 0.25 37.9 e ± 1.01 36.5 e ± 1.01

Fermented milk
12% fat, 20% DM 35.1 d ± 0.27 35.8 d ± 0.51 35.1 d ± 0.24 35.1 d ± 1.02 33.8 d ± 1.02

L. acidophilus La-5

MRS broth 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00 0.0 a ± 0.00
MRS broth +
cholesterol 0.6 b ± 0.03 0.7 b ± 0.01 0.7 b ± 0.03 0.6 b ± 0.02 0.6 b ± 0.02

Fresh milk 0.05%
fat, 12% DM 1.6 c ± 0.06 1.6 c ± 0.03 1.6 c ± 0.02 1.6 c ± 0.04 1.5 c ± 0.05

Fermented milk
0.05% fat, 12% DM 1.6 c ± 0.06 1.6 c ± 0.03 1.6 c ± 0.02 1.6 c ± 0.05 1.5 c ± 0.06

Fermented milk
0.05% fat, 20% DM 1.5 c ± 0.05 1.5 c ± 0.02 1.5 c ± 0.02 1.5 c ± 0.05 1.4 c ± 0.05

Fermented milk
12% fat, 12% DM 38.6 e ± 1.32 38.8 e ± 0.64 38.5 e ± 0.51 38.6 e ± 1.05 36.6 e ± 1.05

Fermented milk
12% fat, 20% DM 35.8 d ± 1.23 35.9 d ± 0.59 35.7 d ± 0.48 35.7 d ± 1.07 33.9 d ± 1.07

a,b,c,d,e Means with different lowercase letters within the entire table are significantly different (p < 0.05).

Although the exact mechanism of cholesterol binding by bacterial cells remains unclear,
it is expected that the process of lipid extraction from a sample would extract all the
cholesterol present in the sample. However, the results obtained in this portion of the
study have yet to be confirmed in the literature. Aloglu and Öner [79] conducted research
on Lactobacillus cultures to assess their cholesterol-removing abilities in culture media
containing added bile salts and cholesterol (at 0.150 g/dm3) as well as cream. They
observed a reduction in cholesterol levels using bacterial cells in both the culture broth and
cream. The percentage of cholesterol removed from the cream ranged from 20.6% to 59.8%
of its initial level, whereas the same cultures removed 12.1–47.5% of the initial cholesterol
content from the culture medium.

3.4. Survival of Lactic Acid Bacteria Cells under Digestive System Conditions

The experiments discussed above suggest that lactobacilli cells have the ability to
remove cholesterol from the culture medium and gastric and intestinal juice models, as well
as release already-bound cholesterol. It was demonstrated that the amount of cholesterol
removed or released is dependent on the quantity and viability of bacterial cell biomass.
Therefore, this study aimed to investigate whether lactobacilli cells, suspended in model
dairy products with varying DM, fat content (0, 12, and 20%), and acidity (fresh milk
and fermented milk), could survive in an environment that simulates the conditions of
the stomach or intestines. For comparison, the same conditions were applied to biomass
samples of the tested lactobacilli, suspended in MRS broth with or without the addition of
cholesterol. The results of these experiments are presented in Figure 2a–d.

The data presented in this study suggest that the lactobacilli cells used in these ex-
periments were as active as in previous studies and exhibited good survival rates under
refrigerated storage conditions of the dairy samples model. Before the passage of gastric
and intestinal juice models, the number of viable lactobacilli cells in all milk product model
samples tested ranged from 7.2 log(CFU/mL) to 8.3 log(CFU/mL), regardless of the culture
used. However, a 3 h incubation procedure under gastric juice conditions resulted in a
significant reduction in the population of viable lactobacilli cells, depending on the type of
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sample in which the cells were suspended and the strain tested. L. helveticus strain LH-B01
suspended in MRS broth, fresh milk samples, or 12% fat fermented milk samples exhibited
the lowest survival rates under these conditions (Figure 2b). For comparison, a 3 h incuba-
tion procedure in the gastric juice model most significantly reduced the population of live
L. acidophilus La-5 cells (Figure 2d). In addition, a 5 h incubation process in the intestinal
juice model resulted in the elimination of live lactobacilli cells suspended in MRS broth to
below the limit of detection (<0.1 log(CFU/mL)), regardless of the strain tested. However,
it is noteworthy that there was no significant effect of cholesterol supplementation on the
survival of lactobacilli under gastric or intestinal juice conditions. When lactobacilli cells
were suspended in dairy product models, higher survival rates were observed, particularly
for L. acidophilus La-5 cells (Figure 2d).
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Research suggests that nonprobiotic bacterial strains exhibit lower cell survival rates
than probiotic strains under gastric juice conditions [39,84]. Vinderola and Reinheimer [84]
conducted a study on the tolerance of probiotic strains of LAB and bifidobacteria to gastric
juice conditions and found that L. acidophilus cells were the most resistant to low pH levels.
The good tolerance of bacterial cells to digestive juice conditions can be explained by the
presence of these bacteria in the digestive tracts of humans or animals. Bacteria that are not
natural gut flora lack natural resistance to intestinal juice conditions [85]. However, this
is not conclusive since Elli et al. [86] demonstrated that, under in vivo conditions, some
Streptococcus thermophilus can survive in the human gastrointestinal tract, despite not being
a typical intestinal flora. In their study, a group of 20 volunteers were fed yogurt containing
live cells of LAB. Researchers found live cells of S. thermophilus and L. delbrueckii subsp.
bulgaricus in the terminal gastrointestinal tract and feces. Therefore, it can be assumed
that the survival of lactobacilli cells in the human gastrointestinal tract is dependent on
the individual properties of the strains of these bacteria and is not a property of the entire
species, which has also been confirmed by several other researchers [20,21,33,83].
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It is important to note that the results of this study demonstrated statistical differences
in cell survival rates among individual lactobacilli strains under gastric or intestinal juice
conditions, depending on the environment in which the bacteria entered the tested system
(Figure 3). The analysis conducted in this study on the relationship between pH, fat content,
DM content, and viability of the tested lactobacilli strains (L. delbrueckii subsp. bulgaricus
ATCC 11842, L. helveticus LH-B01, L. delbrueckii subsp. lactis ATCC 4797, and L. acidophilus
La-5) revealed that, after the incubation of the samples under gastric juice conditions for
3 h, the population of living lactobacilli cells was more strongly determined by the DM
content of the samples (correlation coefficients of 0.89, 0.77, and 0.69 for L. delbrueckii
subsp. bulgaricus ATCC 11842, L. acidophilus La-5, and L. delbrueckii subsp. lactis ATCC
4797, respectively). In other cases, the DM content did not significantly affect the cells more
than the fat content of the samples (a correlation coefficient of 0.44 for L. delbrueckii subsp.
bulgaricus ATCC 11842; in other cases, the factor was not significant). In contrast, the pH of
the samples was an inhibiting factor for the survival of cells of specific lactobacilli strains
under gastric juice conditions (a correlation coefficient of −0.59 for the strains L. delbrueckii
subsp. bulgaricus ATCC 11842 and L. acidophilus La-5; in other cases, this factor was not
significant). Similar results were obtained after statistical analysis of the results obtained
after incubating the samples under intestinal juice conditions for 5 h. The analysis of the
relationship between pH, fat content, DM content, and viability of the tested lactobacilli
strains performed in this case showed that the population of all the tested lactobacilli strains
was more strongly determined by the DM content of the samples (correlation coefficients
of 0.97, 0.94, 0.93, and 0.91 for L. delbrueckii subsp. bulgaricus ATCC 11842, L. delbrueckii
subsp. lactis ATCC 4797, L. helveticus LH-B01, and L. acidophilus La-5, respectively) than the
fat content of the samples (correlation coefficients of 0.60, 0.48, and 0.47 for L. delbrueckii
subsp. lactis ATCC 4797, L. acidophilus La-5, and L. delbrueckii subsp. bulgaricus ATCC 11842,
respectively). In other cases, this factor did not significantly affect the cells. In addition, the
pH of the samples was an inhibiting factor for the survival of cells of each lactobacilli strain
under gastric juice conditions (correlation coefficients of −0.45, −0.50, −0.50, and −0.52
for L. delbrueckii subsp. bulgaricus ATCC 11842, L. acidophilus La-5, L. delbrueckii subsp. lactis
ATCC 4797, and L. helveticus LH-B01, respectively). This may indicate that the dry weight
of the products (in this case, the significant content of milk-derived proteins) has a more
protective effect on lactobacilli bacterial cells than the fat content during passage through
the stomach and intestines simulations.
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Figure 3. (a) gastric juice 3 h; (b) intestinal juice 5 h. Graphs of correlation matrix showing the
relationship between pH, fat content, dry-matter content, and the viability of tested lactobacilli strains
(L. delbrueckii subsp. bulgaricus ATCC 11842, L. helveticus LH-B01, L. delbrueckii subsp. lactis ATCC
4797, and L. acidophilus La-5) (a) after 3 h of incubation under gastric juice conditions, and (b) after
5 h under intestinal juice conditions (with a confidence level of 95.0%); x, not significant at 0.05.
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3.5. Determination of the Fatty Acid Profile of Lactobacilli Cells in MRS Broth with and without
the Addition of Cholesterol Solution

The survival of LAB cells under digestive system conditions is influenced by factors
such as the probiotic nature of the strains, their inherent resistance to low pH levels, and
individual strain properties rather than being solely determined by their classification
as natural gut flora. Various factors have been identified that can protect bacterial cells
from the harsh conditions of the gastrointestinal tract, including acidity, organic acids, bile
salts, nutrients, and the length of time the bacteria spend in the gut, as well as their initial
concentration. Interestingly, cholesterol has also been shown to enhance the survival of
bacteria in the stomach and intestines [52]. This is thought to be due to cholesterol’s ability
to make LAB more resistant to lysis and alter the composition and function of the cell wall
and membrane, thus changing their tolerance to environmental factors [34,52]. Therefore,
in this study, the effect of cholesterol on the fatty acid profile of lactobacilli cells in MRS
broth, with and without the addition of cholesterol solution, was also investigated. The
results of these experiments are presented in Table 2, while the composition of the external
standard (BAME) and the identification parameters for each fatty acid are given in Table 3.

The fatty acid profile of the lactobacilli studied was analyzed using the chromato-
graphic separation of the extracted fatty acids from the bacterial biomass, identifying a total
of 29 different fatty acids. Among these, six saturated fatty acids, two single-branched fatty
acids with iso and anteiso structures, one hydroxy fatty acid, nine monounsaturated fatty
acids with a single double bond, two polyunsaturated fatty acids with multiple double
bonds, six conjugated fatty acids, and three cyclic fatty acids were identified. The most
predominant fatty acids found in the bacterial biomass were C14:0; C16:0; C16:1, cis-9; C18:0;
C18:1, cis-9; C18:1, cis-11; cycC19:0, cis-9,10; and cycC19:0, cis-10,11. Significant differences
were observed among the fatty acid profiles of the different lactobacilli strains studied. The
largest differences in fatty acid profiles were observed for 12 fatty acids, including C10:0,
15:0, iso; C16:1, trans-9; C16:1, cis-9; cycC17:0, cis-9,10; C18:1, trans-6; C18:1, cis-6; C18:1,
cis-9; C18:2, trans-9,trans-12; C18:2, cis-9,cis-12; cycC19:0, cis-9,10; and cycC19:0, cis-10,11.
Interestingly, two common monounsaturated fatty acids, C16:1, cis-9; and C18:1, cis-9, were
identified as substrates for cell-membrane synthesis and can enhance membrane flexibility
and fluidity, thereby preventing cell damage and lysis. In contrast, linoleic acid isomers
such as C18:2, cis-9,cis-12 as well as C18:2, trans-9,trans-12 were found to affect metabolic
functions of lactobacilli, such as lipid synthesis and fatty acid biosynthesis, and reduce
resistance to environmental stresses such as high temperature or high salt concentrations.
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Table 2. Fatty acid composition (%, ×10−3) in the lactobacilli strain profiles obtained from the cells cultured in MRS broth with and without cholesterol (means ± SD).

Fatty Acid

L. delbrueckii Subsp.
bulgaricus ATCC 11842 L. helveticus LH-B01 L. delbrueckii Subsp. lactis

ATCC 4797 L. acidophilus La-5

MRS Broth MRS
Broth + Chol MRS Broth MRS

Broth + Chol MRS Broth MRS
Broth + Chol MRS Broth MRS

Broth + Chol

C10:0 caproic/decanoic 0.9 a,b ± 0.6 0.2 a,b ± 0.2 0.3 a ± 0.1 0.5 a ± 0.2 0.5 a,b ± 0.2 1.5 a,b ± 0.9 1.7 b ± 0.6 0.8 b ± 0.2
C12:0 lauric/dodecanoic 4.7 ± 1.9 1.2 ± 0.0 11.8 ± 2.5 26.9 ± 1.1 4.4 ± 0.3 13.1 ± 2.1 10.0 ± 1.8 5.1 ± 0.1
C14:0 myristic/tetradecanoic 8.1 ± 2.0 4.1 ± 0.2 3.8 ± 1.7 3.2 ± 0.5 2.6 ± 0.6 7.6 ± 1.9 28.5 ± 2.9 15.6 ± 2.5

15:0, iso iso-13-methyltetradecanoic 3.6 a,b ± 0.12 0.9 a,b ± 0.1 11.8 b ± 2.4 26.7 b ± 4.0 0.1 a ± 0.0 0.2 a ± 0.1 0.2 a ± 0.1 0.1 a ± 0.0

15:0, anteiso anteiso-12-
methyltetradecanoic 0.3 ± 0.2 0.1 ± 0.1 0.6 ± 0.9 1.4 ± 1.2 0.2 ± 0.1 0.7 ± 0.4 0.8 ± 0.3 0.4 ± 0.1

C15:0 pentadecanoic 0.1 ± 0.1 0.0 ± 0.0 0.5 ± 0.7 1.1 ± 1.0 0.1 ± 0.0 0.4 ± 0.2 0.4 ± 0.2 0.2 ± 0.0
C16:0 palmitic/hexadecanoic 24.3 ± 4.9 21.0 ± 6.8 14.8 ± 3.8 18.2 ± 2.7 14.2 ± 1.3 36.0 ± 1.6 091.3 ± 3.7 048.3 ± 5.0

C16:1, trans-9 palmitelaidic/trans-9-
hexadecenoic 20.0 b ± 2.3 19.4 b ± 8.6 11.2 b ± 2.5 25.3 b ± 1.8 0.2 a ± 0.0 0.5 a ± 0.3 0.5 a ± 0.2 0.3 a ± 0.1

C16:1, cis-9 palmitoleic/cis-9-
hexadecenoic 95.4 b ± 18.5 3.1 b ± 0.0 3.1 b ± 1.3 0.0 a ± 0.0 0.6 a ± 0.1 0.0 a ± 0.0 6.5 b ± 1.2 4.4 b ± 0.4

C12:0, 2OH 2-hydroxydodecanoic 0.3 ± 0.2 0.1 ± 0.1 0.8 ± 0.2 1.8 ± 0.6 0.1 ± 0.0 0.4 ± 0.2 0.5 ± 0.2 0.3 ± 0.1

cycC17:0, cis-9, 10 cis-9,10-
methylenehexadecanoic 4.9 b ± 1.0 4.8 b ± 1.6 0.0 a ± 0.0 0.0 a ± 0.0 0.1 a ± 0.0 0.3 a ± 0.2 0.0 a ± 0.0 0.0 a ± 0.0

C18:0 stearic/octadecanoic 3.0 ± 0.8 5.4 ± 1.0 2.9 ± 0.5 6.7 ± 1.4 2.4 ± 0.4 8.2 ± 2.7 29.6 ± 2.5 13.8 ± 1.4
C18:1 octadecenoic 1.0 ± 0.6 0.3 ± 0.2 0.9 ± 0.4 2.1 ± 0.9 0.0 ± 0.0 0.0 ± 00 01.3 ± 0.5 0.6 ± 0.1

C18:1, trans-6 petroselaidic/trans-6-
octadecenoic 0.0 a ± 0.0 0.0 a ± 0.0 0.7 b ± 1.0 1.5 b ± 0.4 0.0 a ± 0.0 0.0 a ± 0.0 0.1 a ± 0.0 0.0 a ± 0.0

C18:1, trans-9 elaidic/trans-9-octa-decenoic 0.2 ± 0.1 0.5 ± 0.4 0.0 ± 0.1 1.8 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

C18:1, trans-11 trans-vaccenic/trans-11-
octadecenoic 1.2 ± 0.7 0.3 ± 0.3 2.0 ± 1.9 4.4 ± 1.0 0.7 ± 0.2 2.0 ± 0.3 2.4 ± 0.9 1.2 ± 0.2

C18:1, cis-6 petroselinic/cis-6-
octadecenoic 0.4 a ± 0.3 0.5 a ± 0.5 6.3 b ± 1.4 14.4 b ± 2.9 0.0 a ± 0.0 0.0 a ± 0.0 0.4 a ± 0.2 0.2 a ± 0.0

C18:1, cis-9 oleic/cis-9-octadecenoic 132.4 a,b ± 1.1 62.4 a ± 0.0 32.7 a ± 2.2 58.4 a ± 1.6 54.5 a ± 0.7 114.2 a,b ± 7.2 127.0 b ± 4.7 62.5 a ± 5.9

C18:1, cis-11 cis-vaccenic/cis-11-
octadecenoic 17.9 ± 1.0 160.0 ± 4.7 57.4 ± 4.9 130.2 ± 7.1 2.5 ± 0.0 7.5 ± 0.2 5.9 ± 1.3 3.0 ± 0.6
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Table 2. Cont.

Fatty Acid

L. delbrueckii Subsp.
bulgaricus ATCC 11842 L. helveticus LH-B01 L. delbrueckii Subsp. lactis

ATCC 4797 L. acidophilus La-5

MRS Broth MRS
Broth + Chol MRS Broth MRS

Broth + Chol MRS Broth MRS
Broth + Chol MRS Broth MRS

Broth + Chol

C18:2,
trans-9,trans-12

linoelaidic
/trans-9,trans-12-
octadecadienoic

0.8 b ± 0.5 0.2 a,b ± 0.2 0.0 a ± 0.0 0.0 a ± 0.0 0. a ± 0.0 0.1 a ± 0.1 0.0 a ± 0.0 0.0 a ± 0.0

C18:2, cis-9,cis-12 linoleic/cis-9,cis12-
octadecadienoic 0.5 a ± 0.3 18.4 b ± 0.0 0.0 a ± 0.0 3.8 a,b ± 1.9 0.0 a ± 0.0 8.0 b ± 2.6 4.3 a,b ± 1.0 0.0 a ± 0.0

cycC19:0, cis-9, 10
dihydrosterculic

/cis-9,10-
methyleneoctadecanoic

63.2 b ± 8.7 10.8 b ± 0.0 7.0 a ± 1.5 0.0 a ± 0.0 7.8 a ± 1.2 6.8 a ± 0.7 41.3 b ± 2.0 5.3 a ± 1.5

cycC19:0, cis-10, 11
lactobacillic
/cis-11,12-

methyleneoctadecanoic
8.7 a ± 1.3 2.2 a ± 0.9 60.0 b ± 1.7 136.1 b ± 2.3 0.0 a ± 0.0 0.0 a ± 00 1.8 a ± 0.7 0.9 a ± 0.2

18:2, cis-9,trans-11 conjugated octadecadienoic 5.8 ± 1.5 1.5 ± 0.3 6.9 ± 0.2 15.6 ± 2.1 1.5 ± 0.5 4.5 ± 1.8 5.7 ± 1.2 2.9 ± 0.6
C18:2, CLA_1 conjugated octadecadienoic 0.5 ± 0.3 0.1 ± 0.1 0.7 ± 1.0 1.5 ± 0.4 0.2 ± 0.1 0.7 ± 0.4 0.5 ± 0.2 0.3 ± 0.0

18:2,
trans-10,cis-12 conjugated octadecadienoic 3.1 ± 1.9 0.8 ± 0.7 7.4 ± 0.9 16.7 ± 1.1 2.3 ± 0.7 7.0 ± 2.3 6.2 ± 1.4 3.2 ± 0.6

C18:2, CLA_2 conjugated octadecadienoic 0.4 ± 0.2 0.1 ± 0.0 0.7 ± 0.1 1.5 ± 0.4 0.2 ± 0.1 0.6 ± 0.2 0.6 ± 0.2 0.3 ± 0.1
C18:2, CLA_3 conjugated octadecadienoic 0.1 ± 0.0 0.0 ± 0.0 0.6 ± 0.9 1.4 ± 0.2 0.2 ± 0.1 0.5 ± 0.3 0.6 ± 0.2 0.3 ± 0.1
C18:2, CLA_4 conjugated octadecadienoic 3.4 ± 1.1 0.9 ± 0.8 6.7 ± 1.8 15.1 ± 3.6 1.6 ± 0.5 4.9 ± 1.0 4.9 ± 0.9 2.5 ± 0.5

a,b Means with different uppercase letters in the same row are significantly different (p < 0.05). For other fatty acids, there are no statistically significant changes.
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Table 3. Composition of the external standard (bacterial acid methyl ester (BAME)) and identification
parameters for each fatty acid.

Fatty Acid Acid Name RT [Min]
* ECL EI *

C11:0 undecanoic 15.466 11.000 74, 87, 143, 157, 200
C12:0 lauric/dodecanoic 17.655 12.000 74, 87, 143, 214
C13:0 tridecanoic 19.751 13.000 74, 87, 143, 185, 228
C14:0 myristic/tetradecanoic 21.757 14.000 74, 87, 143, 199, 242

C10:0, 2OH 2-hydroxydecanoic 22.658 14.481 69, 83, 143, 228
C15:0, iso iso-13-methyltetradecanoic 22.777 14.542 74, 87, 143, 213, 256

C15:0, anteiso anteiso-12-methyltetradecanoic 23.084 14.701 74, 87, 143, 213, 256
C15:0 pentadecanoic 23.673 15.000 74, 87, 143, 213, 256

C16:0, iso iso-14-methylpentadecanoic 24.647 15.541 74, 87, 143, 227, 270
C16:0 palmitic/hexadecanoic 25.505 16.000 74, 87, 143, 227, 270

C17:0, iso iso-15-methylhexadecanoic 26.442 16.541 74, 87, 143, 241, 284
C16:1, cis-9 palmitoleic/hexadecenoic 26.485 16.565 69, 83, 96, 152, 236
C12:0, 2OH 2-hydroxydodecanoic 26.636 16.653 69, 83, 97, 171, 230

C17:0 heptadecanoic 27.255 17.000 74, 87, 143, 241, 284
cycC17:0, cis-9, 10 cis-9,10-methylenehexadecanoic 27.965 17.432 69, 74, 83, 97, 250

C18:0 stearic/octadecanoic 28.934 18.000 74, 87, 143, 255, 298
C12:0, 3OH 3-hydroxydodecanoic 29.175 18.159 71, 74, 83, 103

C18:1, trans-9 elaidic/octadecenoic 29.492 18.351 69, 74, 83, 97, 123, 264
C18:1, cis-9 oleic/octadecenoic 29.705 18.486 69, 74, 83, 97, 123, 264
C14:0, 2OH 2-hydroxytetradecanoic 30.221 18.797 69, 83, 97, 199

C19:0 nonadecanoic 30.545 19.000 74, 87, 143, 312
C18:2, cis-9,cis-12 linoleic/cis-9,cis12-octadecadienoic 31.015 19.307 97, 81, 95, 123, 294
cyc C19:0, cis-9, 10 dihydrosterculic/cis-9,10-methylene-octadecanoic 31.122 19.376 69, 74, 83, 97, 123, 278

C20:0 eicosanic 32.086 20.000 74, 87, 143, 326
C14:0, 3-OH 3-hydroxytetradecanoic 32.592 20.318 71, 74, 103
C16:0, 2-OH 2-hydroxyhexadecanoic 33.475 20.864 69, 83, 97, 227

* EI, electron ionization; RT, retention time.

The results presented here demonstrate that the presence of cholesterol in MRS broth
can impact the fatty acid profile of lactobacilli cells, as previously suggested by Miremadi
et al. [77]. The addition of cholesterol in MRS broth induced significant changes in the fatty
acid profile of cells from the tested lactobacilli strains. The incubation of L. delbrueckii subsp.
bulgaricus ATCC 11842 and L. delbrueckii subsp. lactis ATCC 4797 strains in MRS broth with
the added cholesterol resulted in an increased proportion of C18:2, cis-9,cis-12 (linoleic acid)
in the fatty acid pool. In the cells of L. helveticus LH-B01, a significant reduction in the
level of C16:1, cis-9 (palmitoleic acid) was observed, while in the cells of the L. acidophilus
La-5 strain, there was a significant reduction in the level of two fatty acids: C18:1, cis-9
(oleic acid) and cycC19:0, cis-9,10 (dihydrosterculic acid) in the fatty acid pool. These
observed changes in the fatty acid profile can influence the structure and properties of the
cell membrane, which can in turn affect the metabolism and function of these bacteria. For
instance, increasing the level of linoleic acid (C18:2, cis-9,cis-12) can elevate cell-membrane
fluidity and thus enhance the adaptability of bacteria to changing environmental conditions.
Conversely, reducing the level of oleic acid (C18:1, cis-9) can increase the acidity of the cell
membrane, which can affect the enzymatic and transport properties of cells. Liong and
Shah [42] also examined the effect of cholesterol on the fatty acid profile of L. acidophilus
bacterial cells and discovered that the strains grown without the addition of cholesterol
had a higher proportion of unsaturated acids (oleic and linolenic acid) than samples with
the addition of cholesterol solution. Changes in the fatty acid profile of bacterial cells
also suggest the incorporation of cholesterol into the cell membrane [75]. Boudreau and
Arul [87] also found that the presence of cholesterol increases certain saturated fatty acids
compared with samples without the addition of this ingredient. However, it should be
noted that the effects of individual fatty acids on the cell membrane and bacterial function
are complex and depend on several factors such as the type of fatty acid, its concentration,
and its relationship to other fatty acids. Nevertheless, it is worth mentioning that these
results are based on in vitro studies, and their relevance to the physiology of lactobacilli
in the human or animal body is not clear. Moreover, the effect of cholesterol on the fatty
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acid profile of lactobacilli cells may depend on several factors such as incubation time,
cholesterol concentration, and environmental composition.

The cytoplasmic membrane is essential for the survival of bacterial cells, and the
biosynthesis of cell-membrane components is a crucial aspect of bacterial physiology. The
synthesis of fatty acids must be controlled, as it coordinates the production of membrane
lipids [88–90]. The basic type II biosynthetic pathway of LAB fatty acids is a repetitive cycle
of condensation, reduction, dehydration, and reduction in C–C bonds. Lipid components
act as a barrier, controlling the permeability of the membrane and contributing to the
asymmetry of the lipid membrane, which is necessary for the survival and functioning of
bacterial cells [27,76]. The fatty acid profile of the LAB cell membrane depends on various
factors such as temperature, pH, oxygen, growth phase, the composition of the medium,
and salt concentration [64,91]. Corcoran et al. [92] demonstrated that C18:1, cis-9 (oleic
acid) and C18:1, cis-11 (cis-vaccenic acid) have a protective effect on L. rhamnosus GG cells
suspended in artificial gastric juice. They showed that only in the case of these two fatty
acids, the number of bacterial cells was greater than the number of cells in the control
sample. Other tested fatty acids, including C18:0 (stearic acid); C18:1, trans-9 (elaidic
acid); C18:2, cis-9,cis-12 (linoleic acid); C18:2, cis-9,trans-11 (cis-9,trans-11-octadecadienoic
acid); and C18:2, trans-10,cis-12 (trans-10,cis-12-octadecadienoic acid), caused a decrease
in the number of viable cells to a level of 3.9 log(CFU/mL) in the case of trans-10,cis-12-
octadecadienoic acid and 4.8 log(CFU/mL) for stearic and elaidic acids. This phenomenon
can be explained by the fact that oleic and cis-vaccenic acids are the substrates for the
synthesis of fatty acids required for cell survival and the modification of cell-membrane
fluidity. LAB are equipped with mechanisms to convert these fatty acids into their cyclic,
polyunsaturated, or conjugated forms. Similar observations were made by Taranto et al. [52],
who studied the effects of bile acids and cholesterol on the fatty acid profile of cells of
L. reuteri CRL 1098. Their analysis of the fatty acid profile showed that 50% of the fatty
acids present were C16:0, C18:1, C18:2, C18:0, and C19:0, present in varying proportions
depending on the medium used. Taranto et al. [49] also observed a similarity between the
acid profile of the cells cultured in the presence of cholesterol and the cells cultured in broth
alone when analyzing the effects of stressors on LAB. In contrast, when bile acids were
added to the culture medium, no such similarity was observed [52]. Kimoto et al. [21] also
noted changes in the distribution of fatty acids with L. lactis cells growing in the presence
or absence of cholesterol, which were the result of its removal from the culture medium
and its uptake into the cell membrane. These results could aid in understanding the effects
of cholesterol on the metabolism of LAB and their impact on the quality of dairy products
such as yogurt and kefir. Further research in this area could provide a better understanding
of these effects and identify possible benefits or risks to human health.

4. Conclusions

In this study, it was found that the removal of cholesterol by lactobacilli cells, under
gastric and intestinal juice conditions, was dependent on the biomass and viability of the
bacterial cells and the bacterial strain studied. The binding of certain amounts of cholesterol
by cells of LAB appears to be so strong that it is not released during its passage through the
digestive system. The presence of cholesterol can affect the fatty acid profile of lactobacilli
cells, which determines the structure and properties of the cell membrane and, in turn,
can impact the metabolism and function of these bacteria. These findings may aid in
understanding the effect of cholesterol on the metabolism of lactobacilli. However, it was
observed that there was no significant effect of cholesterol supplementation on the survival
of lactobacilli under gastric or intestinal juice conditions. Further research in this area
could provide a better understanding of this effect and identify possible benefits or risks to
human health.

Conversely, there was no significant effect of storage time, passage, or type of lac-
tobacilli culture on the cholesterol content of fermented dairy products. This study also
revealed differences in the cell survival rates of individual lactobacilli strains under gastric
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or intestinal juice conditions, depending on the environment in which the bacteria entered
the tested system. During passage through the simulated stomach and intestines, the dry
weight of products, such as significant milk protein content, had a more protective effect
on lactobacilli bacterial cells than the fat content.
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