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Abstract: Early life gut microbiota-influencing factors may play an important role in programming
individuals long-term health and substantial efforts have been devoted into studying the development
of the gut microbiota in relation to early life events. This study aimed to examine in a single study,
the persistence of associations between 20 factors occurring in the early life and the gut microbiota
at 3.5 years of 798 children from two French nationwide birth cohorts, EPIPAGE 2 (very preterm
children) and ELFE (late preterm and full-term children). Gut microbiota profiling was assessed
using 16S rRNA gene sequencing-based method. Upon thorough adjustment of confounding factors,
we demonstrated that gestational age was one of the factors most associated with gut microbiota
differences with a noticeable imprint of prematurity at 3.5 years of age. Children born by cesarean
section harbored lower richness and diversity and a different overall gut microbiota composition
independently of preterm status. Children who had ever received human milk were associated
with a Prevotella-driven enterotype (P_type) compared to those who had never received human
milk. Living with a sibling was associated with higher diversity. Children with siblings and those
attending daycare centers were associated with a P_type enterotype. Maternal factors including
the country of birth and preconception maternal body mass index were associated with some
microbiota characteristics: children born to overweight or obese mothers showed increased gut
microbiota richness. This study reveals that multiple exposures operating from early life imprint
the gut microbiota at 3.5 years that is a pivotal age when the gut microbiota acquires many of its
adult characteristics.

Keywords: gut microbiota; preschool children; early life factors; DOHaD; enterotypes

1. Introduction

Due to its possible effects on health and diseases, the study of the human microbiota
has become a research area of utmost interest in the past years [1]. The gut microbiota plays
an important role in different aspects of physiological human traits including regulation
of the intestine homeostasis, role in digestion and metabolism processes, immune system
stimulation, brain–gut communication, and brain development [2]. Given these numerous
physiological functions, gut dysbiosis has been studied in terms of association with a
variety of non-communicable diseases, such as obesity, type 2 diabetes, inflammatory
bowel disease, allergies, autism, and some types of cancer [2]. The developmental origins of
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health and disease (DOHaD) theory states that exposures during the highly plastic period
of early life, the so called “first thousand days period”, can program later life disease risk [3].
Within the DOHaD paradigm, the gut microbiota has emerged as a potential critical early-
life factor able to program long-term health [4]. Accordingly, alterations of the early gut
microbiota, and therefore perturbations of the crosstalk between the gut microbiota and its
functions set the stage for potential lifelong adverse outcomes [5]. From birth onwards, the
development of the gut microbiota is regulated by a complex interplay between multiple
exposures including maternal factors, diet, and environment [6]. Extensive data exist in the
literature regarding the gut microbiota development for infants (less than 3 years); however,
the latter has been overlooked in preschool (3–6 years) children [7] and particularly in
the preterm population. The gut microbiota is purportedly shifting toward an adult-like
microbiota around the age of 3 years [8] but that age has been revised upward recently
(approximately 6 years) with the matter still being under debate [9–11]. It is crucial to fill the
gap of knowledge during this important phase of life when the foundation of the relatively
stable and resilient adult type gut microbiota is setting [7]. In this study, we leveraged the
EPIPAGE 2 and ELFE French nationwide birth cohorts. We aimed to investigate in one
single study including a large pediatric population of children born preterm or full-term,
whether a variety of exposures operating from early in life (gestation to 1 year of life),
still influenced the gut microbiota of children at 3.5 years of age. We reported the data
obtained taking into account selected factors known to influence the gut microbiota that
were categorized in different domains including maternal health, perinatal factors, diet,
and environmental factors. Our findings may help to evaluate which early life factors
might represent potential levers to modulate the children gut microbiota and propose
opportunities for microbiota-targeted health-promoting strategies early in life.

2. Materials and Methods
2.1. EPIPAGE 2 and ELFE Cohorts

Children included in this study are part of two French national birth cohorts launched
in 2011; EPIPAGE 2 (Etude Epidémiologique sur les Petits Ages Gestationnels-2) [12], and
ELFE (Etude Longitudinale Française depuis l’Enfance) [13]. Briefly, EPIPAGE 2 is a cohort
of exclusively preterm infant born before 34 weeks of gestational age (GA) recruited in
68 neonatal intensive care units (NICUs) in France. For a subset of EPIPAGE 2 preterm
infants born before 32 weeks of gestational age recruited in 24 voluntary NICUs (EPIFLORE
ancillary study of EPIPAGE 2), a collection of stool samples was carried out. ELFE is a
nationwide birth cohort, which included newborns born after 33 weeks of gestational age
in 349 randomly selected maternity units in mainland France. For a subset of these children,
stool samples were collected at 3.5 years of age.

2.2. Ethics

The cohorts and the collection of stools were approved by the Committee for the
Protection of People Participating in Biomedical Research (Comité de Protection des Person-
nes [CPP]), the national advisory committee on information processing in health research
(Comité Consultatif sur le Traitement de l’Information en matière de Recherche dans le do-
maine de la Santé [CCTIRS]) and the French National Data Protection Authority (Commis-
sion Nationale de l’Informatique et des Libertes [CNIL]). Recruitment and data collection
occurred only after the families had received information and agreed to participate in these
cohorts with informed consent.

2.3. Participants

Our ancillary study included 208 and 630 children from EPIPAGE 2 and ELFE, respectively.
As twin children shared a more similar gut microbiota (see pairwise beta diversity

distances between related and unrelated children and genus composition among related
children in Figure S1), we randomly excluded one of the twins from a related pair or two
children from triplets to assess as much variability as possible in the gut microbiota of
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children at 3.5 years of age, leading to the non-inclusion of 40 children (EPIPAGE 2, n = 36;
ELFE, n = 4). The final dataset on which the analyses were performed included a total of
798 children (EPIPAGE 2, n = 172; ELFE, n = 626).

2.4. Maternal and Child Data Collection

For both cohorts, information regarding pregnancy, newborn and maternal character-
istics were collected using parental questionnaires at birth, during follow-up, or extracted
from the obstetrical file (both cohorts), and medical files during the perinatal period
(EPIPAGE 2).

2.5. Exposures of Interest

For the current study, we defined the early exposure window as the first year of
life of the child. For both cohorts, we selected factors occurring during this exposure
timeframe that have a potential influence on the child gut microbiota. These factors
included gestational age, delivery mode, exposure to antibiotics within the first 3 days
of life (referred to as early neonatal antibiotherapy), human milk consumption, skin-to-
skin practice, preconceptional maternal body mass index (BMI), maternal country of birth,
collective daycare attendance at one year of age, and number of siblings in household at one
year of age. For the present study, the “human milk consumption” and “duration of human
milk consumption” variables referred to any human milk intake whatever the source (own
mother or donor), the mode (bottle or breast), and exclusively or not. Moreover, cohort
specific factors were investigated: the antibiotherapy during labor and during the last
hospitalization leading to delivery (referred to as antibiotherapy during pregnancy) were
included for the EPIPAGE 2 cohort; the age at complementary feeding (first introduction of
food other than milk or water), the age at first introduction of different food (vegetables,
fruits, meat and fish), antibiotics administration during the first year of life, and rural or
urban environment of parental dwelling at 2 months were included for the ELFE cohort.
Additionally, we included information regarding maternal diet in the last 3 months of
pregnancy though adherence to the French dietary intake guidelines (Programme National
Nutrition Santé (PNNS)) [14]. We used a score of adherence to general guidelines for
adults (PNNS score) and a score of adherence to guidelines specific to pregnant women
(pregnancy score) [15].

For each factor, we designed a multivariate model to adjust for a set of parsimonious
potential confounding factors identified with a Directed Acyclic Graph (DAG). We adopted
a thorough adjustment scheme considering several confounding factors while being careful
not to adjust for potential mediating factors.

Minimal adjustment sets identified for each factor were as follows:

- gestational age: maternal age, maternal level of education, household income and,
preconceptional maternal BMI.

- delivery mode: gestational age, maternal age, maternal level of education, household
income, country of birth of the mother and preconceptional maternal BMI.

- early neonatal antibiotics: delivery mode, gestational age, maternal level of education
and skin-to-skin contact.

- human milk consumption: maternal age, maternal level of education, household
income, country of birth of the mother, gestational age, delivery mode and household
siblings at 1 year.

- skin-to-skin contact: Country of birth of the mother, gestational age and human
milk consumption.

- preconceptional maternal BMI: country of birth of the mother.
- daycare exposure at 1 year: maternal level of education, household income, country

of birth of the mother and household sibling at 1 year.
- household sibling at 1 year and environment (rural/urban): maternal age, maternal

level of education and household income.
- country of birth of the mother: none.
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- antibiotherapy during pregnancy: none
- antibiotherapy during delivery: antibiotherapy during pregnancy.
- age at complementary feeding + age at first introduction of vegetables, fruits, meat,

and fish: maternal age, maternal level of education, household income, country of
birth of the mother, preconceptional maternal BMI, human milk consumption, daycare
exposure at 1 year and household siblings at 1 year.

- PNNS and pregnancy scores: maternal age, maternal level of education, country of
birth of the mother, household income, preconceptional maternal BMI, environment
(rural/urban), and household siblings at 1 year.

- antibiotherapy during the first year of life: maternal age, maternal level of education,
daycare exposure at 1 year and household siblings at 1 year.

2.6. Samples Collection, DNA Extraction, Sequencing and Data Processing

Stool samples were collected at home circa 3.5 years of age, according to the operating
procedure of the International Human Microbiome Standards (IHMS) [16]. Briefly, stools
were collected in a stabilizing solution (RNA later ®) and sent to the study biobank. Within
3 days, samples were homogenized, aliquoted, and stored at −80 ◦C until analysis. Total
fecal DNA was extracted according to the IHMS operating procedure [16]. Negative (water)
and positive (microbial mock communities) controls were included and went through the
same process as samples from extraction to sequencing. High throughput sequencing
of the V3-V4 regions of the 16 s ribosomal RNA gene was performed on an Illumina
MiSeq platform as previously described [17]. Raw sequences were analyzed using the
pipeline “Find Rapidly OTU with Galaxy Solution” (FROGS, v 3.2) from the Galaxy software
framework [18]. Sequences were checked for quality using FastQC (threshold 20–38). After
trimming barcodes, the sequences were filtered for length and clustered into operational
taxonomic units (OTUs) using the swarm clustering method implemented in the FROGS
version 3.2 pipeline. OTUs representing less than 0.005% of all the sequences, the majority
corresponding to singleton OTUs, were discarded [19]. Chimera were detected using
vsearch (v 2.17) implemented in FROGs pipeline and then removed. Taxonomic affiliation
of OTUs was assigned using Silva 138.1 pintail100 database. A total of 24,698,345 reads
(median 29,240 reads per sample) were obtained from the 16S rRNA gene sequencing.
To adjust for the influence of uneven sampling depth, each sample was rarefied to the
minimum sampling depth of the dataset (9258 reads) and rarefied data were used for all
downstream analyses unless stated otherwise.

2.7. Microbiota Diversity and Composition

Metrics used to describe the gut microbiota included alpha diversity, beta diversity
and enterotypes. Chao1 estimate (richness), and Shannon index (evenness) were calculated
to investigate patterns of microbial community alpha diversity in the gut microbiota.
Beta diversity was assessed by computing dissimilarity matrices using Bray–Curtis and
Unweighted Unifrac (UniFrac) distances. The Bray–Curtis dissimilarity distance reflects
community composition considering the abundance of taxa, while the UniFrac distance
considers the phylogenetic relationships among members of the bacterial communities.
Stratification of the cohort based on gut microbial composition was performed according
to previously reported enterotyping guidelines [20]. Briefly, the relative abundances of
the classified genera were used to produce a Jensen–Shannon divergence (JSD) distance
matrix between samples. Based on the obtained distance matrix, samples were clustered
using the Partitioning Around Medoids (PAM) algorithm. The optimal number of clusters
was chosen by maximizing the Calinski–Harabasz index and was cross-validated with
the silhouette index and prediction strength. The result of PAM clustering was visualized
on PCoA biplot, and driver genera vectors were assessed using the “envfit” function.
The genus with the highest relative abundance in each group was considered the main
contributor of each enterotype
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2.8. Statistical Analysis

Associations between the different factors and alpha diversity metrics and enterotypes
were tested by multivariable linear or logistic regression, respectively, adjusted for different
sets of confounding factors presented in section “Exposures of Interest” according to the
factor tested. For beta diversity indices, hypothesis testing was carried out using permu-
tational multivariate analysis of variance [21] (PERMANOVA) adjusted for appropriate
confounding factors and based on 999 permutations to analyze the influence of the factors
on the gut microbiota according to the beta diversity metrics. For all PERMANOVA analy-
ses, Benjamini–Hochberg’s FDR (False Discovery Rate) correction was used to adjust for
multiple testing.

To identify single taxonomic units associated with specific factors using differential
abundance testing methods, we used a triangulation of three different methods: Linear
Decomposition Models (LDM) [22]. Analysis of Compositions of Microbiomes with Bias
Correction (ANCOM-BC) [23], and ANOVA-Like Differential Expression tool for compo-
sitional data (ALDEx2) [24]. For each factor, the model was controlled for its own set of
confounding factors and was corrected using the Benjamini–Hochberg method. Differences
in abundance were based on non-rarefied counts for both ANCOM-BC and ALDex2 as
both methods used their own normalization methods.

Sensitivity analyses were conducted by excluding all children from the EPIPAGE
2 cohort (n = 172) in order to assess the influence of very preterm status on the associations.
We also performed a comparative analysis to assess the impact of missing data. Missing
values in the exposures were imputed using a random forest-based algorithm for missing
data imputation called missForest [25]. Results of these sensitivity analyses are reported as
Supplementary Material.

All analyses were performed using the R software version 4.1.2 (R Foundation) and the
following R packages: phyloseq (v1.34.0), vegan (v2.6-0), ggplot2 (v3.3.5), lme4 (v1.1-27.1),
cluster (v2.1.2), clusterSim (v0.49-2), fpc (v2.2-9), ade4 (v1.7-16), missForest (v1.5), LMD
(v4.0), ANCOM-BC (v2.1.0), and ALDEx2 (v1.28.1).

3. Results

Stool samples of children included in the present study were collected at 3.5 years of
age corresponding to a median age of 42.3 months (interquartile range [IQR], 41.4–44.0 months)
and 42.6 months (IQR, 42.2–43.3 months) for ELFE and EPIPAGE 2 children, respectively.

Characteristics of ELFE, EPIPAGE 2, and pooled study population are provided in
Supplementary Material (Table S1). The gestational age (GA) distribution of the pooled
study population is as follows: 4.3% (n = 34) children within the 24–26 GA range; 17.3%
(n = 138) within the 27–32 GA range; 2.8% (n = 22) within the 33–37 GA range; 74.1%
(n = 591) ≥ 37 GA.

3.1. Gut Microbiota Description of Children at 3.5 Years of Age

At 3.5 years of age, the gut microbiota of children from the EPIPAGE 2 cohort harbored
lower alpha diversity compared to the ELFE children (Chao1 estimate, p = 0.004; Shannon
index, p ≤ 0.001) (Figure 1A). The gut microbiota of the 798 children optimally stratified into
two enterotypes equally distributed between ELFE and EPIPAGE 2 children (Figure 1B,C).
Each enterotype was characterized by the dominance of either Bacteroides (B_type, n = 649)
or Prevotella (P_type, n = 149) (Figure 1D) with P_type enterotype harboring higher richness
(p ≤ 0.001, Figure S2).

3.2. Enterotypes Association with Early Life Factors

In adjusted analyses (Table 1), having ever received human milk, attendance of a
childcare center at one year, and having at least one sibling during the first year of life
were associated with higher probabilities of belonging to the P_type enterotype. Late
introduction of fish (>6 months) was associated with a lower probability of belonging to
the P_type enterotype. The same tendency was observed for late introduction of meat
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(>6 months). A trend was also observed for a negative association between administration
of antibiotics to mothers during delivery and P_type enterotype.

Microorganisms 2023, 11, x FOR PEER REVIEW 6 of 19 
 

 

stratified into two enterotypes equally distributed between ELFE and EPIPAGE 2 children 
(Figures 1B,C). Each enterotype was characterized by the dominance of either Bacteroides 
(B_type, n = 649) or Prevotella (P_type, n = 149) (Figure 1D) with P_type enterotype har-
boring higher richness (p ≤ 0.001, Figure S2). 

 
Figure 1. Gut microbiota composition and enterotypes of the children at 3.5 years of age. Groups 
are colored according to their enterotypes. (A) Boxplot of alpha diversity assessed by Chao1 esti-
mate (top) and Shannon index (bottom) based on the OTU taxonomic profile between ELFE and 
EPIPAGE 2 children (** p  ≤ 0.01; *** p ≤ 0.001). The boxplots show the smallest and largest values, 
25% and 75% quartiles, the median, and outliers. (B) Clustering based on the genus taxonomic pro-
file. Biplot arrows indicate the top four genera that drive samples to different locations on the plot. 
Calinski–Harabasz index showing the optimal number of clusters is plotted. (C) Distribution of en-
terotypes among ELFE and EPIPAGE 2 children. The distribution is expressed as proportion of each 
enterotype among each group of children. (D) The boxplots represent the relative abundance of the 
top 10 genera distributed among the P_ and B_type enterotypes. The boxplots show the smallest 
and largest values, 25% and 75% quartiles, the median, and outliers. 

3.2. Enterotypes Association with Early Life Factors 
In adjusted analyses (Table 1), having ever received human milk, attendance of a 

childcare center at one year, and having at least one sibling during the first year of life 
were associated with higher probabilities of belonging to the P_type enterotype. Late in-
troduction of fish (>6 months) was associated with a lower probability of belonging to the 
P_type enterotype. The same tendency was observed for late introduction of meat (>6 
months). A trend was also observed for a negative association between administration of 
antibiotics to mothers during delivery and P_type enterotype. 

Table 1. Multivariate association between children enterotypes and early life factors.  

  Enterotype P_type vs. B_type  
 N OR a 95% CI p-Value 

Pooled sample     

Gestational age (weeks) 708 1.02 0.97, 1.08 0.39 
Delivery mode 697   0.61 

Vaginal  — —  

Cesarean  0.88 0.53, 1.43  

A B

D

C
**

100

200

300

400

500

ELFE EPIFLORE

C
ha

o1
 e

st
im

at
e

***

2

3

4

5

ELFE EPIFLORE

Sh
an

no
n 

in
de

x

ELFE
EPIPAGE 2

Figure 1. Gut microbiota composition and enterotypes of the children at 3.5 years of age. Groups are
colored according to their enterotypes. (A) Boxplot of alpha diversity assessed by Chao1 estimate
(top) and Shannon index (bottom) based on the OTU taxonomic profile between ELFE and EPIPAGE
2 children (** p ≤ 0.01; *** p ≤ 0.001). The boxplots show the smallest and largest values, 25% and 75%
quartiles, the median, and outliers. (B) Clustering based on the genus taxonomic profile. Biplot arrows
indicate the top four genera that drive samples to different locations on the plot. Calinski–Harabasz
index showing the optimal number of clusters is plotted. (C) Distribution of enterotypes among ELFE
and EPIPAGE 2 children. The distribution is expressed as proportion of each enterotype among each
group of children. (D) The boxplots represent the relative abundance of the top 10 genera distributed
among the P_ and B_type enterotypes. The boxplots show the smallest and largest values, 25% and
75% quartiles, the median, and outliers.

Table 1. Multivariate association between children enterotypes and early life factors.

Enterotype P_type vs. B_type
N OR a 95% CI p-Value

Pooled sample
Gestational age (weeks) 708 1.02 0.97, 1.08 0.39

Delivery mode 697 0.61
Vaginal — —

Cesarean 0.88 0.53, 1.43
Early neonatal antibiotics 704 0.75

No — —
Yes 0.87 0.38, 1.97

Human milk consumption 632 0.015
No — —
Yes 1.99 1.14, 3.68

Duration of human milk consumption (months) 632 1.01 0.97, 1.05 0.60
Skin-to-skin practice 695 0.51

Yes — —
No 0.81 0.41, 1.52
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Table 1. Cont.

Enterotype P_type vs. B_type
N OR a 95% CI p-Value

Maternal prepregnancy BMI 777 0.34
Underweight 0.90 0.40, 1.82

Normal — —
Overweight 1.17 0.71, 1.87

Obese 1.75 0.92, 3.18
Daycare exposure at 1 year 722 <0.001

Family — —
Childcare assistant/Paid home help 0.69 0.43, 1.10

Daycare centre 2.05 1.15, 3.65
Household siblings at 1 year 728 0.045

No — —
At least 1 1.51 1.01, 2.28

Mother born in France 798 0.46
Yes — —
No 1.26 0.67, 2.25

ELFE
Age at complementary feeding 493 0.83

≤6 months — —
>6 months 1.08 0.52, 2.14

Age at first vegetables introduction 492 0.45
≤6 months — —
>6 months 0.79 0.42, 1.43

Age at first fruits introduction 493 0.24
≤6 months — —
>6 months 0.72 0.40, 1.24

Age at first meat introduction 483 0.092
≤6 months — —
>6 months 0.60 0.33, 1.09

Age at first fish introduction 477 0.019
≤6 months — —
>6 months 0.45 0.24, 0.88

Maternal pregnancy diet (PNSS score) * 560 0.17
≤7.80 — —
>7.80 1.37 0.87, 2.17

Maternal pregnancy diet (Pregnancy score) * 560 0.43
≤7.75 — —
>7.75 1.21 0.76, 1.93

Antibiotics in the first year 609 0.17
Yes — —
No 0.74 0.47, 1.14

Environment 607 0.37
Rural — —
Urban 1.24 0.78, 2.03

EPIPAGE 2
Antibiotics during delivery 149 0.072

No — —
Yes 0.41 0.14, 1.08

Antibiotics during pregnancy 149 0.79
No — —
Yes 1.13 0.47, 2.70

Logistic regression models. Abbreviations: N = number of children included in each model; P_type, enterotype
enriched in Prevotella; B_type, enterotype enriched in Bacteroides; CI, Confidence Interval; BMI, Body Mass
Index; PNSS, Programme National Nutrition Santé. a Each covariate is adjusted for its own set of parsimonious
confounding factors presented in the “Exposures of interest” section. * Chosen cut points are median scores within
the population. p-values marked with bold indicate statistically significant p-values (p ≤ 0.05).



Microorganisms 2023, 11, 1390 8 of 18

3.3. Early Life Factors Influencing Gut Microbiota Diversity at 3.5 Years of Age
3.3.1. Alpha Diversity

Perinatal factors such as gestational age, mode of delivery, and having a sibling at
home during the first year of life were the most significantly associated factors with the
gut microbiota alpha diversity (Table 2). Children born with lower gestational age showed
lower richness without difference in term of diversity. Children born by caesarean section
showed less richness and diversity. Children who had at least one sibling were characterized
with increased richness and diversity. Human milk consumption was not associated with
the gut microbiota alpha diversity but when considering this factor as a continuous variable,
a tendency toward a higher diversity for longer duration of human milk consumption was
observed; however, the effect size was small, and the association failed to reach significance
(Table 2). Of note, the median duration of human milk consumption was 2.46 months
(IQR, 0.23–5.98 months). Having a sibling at home during the first year of life was the
factor most significantly associated with the gut microbiota as children who had at least
one sibling were characterized with increased richness and diversity compared to single
children. Regarding maternal factors, higher richness and diversity were observed in
children gut microbiota born to overweight and obese mothers respectively. Additionally,
children whose mothers were born outside of France were characterized by lower diversity
without difference in richness (Table 2).

Table 2. Multivariate association between gut microbiota alpha diversity and early life factors.

Chao1 Estimate Shannon Index

Pooled Sample N Beta a 95% CI p-Value Beta a 95% CI p-Value

Gestational age (weeks) 708 1.8 0.27, 3.3 0.021 0.00 0.00, 0.01 0.31
Delivery mode 697 0.004 <0.001

Vaginal — — — —

Cesarean −22 −37, −7.1 −0.12 −0.20,
−0.05

Early neonatal antibiotics 704 0.28 0.11
No — — — —
Yes 14 −11, 40 0.10 −0.02, 0.23

Human milk consumption 632 0.41 0.79
No — — — —
Yes 6.4 −8.9, 22 0.01 −0.08, 0.06

Duration of human milk consumption
(months) 632 0.52 −0.69, 1.7 0.40 0.01 0.00, 0.01 0.076

Skin-to-skin practice 695 0.89 0.56
Yes — — — —
No −1.4 −21, 19 0.03 −0.07, 0.13

Maternal prepregnancy BMI 777 0.007 0.039
Underweight 9.7 −12, 32 0.05 −0.06, 0.16

Normal — — — —
Overweight 22 6.6, 37 0.10 0.02, 0.17

Obese 26 4.7, 48 0.08 −0.02, 0.19
Daycare exposure at 1 year 722 >0.99 0.92

Family — — — —
Childcare assistant/Paid home help 0.30 −14, 14 0.00 −0.07, 0.07

Daycare centre −0.66 −20, 19 0.02 −0.11, 0.08
Household siblings at 1 year 728 <0.001 <0.001

No — — — —
At least 1 37 25, 49 0.16 0.10, 0.22

Mother born in France 798 0.24 0.047
Yes — — — —
No −12 −32, 8.2 −0.10 −0.20, 0.00



Microorganisms 2023, 11, 1390 9 of 18

Table 2. Cont.

Chao1 Estimate Shannon Index

Pooled Sample N Beta a 95% CI p-Value Beta a 95% CI p-Value

ELFE
Age at complementary feeding 493 0.95 0.59

≤6 months — — — —
>6 months −0.63 −22, 21 0.03 −0.08, 0.14

Age at first vegetables introduction 492 0.92 0.46
≤6 months — — — —
>6 months 0.92 −17, 19 0.03 −0.06, 0.13

Age at first fruits introduction 493 0.92 0.83
≤6 months — — — —
>6 months 0.80 −15, 17 0.01 −0.07, 0.09

Age at first meat introduction 483 0.43 0.74
≤6 months — — — —
>6 months −7.1 −25, 11 0.02 −0.07, 0.11

Age at first fish introduction 477 0.52 0.91
≤6 months — — — —
>6 months −6.7 −27, 13 0.01 −0.11, 0.10

Maternal pregnancy diet
(PNNS score) * 560 0.74 0.54

≤7.80 — — — —
>7.80 2.2 −11, 15 0.02 −0.04, 0.08

Maternal pregnancy diet
(Pregnancy score) * 560 0.78 0.69

≤7.75 — — — —
>7.75 1.9 −11, 15 0.01 −0.05, 0.08

Antibiotics in the first year 609 0.33 0.11
Yes — — — —
No 6.5 −6.4, 19 0.05 −0.01, 0.12

Environment 607 0.75 0.72
Rural — — — —
Urban −2.3 −16, 12 0.01 −0.08, 0.06

EPIPAGE 2
Antibiotics during delivery 149 0.50 0.72

No — — — —
Yes 12 −23, 46 0.03 −0.13, 0.19

Antibiotics during pregnancy 149 0.99 0.33
No — — — —
Yes −0.23 −33, 33 0.08 −0.08, 0.23

Linear regression models. Abbreviations: N = number of children included in each model; CI, Confidence Interval;
BMI, Body Mass Index; PNSS, Programme National Nutrition Santé. a Each covariate is adjusted for its own set
of parsimonious confounding factors presented in the “Exposures of interest” section. * Chosen cut points are
median scores within the population. p-values marked with bold indicate statistically significant p-values (p ≤ 0.05).

3.3.2. Beta Diversity

Regarding the different factors associated with the gut microbiota beta diversity,
according to both Bray–Curtis and UniFrac dissimilarity distances, having a sibling at home
during the first year of life explained the greatest amount of variance between subjects
(Figure 2A,B). Gestational age was the second factor most significantly associated with
the beta diversity followed by the mode of delivery according to both distances. Daycare
exposure during the first year of life was only associated with the bacterial composition
according to the Bray–Curtis distance. Maternal factors including maternal preconceptional
BMI and the country of birth were associated with the composition of the gut microbiota at
3.5 years of age according to the UniFrac distance.
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Figure 2. Association between early life factors and gut microbiota beta diversity. Horizontal
bars show the amount of variance (R2) explained by each factor in its own model analyzed using
PERMANOVA. The groups within each factor are further detailed in (Table S1). Factors are colored
based on overall metadata group and patterned regarding the availability of the covariate among
the two cohorts. Significance of factors (FDR p adjusted ≤ 0.05) are denoted with an asterisk.
(A) Associations using Bray–Curtis distance. (B) Associations using UniFrac distance.

3.4. Differential Abundance Testing

Because identifying taxonomic units associated with specific factors using differential
abundance testing methods can produce heterogeneous results [26], we implemented a
triangulation of three different methods to assess differential abundance of taxa at both
family and genus levels. Among the factors tested, the gestational age, household siblings,
and the country of birth of the mother were associated with differential abundance of taxa
according to the three methods. Compared to full-term children, the gut microbiota of
preterm children was characterized with a lower abundance of six genera, and a higher
abundance of one unclassified genus belonging to the Ruminococcaceae family (Figure 3A).
Having at least one sibling during the first years of life was associated with lower abundance
of 10 genera and higher abundance of 8 genera (Figure 3B). The country of birth of the
mothers was also associated with differential abundance: children from mothers born in
France showed lower abundance of an unclassified genus from the Oscillospiraceae family
compared to children from mother born outside of France. At the family level, being born
preterm was associated with lower abundance of Butyricicoccaceae, Erysipelatoclostridiaceae and
Bifidobacteriaceae families and increase abundance of the Oscillospiraceae family. Having at
least one sibling was associated with a decreased abundance of Bacteroidaceae, Veillonellaceae,
Eggerthellaceae and Bifidobacteriaceae families and an increased abundance of Marinifilaceae,
Christensenellaceae and Barnesiellaceae families (Table S2, Supplementary data).
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gestational age (<37 GW vs. ≥37 GW). (B) Differential abundance testing for household siblings (At
least one vs. none).

3.5. Sensitivity Analysis

We showed that gestational age still imprinted the gut microbiota at 3.5 years of age.
To check the sensitivity of our analysis, we re-runed it on a dataset containing only ELFE
children (n = 626) to verify if the associations described above were also observed in moder-
ately preterm and full-term infants or driven by the very and extremely preterm subgroups.
Overall, we found consistent associations when we only considered the ELFE children
(Tables S3–S5). However, gestational age was not associated with the gut microbiota any-
more, as expected by the lesser gestational age variability in the ELFE sample. Moreover,
the delivery mode was not associated with the beta diversity, but the associations still
remained regarding the alpha diversity. The same genera were found to be differentially
abundant in ELFE children gut microbiota with at least one sibling compared to only
children for the exception of Dorea, Barnesiella and Tyzzerella. At the family level, the gut
microbiota of ELFE children with at least one sibling was differentially less abundant in
Enterobacteriaceae and the differences in the Barnesiellaceae and Veillonellaceae families were
no longer existent (Table S6, Supplementary Data).

Missing data did not impact the overall associations found in this study as consistent
direction of associations were observed with imputed data (Tables S7–S10). Nonetheless,
the significant association found between the P_type enterotype and the late introduction
to fish was no longer significant (Table S7).
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4. Discussion

Considering different metrics to describe the gut microbiota of children enrolled in
two well described French national birth cohorts, we showed that several early life factors
including gestational age, delivery mode, human milk consumption, maternal overweight,
and household composition are associated with the gut microbiota of children at 3.5 years
of age.

Among the different perinatal factors investigated, gestational age was one of the
most significantly associated with the gut microbiota composition. Gestational age had
a significant effect on the gut microbiota beta diversity and children born with higher
gestational age showed a higher alpha diversity. Our results based on 798 children support
those of Fouhy et al. [27] reporting that gestational age imprints the gut microbiota up
to 4 years of age (n = 70 participants). Additionally, we found that the gut microbiota of
preterm children was characterized with lower levels of multiple genera among which the
Bifidobacterium genus. Recently, it was suggested that a Firmicutes-dominant stage precedes
the Bifidobacterium-dominant stage during early life enterotype transitions, particularly in
preterm infants, that is strongly associated with gut microbiota immaturity at 1 year of
age [28]. Moreover, the lower abundance of Bifidobacterium has been observed in preterm
children at 2 years of age [29]. These data, consistent with our findings, suggest that
the initial delay of colonization of Bifidobacterium found in preterm neonates [30] may
represents a long-lasting effect of prematurity. Members of the Bifidobacterium genus have
beneficial effects on the host [31] and reduce levels of bifidobacteria have been proposed to
be associated with potential diseases in childhood [32]. The lower levels of Bifidobacterium
observed in preterm children may be one contributing mechanism involved in the higher
risk of obesity [33] or neurodevelopmental outcomes [34] during childhood observed in
this particular population.

In the present study, the delivery mode was associated with the gut microbiota over-
all composition assessed by the beta diversity. However, this association was no longer
existent when excluding preterm children from the EPIPAGE 2 cohort. This may be ex-
plained by the higher number of cesarean sections among preterm children (Table S1).
Nonetheless, children born by cesarean section showed a decreased alpha diversity, inde-
pendently of preterm status. This is consistent with previous results [35] indicating that
the effect of delivery mode is still noticeable during early childhood. Cesarean delivery is
reported to increase the risk of later asthma and overweight/obesity in childhood that can
be related to this long-term gut microbiota dysbiosis [36]. In recent years, one recurring
pattern associated to host health status is a greater richness and diversity at the structural
and functional levels [37]. The loss of diversity being described as one type of dysbio-
sis [38] it led to propose the gut microbiota as a potential target to prevent future pediatric
detrimental outcomes.

Breastmilk contains beneficial factors including immunoglobulin A, lactoferrin, de-
fensins [6], and oligosaccharides which modulate innate immunity, intestinal cell responses,
and the gut microbiota [39]. Introduction to solid food is followed by a decrease in breast-
milk intake and the change in diet to solid food results in major shifts in microbial com-
munity composition [7] unless breastfeeding is continued [8,40]. In the present study, we
observed an absence of effects of human breastmilk intake regarding alpha and beta diver-
sities. However, the children gut microbiota was characterized by two discrete enterotypes
dominated by either Bacteroides or Prevotella in line with our previous findings on a smaller
sample size [17] and other studies in children [28,41–43]. We showed that children who
had ever received human milk were associated with the P_type enterotype independently
of the intake duration. Despite the widespread accepted belief that breastfeeding has
a prominent impact on the gut microbiota during early infancy (first year of life) [8,11],
our data suggest an extended influence of human milk consumption on shaping micro-
bial composition. These data support the positive association between breastfeeding and
Prevotella abundance in older children population (6–10 years) [44]. During maturation
of the gut microbiota associated with cessation of breastmilk and introduction to solid



Microorganisms 2023, 11, 1390 13 of 18

food, Bifidobacterium abundance tends to decrease, allowing new microbial community
to settle in order to degrade new substrates introduced by solid food consumption [8].
Prevotella-driven enterotype is associated with rich-fiber diet and intake of carbohydrates
and simple sugars [45]. However, if the higher prevalence of P_type among children
who have ever received human milk is caused by the human milk consumption itself or
other dietary factors is unclear. Prevotella-driven enterotype in adolescents [46] or elevated
Prevotella abundance in adults [47] have been previously associated with the Mediterranean
diet, which is considered as one of the healthiest dietary patterns. Previous findings showed
that longer exclusive breastfeeding duration was associated with a healthier child diet at
3 years of age [48] and that children aged 2–8 years who had been breastfed in infancy
were associated with a healthy dietary pattern in childhood compared to never breastfed
children [49]. Therefore, the association between the human milk consumption and the
P_type enterotype may be explained by a higher adherence to a healthy dietary pattern in
children who had ever received human milk. However, in our study, maternal diet through
adherence to French dietary intake guidelines potentially modeling children dietary pattern
was not associated with the P_type enterotype. Additionally, we found that early intro-
duction to fish (≤6 months) was associated with the P_type enterotype. This association
completely disappeared in sensitivity analyses with imputed data, making this association
to interpret with caution.

Environmental factors describing the milieu in which children grew during their first
year showed effects on the child gut microbiota at 3.5 years. Children with at least one
sibling present in the household were characterized by a higher alpha diversity and an
overall differential composition assessed by the beta diversity compared to their single-child
counterparts. Previous studies showed that living with a sibling was associated with the gut
microbiota during childhood [8,50]. In line with our results, Laursen et al. [50] reported that
children living with siblings were characterized with a higher alpha diversity. In our study,
the presence of a sibling was associated with differential abundance of 18 genera, including
a positive association with strict anaerobes within the Bacteroidetes phylum (Odoribacter
and Barnesiella) previously associated with having older siblings at 18 months [50]. The
ratio of strict to facultative anaerobes 12 months after birth was shown to be lower in
single children than in children with older siblings, suggesting the theory of strict anaerobic
bacteria acquisition from older siblings. An association between the presence of siblings
and Assacharobacter and Gordonibacter genera has also been proposed [50]. Another study
found a positive correlation between Bifidobacterium and sibship size at 1 year of age [51].
In the present study, the association with having a sibling at one year may also be partially
mediated by the number of siblings at 3.5 years as this number is likely higher in those
that had already at least one sibling at 1 year. Interestingly, the P_type enterotype was also
associated with children having siblings and daycare center attendance. In concordance
with our findings, previous studies showed elevated abundance of Prevotella genus in
children attending daycare at 1 year of age [52] or in children with older siblings with the
effect persisting up to 6 years of age [53]. It is likely that the presence of siblings in the
household or attending daycare centers are more likely to affect the number of different
bacteria to which an infant is exposed, affecting richness and diversity even though, no
difference of alpha diversity was observed for daycare attendance. The Prevotella-driven
enterotype has been previously linked to lower risk of inflammatory bowel disease in adult
populations [54,55] and type 1 diabetes in children [56] and P. copri, a major Prevotella species
of the P_type enterotype has been recently associated with a general healthy state [55].
Altogether, these data support the hypothesis that the Prevotella-driven enterotype may be
a potential biomarker of human health related state [55].

Geographical location can have an impact on the gut microbiota as previous research
reported differences in gut microbiota development in children up to 3 years of age [8,28].
In our study, we showed that maternal country of birth was associated with the beta
diversity and that children born to mothers born outside of France harbored lower alpha
diversity. While we did not assess directly the geographical location of the child, maternal
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origin of birth could be related to specific dietary habits or cultural factors that can shape
the children gut microbiota. Nonetheless, the majority of our population of mothers were
born in France (91.5%). The remaining 8.5% of mothers born outside of France were from
European union and northern Africa countries. Given the lack of subjects within each
remaining categories, differences between mothers born outside of France could therefore
not be assessed.

Vertical transmission of maternal bacteria is the primary source of gut colonization
in neonates [6] and obesogenic transfers of microbiota from mother to child may be a
mechanism to explain the transgenerational transmission of obesity risk [57]. In the present
study, maternal preconceptional BMI was associated with the children gut microbiota beta
diversity. Additionally, children born to overweight/obese mothers showed an increased
gut microbiota alpha diversity. These results are consistent with some but not all [58]
previous findings showing such associations in a 2-year-old children population, although,
the effect was only seen in the higher socioeconomic status group [59]. The study of
Tun et al. [60] showed same patterns with higher alpha diversity observed among infants
aged 3–4 months born to obese mothers independently of the delivery mode. Contrary to
our study, these previous studies also demonstrated differential abundance of specific genus
associated with maternal prepregnancy obesity. We further sought to test the hypothesis of
obesogenic transfers of microbiota from mother to child by testing the association between
maternal preconceptional BMI and the gut microbiota diversity stratified by delivery mode.
We found an absence of significant interaction between maternal preconceptional BMI
and delivery mode in our population (pinteraction:Chao1 = 0.92 and pinteraction:Shannon = 0.80).
Nonetheless, the higher alpha diversity observed in children born to overweight/obese
mothers is somewhat at odds with the hypothesis of diversity as a marker of healthy status
as these children are more likely to become overweight themselves later in childhood [60].
Although, maternal prepregnancy BMI can particularly affect child early life gut microbiota,
other related lifestyle factors acting later in life such as diet and physical activity may
mediate the observed associations.

Study Limitation and Strengths

Working on a large population, we chose to use the DNA extraction protocol validated
by the IHMS consortium for its high reproducibility; however, it tended to underestimate
the proportion of Gram-positive bacteria and potentially the diversity of the gut micro-
biota composition [16]. Nonetheless, despite this limitation, other studies found similar
results as our study as discussed throughout the manuscript while using different DNA
extraction protocols.

The use of the 16S rRNA gene sequencing approach limits this study to the description
of bacterial composition. Analysis using shotgun metagenomics would allow greater
sequencing depth, thus providing additional information regarding microbiome functional
profiles and meaning at the species level of the microbiome. Because gut microbiota
analysis was only performed at 3.5 years of age, we could not assess the longitudinal effect
of the early life factors on the development of the gut microbiota. Further longitudinal
cohort studies are needed to validate our findings and assess differences in the longitudinal
development of the gut microbiota according to specific factors such as gestational age for
example (term vs. preterm infants).

Major strengths of this study include the recruitment of a large population of French
children from two well described birth cohorts providing an accurate description of the
early life factors. Particularly, inclusion of a large sample of preterm children rarely studied
at this age allow more variation and helped to decipher the lack of data regarding this
population. Most of the studies in the literature examining the effects of early life factors on
the gut microbiota usually focus on a limited number of factors. Another strength of this
study is the analysis of several early life factors all at once in a single study which allows
comparing their effects without the distortion of different methods and study power. We
carefully adjusted multivariable models taking into account potential confounding factors.
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We were careful not to adjust for potential mediators. This allows a correct estimation of
the total effect of the considered early life factors on gut microbiota characteristics. We do
not disregard the fact that the observed effects can be in part mediated by other factors
operating after the first year of life in a causal pathway but whatever the underlying
mechanisms, modulation early in life of the studied factors has the potential to influence
the child microbiota at 3.5 years of age.

5. Conclusions

Based on full-term- and preterm children’s national cohorts, our findings support the
evidence of the influence of early life factors on the gut microbiota in preschool children
at 3.5 years of age independently of preterm status, even though, effect of prematurity
on the gut microbiota was still noticeable. From perinatal factors to the environmental
living conditions through diet and maternal health, we provide solid arguments in favor of
early life exposures as important determinants in the shaping of the future adult-like gut
microbiota at a pivotal time of microbial dynamics. Our data support the importance of the
first three years of life as a critical window for the development of the gut microbiota and
future child health. The prevalence of factors able to negatively influence the gut microbiota
composition has increased and may have contributed to the rise of non-communicable
diseases. Our findings merit further studies to investigate the influence of microbiota-
targeted health-promoting strategies early in life.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/microorganisms11061390/s1. Table S1. Characteristics of
the study population (n = 798). Table S2. Differential abundance testing results for factors significantly
associated the gut microbiota composition in pooled sample according to three different methods.
Table S3. Multivariate association between children enterotypes and early life factors in ELFE chil-
dren. Table S4. Multivariate association between alpha diversity metrics and early life factors in
ELFE children. Table S5. Association between beta diversity metrics and early life factors in ELFE
children. Table S6. Differential abundance testing results for factors significantly associated the gut
microbiota composition according to three different methods in ELFE children. Table S7. Multivariate
association between pooled sample enterotypes and early life factors with imputed dataset. Table S8.
Multivariate association between alpha diversity metrics and early life factors with imputed dataset
in pooled sample. Table S9. PERMANOVA association between beta diversity metrics and early life
factors in pooled sample with imputed dataset. Table S10. Differential abundance testing results for
factors significantly associated the gut microbiota composition according to three different methods
in pooled sample. Figure S1: Relatedness of gut microbiota at 3.5 years of age in related EPIPAGE2
children. (A) Barplots showing the relative abundance of the top 10 genus in the gut microbiota of the
36 EPIPAGE 2 children that have a related sibling in the cohort. Bars between two dark lines referred
to a set of related children (twins or triplets). (B) Pairwise beta diversity distances between related
and unrelated children according to both Bray-Curtis and UniFrac distances. Significant differences
were assessed by Wilcoxon rank sum test. Figure S2. Alpha diversity across enterotypes. Boxplot
of alpha diversity assessed by Chao1 estimate (left) and Shannon index (right) based on the OTU
taxonomic profile between B_type and P_type enterotypes. (**** p ≤ 0.0001). The boxplots show the
smallest and largest values, 25% and 75% quartiles, the median, and outliers.
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