
Citation: Mattedi, A.; Sabbi, E.;

Farda, B.; Djebaili, R.; Mitra, D.;

Ercole, C.; Cacchio, P.; Del Gallo, M.;

Pellegrini, M. Solid-State

Fermentation: Applications and

Future Perspectives for Biostimulant

and Biopesticides Production.

Microorganisms 2023, 11, 1408.

https://doi.org/10.3390/

microorganisms11061408

Academic Editor: João Miguel

F. Rocha

Received: 8 May 2023

Revised: 19 May 2023

Accepted: 24 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Solid-State Fermentation: Applications and Future Perspectives
for Biostimulant and Biopesticides Production
Alessandro Mattedi 1, Enrico Sabbi 1, Beatrice Farda 1 , Rihab Djebaili 1 , Debasis Mitra 2 , Claudia Ercole 1 ,
Paola Cacchio 1 , Maddalena Del Gallo 1 and Marika Pellegrini 1,*

1 Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio,
Coppito, 67100 L’Aquila, Italy; alexmtt89@gmail.com (A.M.); enrico.sabbi@student.univaq.it (E.S.);
beatrice.farda@graduated.univaq.it (B.F.); rihab.djebaili@guest.univaq.it (R.D.);
claudia.ercole@univaq.it (C.E.); paola.cacchio@univaq.it (P.C.); maddalena.delgallo@univaq.it (M.D.G.)

2 Department of Microbiology, Raiganj University, Raiganj 733134, India; debasismitra3@raiganjuniversity.ac.in
* Correspondence: marika.pellegrini@univaq.it; Tel.: +39-0862-433258

Abstract: With the expansion of the green products market and the worldwide policies and strategies
directed toward a green revolution and ecological transition, the demand for innovative approaches
is always on the rise. Among the sustainable agricultural approaches, microbial-based products are
emerging over time as effective and feasible alternatives to agrochemicals. However, the production,
formulation, and commercialization of some products can be challenging. Among the main challenges
are the industrial production processes that ensure the quality of the product and its cost on the
market. In the context of a circular economy, solid-state fermentation (SSF) might represent a smart
approach to obtaining valuable products from waste and by-products. SSF enables the growth of
various microorganisms on solid surfaces in the absence or near absence of free-flowing water. It
is a valuable and practical method and is used in the food, pharmaceutical, energy, and chemical
industries. Nevertheless, the application of this technology in the production of formulations useful
in agriculture is still limited. This review summarizes the literature dealing with SSF agricultural
applications and the future perspective of its use in sustainable agriculture. The survey showed good
potential for SSF to produce biostimulants and biopesticides useful in agriculture.

Keywords: biostimulants; biopesticides; bioactive compounds; industrial scale-up; fermentations;
waste recovery; waste bioconversion; circular economy

1. Introduction

Sustainability perception has changed significantly since the United Nations (UN)
adopted the Sustainable Development Goals (SDGs) in 2015 [1]. Through the promotion of
the circular economy, the advancement of renewable energy sources, and more sustainable
agriculture, global policies and strategies began social and economic fundamental changes
to achieve the green revolution and ecological transition [2,3]. One of the relevant chal-
lenges in the achievement of a sustainable agrifood system is the increasing demand for
biostimulants and biopesticides to limit or substitute the use of synthetic chemicals [4]. Even
if many scientific questions remain unanswered, it has become more and more common to
use biostimulants; these products have been extensively used in agriculture, horticulture,
and forestry, to promote growth, improve nutrient uptake, protect plants from biotic and
abiotic stress [5]. Their potential applications are studied to reduce our dependence on
conventional fertilizers: despite their importance during the XX century to increasing crop
yields for a growing population, their excess and abuse can lead to significant pollution [6].
Beyond the need for nutrients, crops are at constant exposure to hazards from parasites and
other organisms that feed on them. In nature, plants defend themselves through a wide
and astonishing range of mechanisms and traits [7,8], including mechanical defenses [9],
structural traits [10], and particularly chemical compounds that are disgusting or toxic
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to phytophages and herbivores [11–13] or attract predators and parasitoids [14] or can
contrast the attack of pathogens [15,16] or induce systemic acquired resistance which can
help against future aggressions [17]. Plants have undergone millions of years of natural
selection that defined their characteristics and adaptations, but human agriculture in the
last ten millennia reshaped the traits of cultivated plants by intentional manipulation
through the means of artificial selection, thus changing their fitness and pressures in what
is considered an extraordinary example of plant-animal mutualistic co-evolution [18–20].
In agriculture, the study of the ecological interactions and the evolutionary patterns related
to plant exposure to abiotic and biotic stresses is particularly concerning, as they can signif-
icantly reduce yields and damage crop quality, which are necessary to feed people. It is not
only a matter of the farmer aiming at saving the entire harvest and avoiding any minor
losses: modern cultivars are more productive, but also often more vulnerable compared
to their wild progenitors because of a complex interaction of factors, including reduced
genetic variability and loss of secondary toxic metabolites [21–24]. Plant phytophages
and pathogens can and will lead to dire consequences regarding food provisioning and
waste [25,26] economic losses [27] risk of food poisoning due to toxins [28]. The current
climate emergency is also a Damocles’ sword as global warming will further spread certain
phytophages and pathogens, while also exerting higher abiotic stresses on crops, thus
exacerbating plant diseases and physiopathies. Third-world countries will be the most
impacted, but first-world countries face risks to their food security too [29–31]. In the last
century, scientific and technological research developed several ways to mitigate or deter
these issues. One of the most important tools is agricultural chemistry. Since damaging
organisms are vernacularly termed pests, chemical compounds that repel or kill them are
termed pesticides. It is not surprising that pesticides have occupied a key role in agriculture
in the last decades to assure a stable source of food and income for farmers, but also to
fight the spread of diseases, and overall to sustain a constantly growing population with
its increasing demands [32]. However, they did not come without possible risk due to
their abuse and mismanagement, and in some cases even from their application alone.
While the benefits of agrochemistry have been widely recognized, there was also increasing
concern for the collateral effects on the environment [33–35] with a particular focus on
human health [36] non-target organisms [37], the development of resistance in target organ-
isms [38–40], and economical costs [41]. Despite this, many farmers still rely on pesticides,
which can be seen as counterintuitive, and their consumption has increased worldwide as
they often are necessary, particularly herbicides followed by fungicides and insecticides [42].
These issues are of no quick and easy solution. A further problem is that countries in the
third world suffer the most harm from crop damage, as they are economically vulnerable,
and farmers often lack the instruments and the money to adequately face the most severe
issues and recover from losses. They are also more vulnerable to the effects of climate
change. The Food and Agriculture Organization of the United Nations estimated that
up to 40% of global crop production is lost because of pests and that the current climate
change scenarios will result in an increase in pest risk and pesticide usage in agricultural
ecosystems. [43]. Agricultural research was and currently is pivotal in the struggle against
poverty [44]. Yet, farmers in the poorest countries cannot always afford the most effective
and efficient tools, are forced to renounce chemical compounds to protect their crops, or
to use older formulations that might be more polluting (sometimes banned in first world
countries) and faulty, less safe instruments to release pesticides [45]. In the last decades,
research has focused on how to mitigate the environmental effects of pesticides, reduce the
need for them, and find alternative tools and strategies for their use. The global goal is to
achieve a more sustainable agriculture, while not decreasing yields [46]. Therefore, research
in plant protection is key to these ambitious objectives. This has been pursued through
more severe regulations, increased technical education [47,48] and the development and
choice of less impacting agrochemicals that are more selective or less persistent [49–51],
the breeding or engineering of resistant crops [15], the application of evolutionary and
ecological thought in agriculture to improve crop selection [19], the optimization of farming
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practices through systems such as integrated and precision agriculture and ecological
intensification [52], search of microorganisms for biological control [53], the usage of useful
insects for biological control [14]. The importance of research in crop protection is increased
considering the impact of climate change on agriculture, and the need to reduce the impact
on the climate of agriculture itself. Reducing the need for agrochemicals and increasing
the efficiency of farming techniques can help reduce the emissions of carbon dioxide and
greenhouse equivalents [54].

Midst new bio-based products, the use of microbial-based inoculants are gaining
increasing interest from research, industrial, and commercial fields. Microbial-based inocu-
lants contain microbial entities with the ability to increase nutrient uptake, shield plants
from biotic and abiotic stress, and promote growth (e.g., germination, flowering, fruit-
ing) [5]. These microbes fall within plant growth-promoting microbes (PGPM), beneficial
bacteria and fungi that sustain the positive effects on plants by colonizing plant roots and
benefit their hosts by controlling the synthesis of phytohormones, boosting soil nutrient
availability, and enhancing disease resistance [55].

Since the discovery and description of PGPM, scientific research carried out the
isolation and characterization of countless potentially useful strains. However, most of
these isolates are not commercialized [56]. The commercialization of bio-based products
may be severely hampered by improper microbial inoculant formulation that may not
consider the costs linked to the industrial production of the product and its input into
the market [57,58]. A successful microbe-based formulation is characterized by efficacy,
versatility, practicality, delivery, persistence, commercial viability, and congruity with
regulatory frameworks [57]. These aspects, which ensure the high quality of the product and
its success in the market, are achieved through a valid scale-up from laboratory to industrial
production. The fundamental concerns of industrial fermentations, process optimization,
and scale-up are targeted at maintaining optimal and uniform reaction conditions, limiting
microbial stress exposure, and boosting metabolic accuracy to maximize product yields and
assure consistent product quality [59]. A thorough and detailed process characterization,
the identification of the most important process parameters influencing product yield and
quality, and their establishment as scale-up parameters to be kept constant as much as
possible are required to develop suitable strategies for each individual product, process,
and facility [59].

Among the processes applied in the production of microbe-based products (e.g., micro-
bial biomass, enzymes, cell metabolites, etc), submerged state fermentation
(SmSF)—also known as liquid state fermentation or submerged liquid fermentation—is
the most used technology [60]. However, based on the requirements of microbe/microbes,
the growth media, resources, and energy inputs (i.e., large amounts of water and costs
of agitation and aeration), and equipment, SmSF could be expensive, resulting in a non-
economically sustainable process [61]. Moreover, SmSF is sensitive to several factors, prone
to contaminations, has a lack of control of the physical and chemical variables of the pro-
cess, and some enzymatic and metabolite releases might be challenging [61]. Solid-state
fermentation (SSF)—in which bacteria and fungi, are grown on a moist, solid, non-soluble
organic material in the absence or almost absence of free-flowing water—is used as an
alternative to SmSF for several microbial biotechnology processes [62]. Beyond low energy
consumption and other practical advantages than SmSF, SSF allows the bioconversion of
organic agricultural and industrial wastes, achieving the circular economy goal [63].

Huge quantities of residues are created annually by industries with agricultural back-
grounds. If these leftovers aren’t properly disposed of, they might pollute the environment
and have a negative impact on both human and animal health. Because most agro-industrial
wastes are untreated and unused, they are often disposed of by burning, dumping, or
unintentional landfilling. These untreated wastes increase several greenhouse gases, which
contribute to various climate change issues [64,65]. The recent review of Yafetto empha-
sized the significance of using SSF to valorize diverse agro-industrial wastes to produce
goods with advantages for industry, agriculture, and human health [66].
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In view of the need for agro-industrial wastes valorization and economic sustainability
of microbial-based products improvement, the purpose of this review is to underline the
application of SSF in biostimulants and biopesticides production and encourage research
to progress knowledge on the subject. A detailed description of the technology and the
laboratory- and industrial-scale instruments were provided. To evaluate the suitability of
SSF for this purpose we summarised the literature dealing with the topic using several
databases. Limitations, advantages, and future perspectives were also presented.

2. Solid-State Fermentation: Process and Applications

SSF is a three-phase heterogeneous process that combines solid, liquid, and gaseous
phases to convert a starting substrate to products with added value. SSF has drawn a lot
of interest in the last two decades for the development of industrial bioprocesses, because
of its economic and environmental sustainability whilst producing more products with
a decreased risk of contamination. Several parameters affect SSF and are essential to the
process development’s technical and financial viability. As with other bioprocesses (in-
cluding SmSF), these parameters include the selection of the right microbe/consortium
and substrate, and finding the best physical, chemical, and biological process parameters
(e.g., pH, aeration, temperature, humidity, solid material characteristics). The purification
of the product is an additional element that has an impact on SSF production feasibil-
ity. Throughout the fermentation heat accumulation and the heterogeneous nature of the
substrate (a complex gas-liquid-solid multiphase system) are two of the main SSF prob-
lems to overcome in scale-up. Beyond the use of SSF for biopesticides and biostimulant
production—discussed in detail in the following sections—SSF demonstrate to be a valid
process in several fields. SSF is commonly utilized in the production of metabolites (e.g.,
antibiotics, aromas, biosurfactants, enzymes, organic acids) biofuels, and environmental
purposes (e.g., bioremediation) [62,67]. These productions are carried out employing differ-
ent types of bioreactors. The following section describes the most common types of devices
and the different types of configurations from laboratory to industrial scale.

3. Solid-State Fermentation Bioreactors

The laboratory-scale SSF devices consist of inert supports (e.g., Petri dishes, flasks, and
bottles) that can be used to process a few grams of matrix to carry out rapid screenings (e.g.,
inoculum-to-matrix ratios, optimal temperature). Generally, at this scale, the temperature
is the only parameter controlled and no forced aeration or agitation is applied [68]. Once
reached the optimal lab scale conditions (e.g., inoculum rate, matrix quantities, optimal
temperature) pilot and industrial scale processes are studied and optimized in bioreactors
with sophisticated control systems. There are many types of bioreactors that mainly differ
based on the presence or absence of agitation and forced aeration [69]. The simplest type
is the tray bioreactor (Figure 1A) in which the solid material is laid on trays constructed
with inert material (e.g., metal, wood, plastic). Trays are placed in a tray chamber with a
suitable gap among them in which a circulating air controls temperature and humidity. In
tray bioreactors, the air is not forced, and agitation might occur occasionally based on the
process carried out [69].

In the presence of occasional agitation and forced aeration we can find packed-bed
bioreactors (Figure 1B), glass or plastic column reactors in which the solid material is packed
inside it. Aeration is guaranteed by fluxing air from the bottom and the temperature is
maintained by external devices (e.g., heat exchangers or cooling/heating jackets). Packed-
bed bioreactors can be used also in the presence of intermittent mixing and forced aeration,
providing the agitation by a mechanical stirrer or airflow [70].

For SSF that need slow continuous agitation and no forced aeration, there are two types
of stirred drum bioreactors (Figure 1C). In these types of bioreactors, the solid material
is filled within the drum, and air is blown in it. The agitation is assured by a rotating
drum in the rotating-drum bioreactor (above) and by paddles inside the drum unit in the
stirred-drum bioreactor (below).
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Figure 1. SSF bioreactors with occasional agitation and without forced aeration ((A) Tray bioreactor);
with occasional agitation and forced aeration ((B) Packed-bed bioreactor); and with slow continuous
agitation and without forced aeration ((C) Two models of stirred drum bioreactors) [69].

In SSF with slow continuous agitation and forced aeration, there are three types of
bioreactors that can be used including stirred-aerated bioreactors (Figure 2A), gas-solid
fluidized beds bioreactors (Figure 2B), and rocking drums bioreactors (Figure 2C). These
reactors vigorously blow air through the bed while agitating it. Depending on the type of
mixing, such a bioreactor can normally be operated in one of two modes: continuously
mixed or intermittently mixed bioreactors. Thanks to the addition of water to the bed, the
mixing system reduces the cooling demand. The sensitivity of the microorganisms to shear
effects from mixing as well as the mechanical and sticky characteristics of the substrate
particles will determine whether continuous or intermittent mixing should be used [68–70].
Although several studies used and set up a wide variety of alternatives to these fermenters,
the tray- or drum-type bioreactor still serves as the starting model to design them [69].
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4. Solid-State Fermentation for Biostimulants Production

Many works focused the investigations on the SSF application to produce biostim-
ulant agents. Table 1 summarises the existing literature on the subject, focusing on the
last 10 years. Only a few studies evaluated the suitability of SSF to produce biostimulant
agents and tested the SSF products on plants. Almost the entirety of the reports focused on
the study of Trichoderma spp., considering a wide range of substrates, and evaluating the
biostimulant effects of SSF products on different horticultural and officinal plants. Among
these studies on Trichoderma spp. noteworthy is the recent study of Liu et al., in which it has
been demonstrated the suitability of rice straw in combination with other natural-derived
amino acids as SSF substrate to improve the population of T. guizhouense NJAU4742 and de-
velop an innovative biostimulant capable to improve pepper growth and development [71].
Biostimulant production through SSF was also valid in other studies involving other fungal
and bacterial strains. Romano et al., for example, demonstrated the suitability of SSF with
vermiculite, exhausted yeasts, and vinasse to produce a Kosakonia pseudosacchari-based
biostimulant able to induce plant growth and development on maize [72]. Most of the
studies on these other microbes are single reports or described by only one group of schol-
ars. The exception is Bacillus spp.; for the latter, several optimized SSF processes have
been used to produce spores useful for biostimulating action on various crops. Other
environmental useful applications were described for Bacillus spores produced by SSF
processes. Rodriguez-Morgado et al., for example, efficiently used Bacillus licheniformis
spores derived from SSF of sewage sludge to improve soil biochemical characteristics (e.g.,
ergosterol concentration and enzymatic activity).

Table 1. Literature on solid-state fermentation (SSF) use to produce biostimulant agents.

Species Substrate T (◦C) Days Maximum Biomass Yield Plants Promoted Ref.

Trichoderma spp. agricultural digestate 26 ◦C 6 689.80 ± 80.53 mg
mycelium/g substrate cress [73]

Trichoderma spp. apple, banana, and
grapefruits wastes 26 ◦C 6 689.8 ± 80.5 mg/g

substrate cress and tomato [74]

Purpureocillium lilacinum hair waste 28 ◦C 8 - tomato [75]

Trichoderma atroviride
strain MUCL45632 wheat bran - - - melon, pepper,

tomato, and zucchini [76]

Aspergillus flavipes soybean
(most suitable) - - - Eucalyptus clone IPB2 [77]

Trichoderma guizhouense
NJAU4742 rice straw + amino acids 28 ◦C 7 4.62 × 10 10 conidia pepper [71]

Fusarium redolens
KY992586 (RF1),

Phialemoniopsis cornearis
MK408657 (SF1), and

Macrophomina
pseudophaseolina
MF351729 (SF2)

wheat bran 28 ◦C 10
38 × 10 12 (RF1), 14 × 10 11

(SF1), and 21 × 10 12 (SF2)
CFU g−1

Coleus forskohlii [78]

Kosakonia pseudosacchari
TL13

vermiculite, exausted
yeasts and vinasse 15 ◦C 30 7–6.9 log CFU g−1

or mL−1 maize [72]

Trichoderma asperellum silica-rich
spent mushroom 28 ◦C 31 12.37 × 1013 cfu/g

bioformulation
tomato [61]

Bacillus circulans
Xue-113168

food waste
and feldspar 30 ◦C 7 8–10 CFU g−1 rapeseed [79]
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5. Solid-State Fermentation for Biopesticides Production

Biopesticides are a wide category of compounds of biological origin that can exert an
antagonistic effect against other organisms, with deterring, competitive, or biocidal effects.
The definition is debated in the literature, as different authors and regulatory agencies
might disagree on the inclusion of certain products depending on their method of action or
source [80]. The Food and Agriculture Organization defines biopesticides as “A generic
term generally applied to a substance derived from nature, such as a microorganism or
botanical or semiochemical, that may be formulated and applied in a manner similar to a
conventional chemical pesticide and that is normally used for short-term pest control” [81].
The European Union defines pesticides or biological control products as “substances used
to suppress, eradicate and prevent organisms that are considered harmful”, including both
plant protection and biocidal products, and specifies that biopesticides are a subcategory
“comprised of substances that are derived from living organisms and certain minerals” [82].
The Environmental Protection Agency of the United States (EPA) divides biopesticides into
three types: biochemical, microbial, and plant-incorporated-protectants.

Microbial biopesticides are the most common, and the subjects of this review. They
consist of microorganisms such as bacteria, fungi, and protists, which can directly suppress
target organisms, or produce compounds that have properties that are useful to control or
eliminate them [83]. Certain authors include viruses too [84,85]. The rationale behind the
use of biopesticides is the idea that they are generally less persistent and more degradable
than traditional pesticides, but also more target-selective, thus reducing their environmen-
tal impact. They are expected to be more economical than conventional pesticides, which is
the main interest for poor countries, although certain limitations discussed in the following
sections can increase costs. The intended goal is to allow to effectively fight pests without
significant crop losses. There is increasing scientific literature showing interest in their
potential applications, their production, their enhancements, their limitations to be over-
come, the technical side of their employment, and the legal and economic aspects [86–91].
The EPA particularly suggest them as a component of integrated pest management that
is capable of effectively reducing the use of conventional pesticides while keeping high
yields [92].

The scientific literature contains many reports on the use of SSF to produce biopes-
ticides. Supplementary Table S1 (Supplementary Material) and Table 2 summarise the
existing literature on the subject focused on the last 10 years, with some notable cases
from the previous period. Most of the scientific papers deal with the use of SSF to grow
fungi and oomycetes (Supplementary Table S1, Refs. [93–170]) and produce biopesticides
targeting insects, nematodes, molds, and weeds. A wide variety of growth substrates can
be employed. The most common substrates are wheat bran and straw, rice, and barley.
Coffee husks, sugarcane bagasse, and sorghum, also are often used. More exotic substrates
such as palm kernel cakes or forage cactus pears gave interesting results, which can be
important for tropical countries. Even if cereals are the most common (e.g., wheat, rice,
wheat bran), several works employed food and agricultural wastes. In the recent work of
Ghoreishi et al., for example, grass clippings and pruning waste are used as substrate in
SSF to grow Trichoderma harzianum and produce biopesticides (i.e., conidial spores) useful
against phytopathogenic molds [170]. In the same work, the optimization of the growth
parameters (mainly moisture and fermentation time) and ratios of the substrates (i.e., tryp-
tophan, grass, and pruning waste) allowed the enhancement of 3-indole acetic acid and
spores recovery.

As summarized in Table 2, the production of biopesticides through SSF is also pos-
sible with the use of bacterial inocula. Bacillus spp. are the commonly used inocula to
produce biopesticides targeting phytopathogenic bacteria, molds, mosquitos, and insects
using diverse substrates (including different wastes). Specific targets are Culex pipiens,
Rhizoctonia solani, Agrobacterium tumefaciens, Colletotrichum lini, Fusarium oxysporum, and
Phytophthora palmivora. Bacillus thuringiensis is by far the most successful bacterial biopes-
ticide, due to its efficacy against insects and readily available, with strains selected for
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specific targets [171–174]. Most of its success depends also on the fact that it is considered
safe for mammals, humans included, although it has been reported that in rare cases
some strains might affect human health through enterotoxins [175]. A few studies also
reported the inoculation of actinomycetes for antimicrobial agents. The literature survey
also showed promising applications of bacterial strains SSFs for biopesticides production.
Rhizopus oligosporum SSF, for example, is commonly used to produce food (tempeh) [176].
However, the same technology has not been yet applied for the optimization of potential
biopesticides released by this species (e.g., antifungal chitinases) [177]. Also, the recent
work of Widyastuti et al. described the Pseudonocardia antitumoralis 18D36-A1 SSF using
shrimp shell wastes to produce antifungal biopesticides against Malassezia globose (a
mammalian pathogen) [178].
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Table 2. Literature on solid-state fermentation (SSF) use to produce biopesticides employing bacterial inocula.

Species Tg Growth Substrates T (◦C) D Maximum Biomass Yield Tested Against Ref.

Bacillus amyloliquefaciens BS20 B feed-grade soybean meal, corn flour, and
wheat bran 37 ◦C 2 7.24 × 10 10 CFU/g - [179]

Bacillus amyloliquefaciens B-1895 B corncobs 37 and 32 ◦C 4 47 × 10 10 spores g−1

biomass
- [180]

Bacillus amyloliquefaciens HM618 M food waste “mainly included rice, vegetables,
and small amounts of soup” - - [181]

Bacillus sphaericus NRC69 Q
wheat bran, rice hull, wheat straw, corn

stover, corn cobs, cotton stakes, olive meal,
date stone, pea peels, potato peels

30 ◦C 6 116 × 10 9 CFU/g Culex pipiens [182]

Bacillus sphaericus 14N1
Lysinibacillus sphaericus Q

wheat germ meal, linen meal (4.5% each), and
0.2% yeast extract with fine sand as the

carrying material
30 ◦C 5 - Culex pipiens [183]

Bacillus subtilis RB14-CS M soybean curd residue (okara) + some
other nutrients 25 ◦C 5–10 2.75 × 10 9 CFU/g dry soil Rhizoctonia solani [184]

Bacillus subtilis RB14-CS M soybean curd residue (okara). 25 ◦C 4 10 10 to 10 11 Rhizoctonia solani [185]

Bacillus subtilis RB14-CS M soybean curd residue (okara). 25 ◦C 6 - - [186]

Bacillus subtilis SPB1 B dried and grinded seeds of Aleppo pine 37 ◦C 2 27.59 ± 1.63 mg/g Agrobacterium
tumefaciens C58 [187]

Bacillus thuringiensis var israelensis
CECT 5904 I bulking agent was mixed with digestate

and biowaste 30, 37, and 45 ◦C 3 4 × 10 8 spores g−1 DM - [188]

Bacillus thuringiensis var kurstaki
NRRL HD-73 (CECT 4497) I organic fraction of municipal solid waste 27 ◦C 4 10 9 CFU g DM−1 - [189]

Bacillus thuringiensis var kurstaki
HD-73 (ATCC-35866) I polyurethane foam 30 ◦C 21–36 h 8 × 109 mL−1 - [190]

Bacillus thuringiensis var israelensis
CECT 5904 I OFMSW, three cosubstrates 30 ◦C 3 1.1 × 109 spores g−1 - [191]

Bacillus thuringiensis var israelensis
CECT 5904 I

digested sewage sludge and digested
OFMSW cosubstrates on the solid residue

after enzymatic hydrolysis of OFMSW
39/42 4 108–1011 spores g DM−1 - [192]
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Table 2. Cont.

Species Tg Growth Substrates T (◦C) D Maximum Biomass Yield Tested Against Ref.

Pseudomonas aeruginosa LYT-4 M tung tree (Vernicia fordii) 30 ◦C 6 -
Colletotrichum lini,

Rhizoctonia solani and
Fusarium oxysporum

[193]

Streptomyces sp. K61 M silica, cornsteep solids, dolomite lime, lactose 22–28 ◦C 5 + 5 4.5 × 10 9 CFU g −1 - [169]

Streptomyces gilvosporeus Z28 M blend of rapeseed cake, rice hull, wheat bran
and crude glycerol 28 ◦C 10 - - [194]

Streptomyces griseorubens JSD-1 B peat soil with 2% w/w rice husk 32 ◦C 7 1.69 × 10 9 CFU g−1 - [195]

Streptomyces hygroscopicus B04 M various combinations of rapeseed meal,
wheat bran, and vermicompost 28 ◦C 5–7 1.34 × 10 9 Fusarium oxysporum [196]

Streptomyces similanensis 9X166 M rice bran, cassava chips, and coconut husks 33 ± 2 ◦C 7 151 × 10 7 CFU/g−1 Phytophthora
palmivora [197]

In the table, Tg, Targets:B, bacteria; M, molds; I, insects; Q, mosquitos; D, SSF days; DM, dry matter.
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Even if these products have a promising future, there literature survey also unveiled
some issues that must be discussed. Several formulations have limited effectiveness and
consistency compared to traditional pesticides (they can be slow to kill and take time to
reduce pest populations), shorter shelf life both in storage and in the field (ironically a
side effect of their high biodegradability), the differing standard method of preparations
and guidelines, more labor-intensive application management, more difficult storage and
handling, difficulty in scaling-up for large production, consequential increase in costs
in refined products despite the initial cheapness of starting ingredients [87,88]. Biopesti-
cides are considered at risk of selecting resistance in target species, mainly because of a
lack of management compared to other methods, but the concern is inferior to that for
conventional pesticides, particularly when dealing with biopesticides based on infection
means rather than toxins. To reduce this risk, it has been proposed to use a wide array of
biopesticides in a heterogeneous landscape, valorizing diversity to reduce chances for se-
lection [198]. There are some reports about possible underrecognized out-of-target toxicity
of biopesticide formulations, that require further attention, management, and investiga-
tion [199–201]. Another recent source of concern is that certain microbial biopesticides
could be reservoirs of antibiotic resistance, but this field is still mostly unknown and under
investigation [202]. Lack of information and awareness can also limit the diffusion of
biopesticides in third-world countries [203]. Recent reports unveiled that several Indian
microbial biopesticide-based solutions have quality problems (e.g., impurities, the excessive
moisture content in solid formulations, or fewer colony propagules than stated). More than
50% of these products do not fulfill Central Insecticides Board and Registration Committee
(CIBRC) standards [204]. However, as the demand for more sustainable and environ-
mentally friendly pest management solutions continues to grow, research into new and
improved biopesticides is likely to increase, and several formulations are already currently
commercialized, standards of production are being defined, and new regulations are being
approved. The current studies investigating their applications and reviewing their benefits,
limits, and possible developments, are already showing that research is increasing [205–211].
Their main application will be within integrated pest management strategies [210]. There
are also proposals for genetically engineering biopesticides [211–213].

6. SSF for Sustainable Agriculture: Advantages and Limitations

As presented in the previous section, SSF has been used to cultivate a wide range of
microorganisms because it offers several potential advantages. SSF mimics the natural
condition of growth for many microorganisms. It is considered cheap and of low impact,
as it can rely on easily available substrates such as food discards, agriculture wastes, and
urban wastes. Cost productions are one of the major limiting factors for biopesticides.
Furthermore, SSF can be a way of recycling such wastes, as they are a source of pollution
that must be disposed of. Another factor that could reduce costs is the fact that it does not
require to use energy to heat the process [66,214–216]. As with other techniques, SSF has
limitations. The first significant SSF constraint is directly related to heating. Fermentation
depends heavily on temperature because many microbes need specific temperatures to
develop, while the process itself heats things up. Since solid substrates have a low heat
conductivity, air convection is the most common method of heat dissipation; however, this
results in increased moisture loss and substrate drying, both of which have an impact on
fermentation. Alternately, water can be added to reduce heat or drying, but this requires a
mixing device that is unsuitable for the cultivation of filamentous fungi and may release
nutrients that contaminants could use. Some studies have been directed towards optimizing
the parameters to avoid heat accumulation. The study by Figueroa-Montero et al., for
example, used the combination of mathematical models with internal air circulation by
forced convection to modify the transfer of heat and water and to allow dissipation of the
heat generated in the bioprocess [217]. Several other studies unveiled how matrix porosity
should be studied to optimize air penetration, heat transfer, and effective air diffusion and
decrease the heterogeneous nature of the substrate’s negative effects on the bioprocess [218].
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Product recovery is SSF’s second significant drawback. Sometimes the finished product
can be utilized right away, but metabolites frequently diffuse through solid substrates and
need to be extracted, typically using large amounts of organic solvents, which greatly raises
expenses and negates the initial cost savings. The substance that has been used up becomes
waste that must be disposed of. When extracting metabolites, purification is a problem
as well because it can be difficult and expensive. The product isolation and purification
procedure depend on the product type, (e.g., intracellular or extracellular cell metabolite
or whole cell biomass). Extracellular products are extracted directly from the fermented
solid substrate, while intracellular products are extracted after the cell wall rapture (e.g.,
high-pressure homogenizer) [219]. Nevertheless, SSF uses a low water content to produce a
higher concentration of products than SmSF [62]. This allows SSF to be a more cost-effective
and lower solvents usage process than SmSF. The SSF constraints, the numerous approaches
being used to solve them, and the potential future directions for further developing this
biotechnology to increase its competitiveness in the worldwide market were all covered in
detail by Oiza et al. [216].

Some other limitations can be linked to the lack of reports describing the growth
behavior of some microbes. As underlined in the previous sections, the main microbes
that are cultivated through SSF are filamentous fungi. They are particularly suited for
SSF as they naturally colonize and decompose organic residuals and wastes. They are
also competing against most contaminants; thus, it is usually not necessary to use aseptic
bioreactors. They also do not require high amounts of water, their spores are particularly
resistant to hostile environmental conditions, and the fermentation process nets high
productivity and the final concentration of stable products. These factors render SSF more
advantageous compared to SmSF for fungi. The most common issue is scaling up, as many
processes are effective only on a laboratory scale and not for mass production [94,220–222].
Conidia produced using solid substrate fermentation are often more stable and resistant to
stresses caused by drying than those produced in liquid culture [221]. No reports on the
SSF cultivation of microorganisms for biopesticides of the domain of Archaea can be found.
Nevertheless, these microbes are useful to produce enzymes, degrade agricultural wastes,
and production of compounds valuable in food preservation and medical fields [223–228].

7. Conclusions and Future Perspectives

Diverse microorganisms can grow on solid surfaces without or almost without free-
flowing water thanks to SSF. The food, pharmaceutical, energy, and chemical sectors all
use this useful process. However, this technology’s use in creating formulations useful
for agriculture is still in its infancy and several key issues need to be addressed. The
literature survey revealed that there are several substrates that have been tested for use in
SSF. Many of them can also be useful in tropical countries, where certain local agriculture
products leave wastes that could be exploited. But the most common and promising
substrates are the global-wide cereals, since they are among the most cultivated crops in
the world, and their biochemical profile is composed of easily available nutrients for the
growth of microorganisms. This can pose a supplying problem when we consider that, as a
staple food, cereals are first and foremost destined for the human diet, in a similar issue to
biofuel crops. Therefore, research should improve production sustainability, focusing on
recycling food residuals or agro-industrial wastes. Recent literature also shows that SSF
has a good potential for producing biostimulants and biopesticides that are beneficial to
agriculture, but there is still much work to do to solve the current operational limitations:
mainly decreasing the costs of extraction, increasing the shelf-life of the final products,
increasing the final returns in cell or spore production. Improving yields can be done
either by increasing productivity for a single area or by allocating more land to crop fields.
Surface intensification can consume soil, but land use is a major problem for the reduction
of ecosystems and biodiversity. Therefore, the challenge of the XXI century will be set in
the balance between these different requirements.
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New tools for plant stimulation and protection, to produce more while consuming
less soil and resources, are a welcome path to pursue. Biostimulants are the subject of
intense research to mitigate the excess of nitrogen in soil and water systems and reduce
our dependence on fertilizers, which are needed to sustain crop yields, yet their abuse is
environmentally polluting. Biopesticides currently are mainly directed against insects and
molds, which are sources of major interest in agriculture, both to contrast deleterious pests
and to avoid damaging useful organisms that could offer many ecosystem services like
pollination, predation of phytophages, biomonitoring, etc. Bioinsecticides, as evidenced in
our search, are important for sanitary reasons too, to contain mosquitoes which are vectors
of dangerous diseases such as malaria, dengue, or zika. Agroecosystems are sensible to
the spread of mosquitoes, as they reproduce in water sources that are easily and plenty
available in farmlands, from irrigation systems to stagnations, and particularly where rice is
cultivated. In third world countries, dichlorodiphenyltrichloroethane (DDT) is still allowed
and used as the most effective compound against mosquitoes to counter their spread, but it
is environmentally persistent. The development of alternative larvicidal formulations can
be helpful in reducing the need for DDT where terrible diseases are endemic. Categories
like bioherbicides instead are lacking, despite SSF being a suitable method to cultivate
fungi with herbicidal properties. Thus, it is necessary more research on practical and cheap
strains to develop competitive products to reduce the usage of the more effective and
widespread conventional herbicides.

As far as we know there is also currently no available commercial product based on
protists and Archaea for the biostimulant and biopesticide markets. These overlooked lin-
eages can be further studied for the possibility of discovering species with potentially useful
capabilities and developing biotechnological processes and products that exploit them. This
applied field that we discussed will therefore rely also on basic research, whose importance
is evident from the fact that the world of microorganisms is still largely unknown and
in the process of being discovered in its taxonomical, genetic, enzymatic, metabolic, and
symbiotic components. The discovery of new microbial species or strains that could be
potentially useful will play a pivotal role in the development of new formulations. Given
the good number of reports that demonstrated their suitability, filamentous fungi (mainly
Trichoderma spp.) and Bacillus spp. are the most promising inoculants for biostimulant
and biopesticide SSF production. Considering the growing interest in bio-based products,
the need for more sustainable agricultural practices, and the SSF potential for agricultural
applications, the subject is worth to be investigated. Still more research is needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11061408/s1, Table S1: Literature on solid-state
fermentation (SSF) used to produce biopesticides employing inocula of fungi and oomycetes.
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