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Abstract: Smokers (SM) have increased lung immune cell counts and inflammatory gene expression
compared to electronic cigarette (EC) users and never-smokers (NS). The objective of this study is to
further assess associations for SM and EC lung microbiomes with immune cell subtypes and inflam-
matory gene expression in samples obtained by bronchoscopy and bronchoalveolar lavage (n = 28).
RNASeq with the CIBERSORT computational algorithm were used to determine immune cell sub-
types, along with inflammatory gene expression and microbiome metatranscriptomics. Macrophage
subtypes revealed a two-fold increase in M0 (undifferentiated) macrophages for SM and EC users
relative to NS, with a concordant decrease in M2 (anti-inflammatory) macrophages. There were 68,
19, and 1 significantly differentially expressed inflammatory genes (DEG) between SM/NS, SM/EC
users, and EC users/NS, respectively. CSF-1 and GATA3 expression correlated positively and in-
versely with M0 and M2 macrophages, respectively. Correlation profiling for DEG showed distinct
lung profiles for each participant group. There were three bacteria genera–DEG correlations and
three bacteria genera–macrophage subtype correlations. In this pilot study, SM and EC use were
associated with an increase in undifferentiated M0 macrophages, but SM differed from EC users and
NS for inflammatory gene expression. The data support the hypothesis that SM and EC have toxic
lung effects influencing inflammatory responses, but this may not be via changes in the microbiome.

Keywords: inflammation; RNA-sequencing; metatranscriptome; vaping; bronchoalveolar lavage

1. Introduction

Smoking continues to be a major driver of a multitude of health conditions, including
cancer [1]. One hallmark of cancer is inflammation, and its impact on disease-related
pathways is well documented [2–4]. Smoking combustible cigarettes causes both pro-
inflammatory and anti-inflammatory effects in the lung [3,5,6]. A critical component of
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inflammation and disease pathways is the recruitment of monocytes to the lung, which
differentiate into many subtypes of macrophages, including undifferentiated naïve M0
subtypes, pro-inflammatory M1 subtypes, and anti-inflammatory M2 subtypes [7]. Smok-
ing cigarettes downregulates pro-inflammatory M1 macrophage states and induces anti-
inflammatory M2 macrophage states in humans [8–10].

Since being introduced to the US market in the mid-2000s [11], electronic cigarettes
(EC) have been marketed as a safer alternative to smoking combustible cigarettes. Clinical
trials provide some evidence that vaping may foster smoking cessation [12,13]. However,
the long-term health effects of vaping remain unknown. EC heat and aerosolized e-liquids
are composed of a mixture, including nicotine, flavors, vegetable glycerin, and propylene
glycol. Heating e-liquids yields volatile organic compounds, which have induced inflamma-
tion in experimental and human studies [14–22]. Using bronchoscopy with bronchoalveolar
lavage (BAL), we have previously shown that never-smokers (NS) using nicotine- and
flavor-free EC over four weeks have a measurable increase in lung macrophages and
inflammatory cytokines [14]. In a separate cross-sectional study of 72 participants (includ-
ing the participants reported herein), we reported statistically significant higher levels of
inflammation-related biomarkers among smokers (SM), compared to EC and NS, who were
similar to each other [15]. Other cross-sectional studies have reported positive associations
between EC use and increased lung inflammation [16], changes in gene expression of
alveolar macrophages, and small airway epithelial cells [17], as well as significant increases
in innate defense proteins, such as elastase and matrix metalloproteinase-9 [16,18].

The lung microbiome can shape the immune response [23], and although its role
in lung health and the development of disease is poorly understood; there is emerging
evidence that an altered lung microbiome can promote lung carcinogenesis through inflam-
mation [24–27]. Some studies have not found significant differences in the microbiome
diversity for SM and NS [28–30]. We have previously shown that there are differentially
abundant bacteria among SM, EC, and nonsmokers (NS), although the bacterial diversity is
no different [31]. Separately, we have shown that gene expression profiles are different in
bronchial epithelial cells of SM compared to EC and NS, where EC and SM have similar
profiles [15].

The objective of this study is to further assess associations for SM and EC lung micro-
biomes with immune cell subtypes and inflammatory gene expression in samples obtained
by bronchoscopy and bronchoalveolar lavage. Herein, we now report associations by to-
bacco use for immune cell subtypes and inflammatory gene expression in bronchoalveolar
lavage (BAL) samples from SM, EC, and NS.

2. Material and Methods
2.1. Study Participants and Exclusion Criteria

The details of this cross-sectional study have been previously reported [15]. Briefly,
between 2015 and 2017, 28 healthy adult participants (ages 21–30 years) underwent lung
bronchoscopy and BAL. “Healthy” was defined as not having an immune system disorder
requiring medication, clinically diagnosed pulmonary disease under therapy, kidney or
liver diseases, or other medical disorders that would increase the risk from bronchoscopy,
body mass index > 40, or affect biomarker data. A subset of these subjects was chosen
for additional analysis based on gender, age, and sample availability. NS were partici-
pants (n = 10) who had smoked fewer than 100 combustible cigarettes in their lifetime, as
defined by the Centers for Disease Control [32] and had not smoked a cigarette or used
EC for ≥1 year. EC users (n = 10; 8 of whom were former smokers) were daily users for
≥6 months and had not smoked a cigarette for ≥1 year. Smokers were required to smoke
≥10 cigarettes/day for at least six months and had not used EC within one year. Fewer
women SM had sufficient sample available for analysis. This study was approved by the
Ohio State University (OSU) Comprehensive Cancer Center Clinical Scientific Research
Committee and the OSU Institutional Review Board.
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Demographic and clinical characteristics of study participants are summarized in
Table 1. The study workflow is summarized in Supplemental Figure S1.

Table 1. Clinical Characteristics of Study Participants.

NS (n = 10) EC (n = 10) SM (n = 8) p-Value (Chi-Square)

Age (range) 21–30 21–29 21–30 0.22

Mean (±SD) 25.6 (2.8) 27.5 (1.9) 25.9 (2.7)

Gender 0.38

Male (%) 6 (60%) 6 (60%) 7 (87.5%)

Female (%) 4 (40%) 4 (40%) 1 (12.5%)

Race 0.41

White (%) 8 (80%) 8 (80%) 8 (100%)

African American/Asian (%) 2 (20%) 2 (20%) 0 (0%)

Bronchoscopy Site 0.84

Left Lung (%) 5 (50%) 5 (50%) 5 (62.5%)

Right Lung (%) 5 (50%) 5 (50%) 3 (37.5%)

Library Generation Batch 0.89

First Batch (%) 6 (60%) 6 (60%) 4 (50%)

Second Batch (%) 4 (40%) 4 (40%) 4 (50%)

2.2. Biospecimen Collection

Participants underwent a bronchoscopy at the OSU Clinical Research Center after an
orientation visit and consent. Saline (100 mL) was instilled and recovered from either the
right middle lobe or lingula. The recovered BAL fluid was placed on ice and within 30 min
spun at 10,000 g to produce a cell pellet. The BAL supernatant was removed, and the cell
pellets were resuspended in 1 mL of QIAgen RNAprotect cell reagent. The samples were
stored at −80 ◦C.

2.3. RNA Extraction and Sequencing

RNA was extracted from the BAL cell pellets using miRNeasy kit (Qiagen, Crawley,
UK). RNA integrity was assessed using Bioanalyzer (Agilent, Santa Clara, CA, USA). Total
RNA was then treated with TruSeq Stranded Total RNA Gold (Illumina, San Diego, CA,
USA) to remove rRNA; cDNA was then synthesized from the remaining total RNA, and
the library was generated with the Illumina TruSeq kit. RNA-sequencing (RNA-seq) was
performed with the Illumina Hi-seq 4000 at 2 × 150 bps. Samples were sequenced to
at least 35 million total reads per sample (microbial and human reads). Samples were
then demultiplexed and read and 2 FASTQ files were produced for each participant and
uploaded onto BaseSpace.

2.4. Human Transcriptome Analysis

FASTQC was applied to FASTQ files to assess quality of reads. Reads with average
PHRED quality scores ≥ 30 were retained. Cutadapt version (v.) 1.14 [33] was applied to
trim adapter sequences. The remaining reads were then aligned to the human genome
(hg19) by TopHat [34] v.2.1.0, using the following parameters: -p 8 –no-coverage-search
–library-type fr-firststrand hg19.genome Read1.fastq.gz Read2.fastq.gz. To calculate human
gene counts, reads that mapped to the human genome (hg19) were contained in a BAM
file. The BAM file was provided to subread v.1.6.2 [35] with the following parameters:
subread-1.6.2-source/bin/featureCounts -p -a gencode.v19.annotation.gtf -o Featurecount.txt Sam-
ple_File.bam. The gene count for each subject was then compiled into an overall text file
with 57,820 human genes, which was used in downstream human gene analysis.
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2.5. Inflammatory Gene Expression

The aligned human reads ranged from 13.8 million to 41.3 million sequenced reads
that mapped to 57,820 human genes (Supplemental Table S1). The genes were filtered using
the filterByExpr function in edgeR package to remove lowly present genes. The default
parameters and minimal read count of 10 produced a list of 20,517 genes [36]. The gene list
was then normalized to library size using the calcNormFactor function in the edgeR package
v.3.26.8 [37]. This was followed by log2-counts transformations, which were calculated
using the voom function in the limma package v. 3.40.6 [38], followed by library generation
batch correction using the combat function in the sva package v. 3.32.1 in R [39]. Quality
(e.g., possible outliers, batch effects) of the metatranscriptome data was evaluated using
PCA (Supplemental Figure S2A,B).

The gene ontology (GO) term for inflammatory response (GO:0006954) was selected
as GO term of reference. GO:0006954 gene list was provided by BioMart GRCh37 and
consisted of 620 genes. The 620 inflammatory response genes were compared to our list
of 20,517 human genes, and a list of 420 inflammatory genes was produced and used
in pairwise differential gene expression analysis. Comparison of gene expression by
smoking groups before and after selection of inflammatory genes were analyzed by PCA
(Supplemental Figure S2C,D).

2.6. Immune Cell Subtype Populations

CIBERSORT computational algorithm was used to identify 22 immune cell subtypes by
deconvoluting RNA-seq gene expression data. The immune cell subtypes included B cells,
T-cells, natural killer cells, macrophages, eosinophils, and neutrophils [40]. CIBERSORT
has been used in studies on BAL [41–43], and it is considered one of the best bulk RNA
deconvolution methods [44]. Raw gene counts were normalized as fragments per kilobase
of transcript per million (FPKM) and processed in CIBERSORT using the LM22 gene matrix,
as suggested. Results were returned as percentages of each immune cell type.

2.7. Statistical Analysis of Immune Cell Subtypes

Immune cell subtype composition as computed by CIBERSORT was tested for signif-
icance using Kruskal-Wallis test for overall three smoking group comparison with FDR
correction [45]. Immune cells with FDR corrected p < 0.05 were considered significant.
Immune cell subtypes that were significant after FDR correction were then tested for pair-
wise significance by post hoc Dunn test comparison. Pairwise smoking group comparisons
p < 0.0167 (0.05/3 pairwise comparisons) were considered significant.

2.8. Microbiome Metatranscriptomics

Reads that were not mapped to the human genome were aligned to complete genomes
of microbes downloaded from the NCBI microbial genome database (https://ftp.ncbi.
nlm.nih.gov/genomes/refseq/; dated March 2018). Kraken v. 1 [46] was used for align-
ment with the following parameters: kraken –preload –Kraken_Database –fastq-input –gzip-
compressed –paired Microbiome_Read1.fastq.gz Microbiome_Read2.fastq.gz –output Microbial_
alignment. Resulting alignment files were then converted into a read count table: kraken-
report -Kraken_Database Microbial_alignment. Aligned reads by Kraken were then fed into
Bracken v.1 to align to bacterial species using the following parameters: python est_abundance.py
-i BAL_Samples_Full_Kraken_subanalysis -k KMER_DISTR.txt. Bracken [47] was used to re-
classify all non-species classifications from Kraken to species level classifications.

Batch effects of the metatranscriptome data were evaluated using principal component
analysis (PCA). Additionally, based on the PCA, one outlier, a smoker, was removed
from further analysis (Supplemental Figure S3A,B). Bacterial reads were reclassified from
bacteria species to bacteria genus using the aggregate function in R, which merged and
reallocated all bacteria species counts to their identified bacteria genera. In the remaining
27 BAL samples, prefiltered sequences ranged from 71,440 to 351,058 sequences per sample
and were then mapped to 997 unique bacterial genera. These were then filtered on the

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
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following two criteria: (1) bacteria genera present in at least 2 study participants and
(2) aligned reads of the genera were ≥0.005% total aligned microbial reads in a study
participant, resulting in 509 bacteria genera. The 509 bacteria genera were normalized to
library size using the calcNormFactor function in the edgeR package v.3.26.8 [37]. This was
followed by log2-counts transformations calculated using the voom function in the limma
package v. 3.40.6 [38]. An observed library generation batch effect was adjusted through the
combat function in the sva package v.3.32.1 (Supplemental Figure S3C,D) [39]. After filtering,
normalization and correcting for library generation batch, the mapped reads ranged from
71,249 to 350,109 and were mapped to 509 unique bacteria genera (Supplemental Table S1).
The final step was to remove the bottom 10% of bacteria genera based on coefficient of
variation (CV) to produce a list of 458 bacteria genera for IntLIM association analysis in R.

2.9. Visualization and Statistical Analysis

Pairwise comparisons to fit a linear model for each DEG by SM, EC users, and NS
status were assessed by limma [48] function lmFit for the 420 inflammatory genes. Then,
the contrasts.fit function was applied to results from lmFit, which allowed for computation
of estimated coefficients and standard errors for pairwise comparisons across the three
smoking groups. Empirical Bayes (eBayes) was applied to the results from contrasts.fit to
calculate log2 fold change and p-values using a moderated t-statistics. The results of eBayes
analysis were gathered using the function topTable, and the p-values were adjusted for
multiple comparisons using FDR. Genes with FDR adjusted p-values < 0.05 and absolute
log2 fold change > 1 were considered to be significant differentially expressed inflammatory
genes (DEGs). DEGs from pairwise comparisons analysis were then input into QIAGEN
Ingenuity Pathway Analysis (IPA). IPA was provided with gene names and log2-fold
change difference of our DEGs to analyze canonical pathways and function. Absolute IPA
z-scores > 2 were used to consider a pathway as significant.

DEG by SM, EC users, and NS were visualized by heatmaps using log2 normalized
counts of DEGs using the pheatmap package v.4.0.4 [49] in R. Gene counts were scaled
and plotted based on hierarchical clustering, with annotations based by smoking status.
Pearson’s correlations were calculated using the cor function on each smoking group’s nor-
malized gene counts. Correlation heatmaps were then plotted using the pheatmap package
v.4.0.4 in R, with gene order for each intragroup correlation based on the hierarchical cluster
order from an analysis using all three smoking statuses.

2.10. Bacterial-Immune Response Association Analysis by IntLIM

Correlation analysis of bacteria genus by macrophage subtype composition and human
gene expression was conducted using IntLIM [50]. Associations were considered signifi-
cant using IntLIM default parameters (difference in correlation (diffcorr) > 0.5 and FDR
adjusted p-values < 0.1). In the first linear model, IntLIM was provided with bacteria genera
counts and macrophage subtype composition proportions from CIBERSORT for bacteria
genera-macrophage subtype association analysis. The model for this association analysis
was macrophage_subtype ~ bacteria_genera + smoking_status + bacteria_genera:smoking_status.
A second linear model was used to determine bacteria genera and inflammatory DEG corre-
lations by IntLIM. The model for this association was gene ~ bacteria_genera + smoking_status
+ bacteria_genera:smoking_status. The analysis, however, was not conducted for the EC and
NS comparison because there was only 1 DEG.

3. Results
3.1. CIBERSORT Immune Cell Subtype Analysis

Based upon immune cell subtypes computed by CIBERSORT, we observed a clear
separation between SM and NS (Supplemental Figure S4A). Upon further analysis of
CIBERSORT’s results, we observed that macrophages composed, on average, 68% of cells.
The macrophage subtypes by SM, EC user, and NS groups are shown in Table 2, where
the undifferentiated M0 macrophages were significantly increased for SM and EC users
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compared to NS (FDR < 0.0167), but there was no difference between SM and EC users
(Figure 1A). For the pro-inflammatory M1 macrophage subtype, a significant decrease was
observed in SM compared to NS, while no significant difference was found for the EC
users compared to SM and NS (Figure 1B). For the anti-inflammatory M2 macrophages, we
observed a significant decrease in M2 macrophages in both SM and EC users compared to
NS (Figure 1C). Amongst the other immune cell types, significant differences were observed
between SM and NS in CD4+ T-cells—memory resting, T cells—regulatory, and dendritic
cells—resting (Supplemental Figure S4B). Significant differences were also found between
SM and EC users for CD4+ T-cells—memory resting and dendritic cells—resting. There
were no significant differences for NK cells, B cells, CD8+ T cells, monocytes, mast cells,
eosinophils, and neutrophils (data for all 22 CIBERSORT identified subtypes are shown in
Supplemental Figure S4B; Supplemental Table S2).

Table 2. Macrophage Subtypes by Smoking Status. Median and range for M0, M1, and M2
macrophages subtypes in never-smokers, e-cig users, and smokers. Overall p-values were calculated
by the Kruskal-Wallis and were FDR corrected.

CIBERSORT (%) Cell Counts

Never-Smoker
(n = 10)

E-Cig User
(n = 10)

Smoker
(n = 8)

Cell Type (%) Median (Range) Median (Range) Median (Range) Raw p-Value FDR-Corrected
p-Values

Macrophages M0 34.5 (28.8–37.1) 49 (35.5–59.7) 49 (40.7–63.1) 2.20 × 10−4 2.09 × 10−3

Macrophages M1 0.91 (0.24–2.26) 0.58 (0.26–1.51) 0.35 (0.23–0.51) 7.56 × 10−3 2.40 × 10−2

Macrophages M2 34.6 (27.8–42.1) 22.4 (11.4–29.7) 16.1 (12.1–21.9) 8.42 × 10−5 1.60 × 10−3
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Figure 1. Predicted Percent Composition of Macrophage Subtypes in BAL. Boxplots of predicted
percent composition by CIBERSORT of (A) M0, (B) M1, and (C) M2 macrophage subtype by
smoking groups. Asterisks represent significance between pairwise smoking group comparison
(** q-value < 0.01, *** q-value < 0.001, **** q-value < 0.0001 Dunn test).

3.2. Inflammatory Gene Expression Analysis

There were 68 DEGs identified in the SM/NS comparison (FDR < 0.05 and a fold-
change of at least 2 (log2 fold change > 1)) (Figure 2A,D; Supplemental Table S3). For
the SM/EC user comparisons, there were 19 DEGs (Figure 2B,D; Supplemental Table S4).
Eighteen of these were common to both comparisons, which were ADORA3, AOC3, C8B,
CCL20, CHI3L1, CXCL10, CXCL11, CXCL9, CYP4F11, FCER1A, IDO1, IRG1, LIPA, MGLL,
NCF1, PLA2G7, SERPING1, and VNN1, representing genes in the chemotaxis, allergy,
tissue remodeling, and other pathways. Of these 18 genes, ADORA3, CHI3L1, CYP4F11,
FCER1A, LIPA, NCF1, PLA2G7, and VNN1 were observed to have increased expression in
SM. The 19th DEG observed in the SM/EC comparison was FN1 (fibronectin), which was
not significant in the SM/NS comparison and also was higher in the EC users than SM.
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There was only one DEG for the EC/NS comparison that met this criteria (Figure 2C,D;
Supplemental Table S5), which was CSF-1.
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Figure 2. Inflammatory gene expression patterns in response to smoking or e-cig use. (A–C) Volcano
plots depict log2 fold change vs. –log2(p-value) for differentially expressed genes (DEG) for each
smoking status pairwise comparison (red is statistically significant and black is not significant),
(A) smokers vs. never-smokers, (B) smokers vs. e-cig users, and (C) e-cig users vs. never-smokers.
Significant DEGs are colored red (horizontal dashed lines represent raw p-values that correlate to
FDR < 0.05, and vertical dashed lines represent absolute log2 fold change > 1). (D) Venn Diagram
of # of DEGs by smoking status pairwise comparison. An amount of 68 DEGs were observed in
the smoker vs. never-smoker comparison, and 19 DEGs were observed in smoker vs. e-cig user
comparison, and one DEG is observed in the e-cig user vs. never-smoker comparison. There are
18 genes that are in common between the comparisons of smoker vs. never-smokers and smokers
vs. e-cig users. There is one gene in common between the comparison of smoker vs. never-smokers
and e-cig users vs. never-smokers. (E) Heatmap of 68 DEGs in all study subjects. Seven of eight
smokers cluster together with two e-cig users, and the cluster in the middle contains nine of the ten
never-smokers, with two e-cig users and one smoker, and the cluster on the right contains six of ten
e-cig users and one never-smoker.

In hierarchical clustering analysis, seven of the eight SM clustered together along with
two EC users, and nine of the ten NS clustered with only two EC users and one SM, while
six of the ten EC users were separated and clustered with one NS (Figure 2E).

A heatmap showing which of the 68 DEG correlation profiles for each DEG to each
other by smoking status is shown in Figure 3A–C. The greatest correlative clustering change
in the lower right of each figure is outlined in black, representing 30 DEGs, which decreased
in intensity from NS to EC to SM. The highly correlated 30 genes were identified as part of
canonical pathways, including Th1 and Th2 differentiation pathways. We also observed a
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second shift in correlation profiles in the upper left quadrants that increased in intensity
from NS to EC use to SM. These genes were not identified as part of a particular immune cell
canonical pathways, but the genes were identified as part of the atherosclerosis signaling
pathways. The shift in gene correlation based on smoking status was also observed in the
density plot (Figure 3D). The SMs have a smaller peak for highly correlated genes (Pearson
Correlation > 0.5) compared to EC users and NS.
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Figure 3. Shift in Gene Expression Observed by Pearson Correlation Heatmaps and Density plot
of DEGs by Intragroup Comparison. Correlation heatmaps of 68 DEGs in (A) never-smokers,
(B) e-cig users, and (C) smokers. Highly positive correlations in genes are represented by shades of
red, while highly negative correlations in genes are represented by shades of blue. The dark blue
outlined region located on the right side of all correlation heatmaps represents genes that shifted from
highly correlated in never-smokers to less correlated in smokers. The green outlined region located in
upper left of all correlation heatmaps represents genes that were lowly correlated in never-smokers
that became highly correlated in smokers. (D) Density plot representing Pearson correlation vs.
density of all three intragroup correlations. Compared to never-smokers and e-cig users, a decrease
in high correlations (Pearson Correlation > 0.5) was observed in smokers.

Pathway analysis for the 69 DEGs was conducted using IPA and an absolute z-score > 2
for significance. Only one pathway was returned in the SM/NS comparison, which was the
Th2 (T-helper cells type 2) pathway, with a z-score of −2.34. No pathways were returned
discovered in the SM/EC comparison.

3.3. Association of Bacteria Genus with Macrophage Subtypes

Linear models were used to find associations between bacteria genera and all macrophage
subtypes by smoking status groups. We observed two genus-M0 macrophage subtype pairs
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in SM/NS, one genus-M0 macrophage subtype pair in EC/NS, and zero genus-macrophage
subtype pairs in SM/EC. The two genera-macrophage subtype pairs in SM/NS were
Geminocystis (Figure 4A) and Salinivirga (Figure 4B), which were both associated with M0
macrophages, while the one genera-macrophage subtype pair in EC/NS was Negativicoccus,
which was also associated with M0 macrophages (Figure 4C). For the Geminocystis-M0
macrophage association, in NS, an increase in Geminocystis was associated with an increase
in M0 macrophages, while, in SM, a decrease in Geminocystis was associated with an increase
in M0 macrophages. In the Salinivirga-M0 macrophage association, for both NS and SM, an
increase in Salinivirga was associated with an increase in M0 macrophages. No association
of Geminocystis or Salinivirga with macrophage subtypes was observed in EC users. For the
Negativicoccus-M0 macrophage association, NS had a decrease in Negativicoccus, and EC
users had an increase in association with an increase in M0 macrophages.
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Figure 4. Line plots of bacteria genera-immune response associations. (A–C) Line plot of macrophage
subtype vs. bacteria genus (Significant pairs were calculated as difference of Pearson’s correlation > 0.5
and FDR p-value < 0.2). Comparison is SM/NS for A and B, comparisons is EC/NS for C.
(A) Geminocystis-M0 macrophages: a negative linear trend was observed in SM with positive
linear trend observed in NS. (B) Salinivirga-M0 macrophages: a positive linear trend was observed in
SM and NS. (C) Negativicoccus-M0 macrophages: a negative linear trend was observed in NS, and a
positive linear trend was observed in EC users. (D–F) Line plot of gene expression vs. bacteria genera
(Significant pairs were calculated as difference of Pearson’s correlation > 0.5 and FDR p-value < 0.2).
All comparisons are between SM/NS. (D) Candidatus Solibacter-GATA3: a negative linear trend was
observed in SM, and a positive linear trend was observed in NS. (E) Moraxella-GATA3: a negative
linear trend was observed in SM, with no linear trend observed in NS. (F) Blastococcus-XCR1: a
positive linear trend was observed in SM, and a negative linear trend was observed in NS.

3.4. Association of Bacteria Genus and Differentially Expressed Inflammatory Genes

Linear models with an interaction term were used to identify smoking status group-
specific bacteria genera associations with inflammatory DEGs. This association analysis
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used the bacteria genera list and the DEGs lists (68 DEGs SM/NS, 19 DEGs SM/EC)
from our pairwise comparisons. We observed three genus–gene pairs in SM/NS and
zero genus–gene pairs in SM/EC (FDR adjusted p-value < 0.1 and correlation difference
of >0.5). These three genus–gene pairs were Candidatus Solibacter-GATA3 (Figure 4D),
Moraxella-GATA3 (Figure 4E), and Blastococcus-XCR1 (Figure 4F). We observed a decrease
in GATA3 expression for SM and an increase for NS associated with increased Candidatus
Solibacter. For Moraxella-GATA3 association, we observed a decrease in GATA3 expression
with increasing Moraxella in SM, and no linear trend was observed in NS. Blastococcus was
positively correlated in SM with XCR1 expression, but it was negatively correlated in NS.

4. Discussion

This pilot study is the first to concurrently assess associations in NS, SM, and EC
use for lung inflammation by immune cell subtype and inflammatory gene expression, as
well as to further examine associations with the lung microbiome. In a prior publication,
we reported that the bacterial diversity was no different for SM, EC, and NS, and while
there were some differences in differentially abundant bacteria among the groups, smokers
tended to have lower levels compared to EC and NS, and that total macrophages were
higher in SM compared to NS [31]. In this report, both SM and EC use, compared to NS,
were associated with about a two-fold proportional increase for undifferentiated naïve M0
macrophages and a concordant decrease in anti-inflammatory M2 macrophages. In contrast,
inflammatory gene expression for EC use was more closely aligned with NS than SM. We
observed that FN1, coding for fibronectin, may be associated uniquely with EC use. The
correlation profiles of lung inflammatory gene expression indicated clear differences in the
lungs of SM users, EC users, and NS users. Further, bacterial metatranscriptomic analysis
identified bacterial genera associated with decreased expression of inflammatory genes
GATA3 and increased expression of XCR1 in SM. Overall, metatranscriptomic analysis did
not support a clear role for the microbiome to be associated with changes in inflammation.

While smoking has both pro-inflammatory and anti-inflammatory effects on the lung,
our results suggested that smoking has mostly pro-inflammatory effects on the lung.
Previously, cigarette smoking has been associated with lung inflammation, modulating the
risk of respiratory disease and lung cancer [6,51]. Smoking is associated with increases in
lung innate immune cells, including macrophages and neutrophils [3], and the adaptive
immune cells CD8+ T-cells [6,52], but also with decreased CD4+ T-cells [52]. Smoking
has anti-inflammatory effects that includes reprogramming from pro-inflammatory M1
macrophage to anti-inflammatory M2 macrophages [53,54].

The significant increase in the percentage of M0 cells for SM compared to NS indi-
cated a macrophage developmental arrest, which counterbalanced the decrease in anti-
inflammatory M2 macrophages, and while there was also a decrease in the proportion
of pro-inflammatory M1 macrophages, the magnitude of the proportional decrease was
much less. In other studies, and in the dataset reported herein, smoking increased to-
tal macrophages [8,15], down-regulated M1 macrophage states, and induced M2-like
macrophage states in cultured human inflammatory cells [8–10,54–56] and mice [8,57],
consistent with an anti-inflammatory effect. Eapen et al. (2017) [8] studied both BAL
and tissue, although they only reported M1 and M2 macrophages without employing a
technology to study M0 populations. They found an increase in total macrophages for SM,
no difference for M1, and an increase in M2. Kollert et al. (2009) [58] reported only levels
of M2 macrophages in BAL, noting a decrease in M2 for SM compared to NS, consistent
with our data. The only study we are aware of that considered smoking associations with
M0 macrophages was reported by Bazzan et al. (2017) [59], who studied lung tissues from
SM compared to NS, but not inflammatory cell infiltrates in BAL, and they observed a
decrease in M0 and an increase in M1 and M2. All of the above studies used methodologies
assessing a limited number of immune cell subtypes. Given that smoking, and nicotine,
have both anti-inflammatory and pro-inflammatory effects, the increase in M0 percent and
macrophage arrest in BAL, as we have found, could promote an overall pro-inflammatory
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microenvironment. Macrophage subtypes differ in the expression of chemokine receptors
and response to chemokines [60]. Whether a difference in chemokines is related to smoking
may be one explanation for the results reported herein. Either way, concordant with these
findings was an increase in Tregs and dendritic cells, but a decrease in CD4+ lympho-
cytes. These results indicated that EC users immune cell compositions were mostly similar
to SM. Eight of ten EC users were former smokers, which combined with the immune
cell composition results of EC users being similar to SM, which may reflect a residual
smoking effect.

While the CIBERSORT cell type data indicated that EC use and SM had similar
immune cell composition associations, and were different compared to NS, a different
pattern of inflammatory gene expression was found. Correlation analysis indicated unique
inflammation profiles for SM users, EC users, and NS users. There were 68 significant DEGs,
which were inflammation-related genes pathways for SM/NS, of which 18 DEG overlapped
with SM/EC comparisons, possibly indicating a residual smoking effect for these. Among
the 18 DEGs, the following are decreased in SM: CXCL9, CXCL10, and CXCL11. Meanwhile,
DEGs, such as CHI3L1 and ADORA3, are increased in SM. CXCL9 is expressed by M1
tumor-associated macrophages and recruited CD8+ tissue-resident memory T cells, and
increases in both immune cell types in tumors are associated with better overall lung
cancer survival [61]. CXCL9, CXCL10, and CXCL11 are upregulated in macrophages
following immune checkpoint inhibitor treatment and associated with increased CD8+
T-cell infiltration into tumors [62], and they are found to be downregulated in COPD
macrophages [54]. High serum levels of CHI3L1 are associated with poorer prognosis
and decreased overall survival for various cancers [63], including lung cancer [64,65].
Given CHI3L1’s role in remodeling after injury, increased CHI3L1 serum levels are also
associated with metastasis in non-small cell lung cancer [66]. Another remodeling gene,
ADORA3, was found to have an expression that was increased in COPD subjects [54]. The
single overlapping DEG for SM/NS and EC/NS comparisons was CSF-1 (macrophage
colony stimulating factor 1). This gene codes for an extracellular cytokine, serving as
a hematopoietic growth factor affecting the production, differentiation, and function of
macrophages [67]. Higher levels of CSF-1 in SM and EC users suggests that there is a
shared pathway in both atherosclerotic and cancer pathways, potentially fostering tumor
growth [68]. There was only one gene that was uniquely differentially expressed between
SM and EC users, which was FN1, which codes for fibronectin, and which was higher in EC
users. Fibronectins have a role in maintaining cell structure, maintaining the extracellular
matrix, and binding cell surfaces [69–72]. Conflicting studies have found that fibronectin
expression was both down- and up-regulated in mice exposed to e-aerosols [73,74]. Whether
EC use has a unique effect on fibronectin expression, which is unrelated to SM, requires
further study.

IPA analysis identified an inhibition of the Th2 pathway in SM (Th2 cells as a subtype
are not reported in CIBERSORT). Th2 cells are a subset of CD4+ cells, and we found that
CD4+ memory resting cells were decreased in SM compared to the EC users and NS, and
the Tregs were increased. Th2 cells are responsible more for humoral immunity than for
inflammation [75], and the cytokines they secrete (IL-4, IL-5, IL-9, IL-10, and IL-13 [75,76])
were not found to be different in the lungs of SM users, EC users, and NS users [15].
These cytokines also were not affected in NS, using EC in a randomized clinical trial, and
using EC [14]. Thus, the significance of the association to the Th2 pathway is unclear.
Additionally, noted in the analysis was a statistical increase in resting dendritic cells for SM
compared to the EC users and NS, with about a two-fold increase. These antigen-presenting
cells may be increased due to the higher levels of cigarette smoke toxicants compared to
e-aerosols [77].

Herein, we examined microbiome correlations with CIBERSORT immune cell data
by SM, EC, and NS status. Only two genera-M0 subtype correlations were observed for
SM/NS, namely, Geminocystis and Salinivirga, neither of which are considered pathogenic.
The Geminocystis-M0 correlations were in different directions with a positive correlation
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in NS and an inverse correlation in SM. The Salinivirga-M0 macrophage correlation was
positive for both SM and NS. There were no M0 correlations for Geminocystis or Salinivirga
with EC use. For EC/NS, there was a Negativicoccus-M0 macrophage inverse correlation for
NS and a positive correlation for EC use. Negativicoccus has been found in normal lung and
in lung carcinomas [78]. These findings are for EC use only, and they may reflect a unique
EC effect, including decreased macrophage phagocytosis, as has been observed in vitro for
nontypeable Haemophilus influenzae [19] and Mycobacterium tuberculosis [79].

In this study, the metatranscriptomic data were found to significantly correlate with
only three bacteria genera and DEG in SM, and there were no correlations in EC users.
Among these, the Moraxella genus, which includes Moraxella catarrhalis, which is a well-
documented lung pathogen associated with defective macrophage phagocytosis [80], was
correlated with decreased GATA3 expression in SM, but not in NS. GATA3 is a highly
bioactive transcription factor involved in both inflammatory and humoral immunity, and
it has an important role in differentiation of Th2 effector cells [81]. Thus, as with the Th2
pathway analysis, smoking may affect the lung microbiome via an impact on GATA3. For
the other correlations, there is no known pathogenicity of Blastococcus and Candidatus
Solibacter in humans.

Although there were several novel findings in this study, some limitations to data
interpretation are notable. This study was necessarily small due to the intensive study
based on RNA-seq, and so generalizability to SM and EC users, including persons age > 30,
is limited. Due to the small sample size, there were also limits on statistical power, as the
sample size is insufficiently powered to detect small differences, as well as precluding
analyses in SM and EC users by magnitude of use (dose–response effect). By excluding
older SM and EC users, we also excluded consideration of concurrent lung damage from
long term use. However, the participants we studied here are the demographic which
most commonly uses EC. There also was an imbalance by gender in the NS, although it
is unknown if the lung microbiome would differ by gender. Another limitation of this
study was that CIBERSORT immune cell population analysis is only able to estimate cell
population proportions, and thus we did not have absolute cell population data, and our
prior studies have shown that total macrophage levels increase with smoking, and less so
with EC use, compared to NS [15]. Future studies are warranted to isolate immune cells
and perform functional and protein-based assays to understand the impact of SM and EC
on the airway inflammatory process. This study method by BAL does not distinguish the
bacterial communities that may be different in the alveoli and bronchi. Finally, while our
data are consistent with other published data [16–18], and in a small pilot trial we showed
that EC use in NS increases inflammation [14], the cause and effect relationship of smoking
or EC use with changes in inflammation needs to be confirmed in studies of SM switching
to EC or quitting in randomized trials.

5. Conclusions

In summary, in this cross-sectional pilot study using bronchoscopy biomarkers of in-
flammation, we observed that SM and EC use was associated with increased M0 macrophage
arrest, as well as an almost equal decrease in anti-inflammatory macrophage development.
In contrast, SMs were distinct from EC users and NSs for inflammatory gene expression.
Inflammation is an important pathway for the development of chronic respiratory disease
and lung cancer. The SM and EC associations with inflammation were not explained by
alterations in the lung microbiome. The preliminary data support the hypothesis that
smoking and EC use have toxic lung effects, influencing inflammatory responses, but not
via changes in the microbiome. The importance of macrophage subtype differences on lung
cancer risk and other diseases warrants further exploration.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/microorganisms11061405/s1.
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