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Abstract: Biological treatment methods overcome many of the drawbacks of physicochemical strate-
gies and play a significant role in removing dye contamination for environmental sustainability.
Numerous microorganisms have been investigated as promising dye-degrading candidates because
of their high metabolic potential. However, few can be applied on a large scale because of the
extremely harsh conditions in effluents polluted with multiple dyes, such as alkaline pH, high
salinity/heavy metals/dye concentration, high temperature, and oxidative stress. Therefore, ex-
tremophilic microorganisms offer enormous opportunities for practical biodegradation processes as
they are naturally adapted to multi-stress conditions due to the special structure of their cell wall,
capsule, S-layer proteins, extracellular polymer substances (EPS), and siderophores structural and
functional properties such as poly-enzymes produced. This review provides scientific information for
a broader understanding of general dyes, their toxicity, and their harmful effects. The advantages and
disadvantages of physicochemical methods are also highlighted and compared to those of microbial
strategies. New techniques and methodologies used in recent studies are briefly summarized and
discussed. In particular, this study addresses the key adaptation mechanisms, whole-cell, enzymatic
degradation, and non-enzymatic pathways in aerobic, anaerobic, and combination conditions of
extremophiles in dye degradation and decolorization. Furthermore, they have special metabolic
pathways and protein frameworks that contribute significantly to the complete mineralization and
decolorization of the dye when all functions are turned on. The high potential efficiency of microbial
degradation by unculturable and multi-enzyme-producing extremophiles remains a question that
needs to be answered in practical research.

Keywords: bacterial dye degradation; bioremediation; dye toxicity; extremophiles

1. Introduction

Comprising two-thirds of the more than 1000 available dyes, textile dyes are pollutants
with harmful impacts on the environment, including air and water ecosystems which are
already heavily loaded with inorganic/organic matter, pathogenic microorganisms, and
toxic chemicals, including recalcitrant dyes, heavy metals, sulfides, and detergents. These
factors negatively impact soil productivity, soil microbial communities, seed germination,
and plant growth, ultimately affecting global carbon cycling [1,2]. Dyes cause aesthetic
damage to water bodies and reduce the rate of photosynthesis in aquatic plants by in-
hibiting the penetration of light into water. Therefore, clean-up strategies are required for
physicochemical treatments, bioremediation, and their combinations. However, dyes are
difficult to remove from water using conventional methods due to their high solubility and
the presence of multiple complex pollutants [3,4]. Additionally, these treatments result
in incomplete mineralization and conversion to CO2 production from intensive sludge as
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a consequence of disposal. Further, the high cost of these treatments limits their applica-
tion, leading to increased ecotoxicity in the long term [5,6]. Hence, biodegradation has
been evaluated as an efficient alternative approach that has attracted research attention be-
cause it overcomes the drawbacks of traditional techniques and is economical, eco-friendly,
and sustainable.

Recently, potential bacterial candidates were reported to play a crucial role in the
biological degradation of dyes through the action of either extra/intracellular enzymes or
the whole bacterial cell [7–9]. In particular, extremophilic and multi-enzyme-producing
bacteria have received much attention, focusing on their metabolic pathways, with extraor-
dinary properties being applied to bioremediation strategies, including dye decolorization.
They can survive under stress and degrade synthetic dyes into non-colored compounds or
mineralize them partially or completely under certain environmental conditions. Dye efflu-
ents with extremely variable compositions and intermediate products generated during
dye degradation may induce oxidative stress in microorganisms. Therefore, only bacterial
strains have shown the ability to withstand harsh conditions and produce multiple enzymes
to protect themselves from toxic environments which may enhance the efficiency of dye
degradation compared to non-specific microorganisms.

Moreover, industrially-produced azo dyes are xenobiotic compounds that are con-
sidered recalcitrant to biological degradation processes [10]. Le Borgne et al. suggested
mechanisms of xenobiotic degradation by halophilic bacteria involving the production of
microbial enzymes and catabolic genes responsible for toxicant degradation [11]

Additives used in the textile industry lead to the formation of refractory intermediates
which are toxic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and aromatic
amines [12,13]. Under highly saline conditions in dye effluents, the degradation of PAH
occurs slowly. Thus, halophilic bacteria have been proposed to have high potential because
of the valuable amount of biosurfactants that can enhance the degradation of PAH [14].

In another study, Pham et al. introduced a facultative bacterial strain that can grow
and degrade Methylene Blue at an acidic pH of 5 through fundamental mechanisms
of bioabsorption using both dead and living bacterial cells and accumulation [9]. The
biodegradation of dyes occurs effectively under both aerobic and anaerobic conditions, or
in combination. Thus, aerobes, anaerobes, and facultative bacteria play significant roles in
degradation efficiency.

Some dye particles exhibit a high chemical structural class and are exclusively de-
graded by a few enzymes such as ligninolytic enzymes, which are recognized as efficient
tools for dye degradation because of their extracellular and nonspecific nature [15,16].
In addition, azoreductases and laccases have shown great potential for decolorizing a
wide range of industrial dyes [7,17]. However, bacterial dye degradation has proven to
be a major challenge in wastewater under the diverse stresses of high salt concentrations,
various contaminated metals, and the complex nature of waste [18]. Recently, halophilic
bacteria have been investigated as potential dye degraders [18–20]. Surprisingly, these
candidates can survive harsh temperatures, pH, and heavy metal conditions [9,21]. Other
thermophilic microorganisms also exhibit adaptive responses to oxidative stress during
dye degradation [22,23]. Nevertheless, these studies provide insights into the enzyme-
producing potential of these extremophilic bacteria are limited so far. Thus, this review
put an effort to mainly focus on analyzing the potential of extremophilic bacteria, the
mechanisms of their adaptation to the harsh conditions of polluted environments, and
their metabolism involved in the decolorization of dyes via whole-cell and secreted multi-
enzyme pathways as well as the importance of developing methods for isolating these
promising bacteria to be used as green materials for dye biodegradation in the future.

2. Toxicity and the Negative Impact of Dyes on Human and Environmental Ecosystems

The long-term release of untreated dye-containing wastewater can cause serious
ecotoxicological threats to multiple environmental ecosystems, especially aquatic life, soil
fertility, and crop germination rates in the life cycle [24,25].
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The presence of color associated with dyes increases the chemical oxygen demand
(COD), biological oxygen demand (BOD), total organic carbon (TOC), and suspended
solids which reduce photosynthesis, promote toxicity of several intermediate amino acids,
inhibit plant growth, and create recalcitrance and bioaccumulation [26–28]. Furthermore,
the residuals of chemicals used during dye manufacture can evaporate and pollute the
air. Long-term or accidental exposure to these residuals may cause respiratory problems
after inhalation or trigger allergic reactions causing skin irritation and itching after absorp-
tion through the skin. Water-soluble azo dyes are extremely toxic when metabolized by
live enzymes.

Moreover, dyes ingested and accumulated in fish can become toxic intermediates for
both fish and their predators including humans [29]. Traditional techniques and limited
biodegradability lead to recalcitrance and bioaccumulation and may promote toxicity,
mutagenicity, and carcinogenicity [6,30].

Dyes contain heavy metals, such as Lead (Pb), Arsenic (As), Chromium (Cr), Nickel
(Ni), Copper (Cu), Cadmium (Cd), Mercury (Hg), and Zinc (Zn) which act as catalysts,
oxidizing agents, fixing agents, and cross-linking agents in the dyeing process. They may
accumulate in the food chain causing harmful effects on human health and considerably
damage the growth and development of plants [31]. Oxidative stress caused by Cr in
textile dyes is another problem associated with the recalcitrant characteristics that affect
photosynthesis and CO2 assimilation [32].

Some of the negative effects of dyes on humans and environmental ecosystems are
shown in Figure 1.
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3. The Role of Polyextremophilic Bacteria in Dye Degradation

Extremophiles are classified into different categories based on the harsh environments
to which they have adapted. However, many extremophilic bacteria belong to two or more
categories and are known as polyextremophiles [33]. Some studies have highlighted the
benefits of extremophilic and polyextremophilic microorganisms in biotechnology and
bioremediation. Synthetic dyes often exist as complex mixtures of structurally different
types, in addition to other contaminants such as detergents, surfactants, heavy metals, and
high concentrations of salts caused by sodium hydroxide in dye baths under diverse pH
and temperature stresses [34]. Additionally, high concentrations of lead salts may inhibit
decolorization because survival and activity decrease under extreme conditions. Thus,
there are obstacles to the biological treatment of dye-containing effluents, particularly for
large-scale applications. Biological approaches using polyenzyme-producing extremophiles
have shown great efficiency in the degradation of aerobic and anaerobic dyes [35]. There-
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fore, investigating well-adapted bacterial candidates under multiple stress conditions is a
promising strategy for research and application for removing dyes from wastewater.

The general mechanism of dye removal by bacteria involves the binding of dye
molecules to specific groups on the surface of bacterial cells, such as alcohol, aldehydes,
carboxylic, ether, and phenolic groups (biosorption) and their gradual accumulation inside
the cell (bioaccumulation) [36]. Biosorption is carried out in living or dead cells, whereas
bioaccumulation involves the active uptake and accumulation of dye molecules inside
living cells. However, in the case of dead cells as an effective biosorbent, the negative
effects of its disposal need further study.

During the process of microbial removal of dyes, reactive oxygen species (ROS), such
as superoxide anion radicals (•O2

−) and hydroxyl radicals (•OH), are generated during
the dye degradation process due to the contribution of high oxygen pressure, lack of
water, high temperature, high metal ion concentrations, radiation, high salinity, and other
chemicals that cause cells to face oxidative stress (OS). Therefore, protective mechanisms of
extremophiles against damage by enzyme systems, including superoxide dismutase (SOD),
glutathione peroxidase (GPx), and catalase (CAT), play a role in protecting the cell from OS
generated during the dye degradation process [37]. Moreover, extremophiles have special
protein adaptations to each environmental stress condition, including genetic changes
resulting from changes in protein sequences and structures. For example, thermophilic
bacteria are exposed to oxidative stress, which directly or indirectly damages various
metalloproteins. They are active in effective DNA repair systems, antioxidant defense
systems, selective protection against oxidative protein damage, and removal of damaged
macromolecules. On the other hand, thermophiles have different amino acid contents
than ordinary proteins to increase thermal stability with the number of large hydrophobic
residues or cores, a greater number of disulfide bonds/bridges, and increased interactions
of ions. In addition, thermostable thermophilic proteins contain high amounts of arginine
which leads to an increase in salt bridge formation to stabilize thermophilic proteins [38].

Different physicochemical methods have been used for dye removal from textile in-
dustry wastewater; however, they are costly, non-environmentally friendly, and cause
immediate secondary toxicity. To overcome several physicochemical and environmental
constraints, such as high water viscosity, osmotic stress, and high gas solubility, psy-
chrophiles modify the fatty acid composition of the cell membrane by notably increasing
the proportion of unsaturated fatty acids and modulating the activity of enzymes involved
in lipid biosynthesis [39]. With high glycine content in the proteome, psychrophiles have
greater conformational mobility and stability at low temperatures because of the large
number of disulfide bridges in their proteins. Additionally, psychrophiles have developed
various adaptive mechanisms at the molecular level. Psychrophilic enzymes have large
cavities that improve their flexibility and produce anti-ice-binding proteins that prevent
the formation of ice crystals inside the cell [38,40].

Faced with the other detrimental effects of low water activity and salt interference, low
hydrophobicity is considered an adaptation mechanism of halophiles at the protein level
that allows them to exhibit an affinity toward toxicants. Moreover, increasing the negative
surface charge on proteins helps them become more soluble and flexible at high salt con-
centrations in dye effluents. Dinucleotides are abundant in the genomes of halophiles and
have specific genomic signatures for hypersaline adaptation that are significantly different
from those of non-halophiles [41]. Azoreduction by halophilic bacteria has been effectively
performed as a nonspecific reductive process mediated by an enzyme system [19].

Under highly acidic conditions, acidophiles have adaptive mechanisms, such as build-
ing a waterproof cell membrane and cytoplasmic buffering to secrete acid and main-
tain natural pH conditions by transporting protons across the cell membrane [42,43].
Further reactions to dye breakdown involve a specific mechanism involving different
metabolic enzymes.

In an alkaline environment, alkaliphiles have the most significant effects on cell-free
protein synthesis systems to adapt. To maintain a neutral intracellular pH, the internal
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pHi of alkaliphiles can be estimated from the optimal pH of the intracellular enzymes. For
example, α-galactosidase from alkaliphilic Micrococcus sp. strain 31-2 and β-galactosidase
from Bacillus circulans sp. alkalophilus have an optimal catalytic pH of 7.5, and pH 6 to 7.5,
respectively [44,45]. Moreover, multi-cation/proton antiporters (CPAs) such as Na+, K+,
Ca 2+, and H+ in the environment enhance the electrical membrane potential to provide
the energy for ATP synthesis that is adequate to support cell growth under extreme pH
conditions. The structure of cell wall polymers, which mainly consists of teichuronic acids
and teichuronopeptides, also greatly contributes to maintaining pH homeostasis in the
cytoplasm via a negatively charged matrix and reduces the pH value at the cell surface
of alkaliphilic bacteria [46]. Alkaliphilic bacteria in pure cultures or consortia, such as
Bacteroides spp., Eubacterium spp., Clostridium spp., Proteus vulgaris, Streptococcus faecalis,
Bacillus spp., and Sphingomonas are effective azo dye-degrading candidates [38].

The adaptation mechanisms and dye degradation of dye of the main functional ex-
tremophiles under severe conditions was summarized in Figure 2.
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In recent studies, some thermophiles have been investigated as highly adaptive re-
sponse candidates for redox stress during the dye degradation process of textile wastewa-
ter [36]. A halophilic and alkalophilic bacterial strain of Bacillus albus DD1 was identified as
an azo dye RB5 degrader with 98% efficiency [47]. Another member of the genus Bacillus
isolated from an alkaline lake showed complete dye degradation efficiency under anoxic
and anaerobic conditions at pH 10 [48]. Acinetobacter baumannii strain was investigated
as a degrader of Reactive Red 198, with a removal efficiency of 96.2% under hypersaline
conditions [49]. A previous study illustrated that thermophilic anaerobic treatment is an
interesting approach for enhancing the decolorization of azo dyes with a significant contri-
bution from thermophiles [50]. In another study, the dye Remazol Brilliant Blue R (RBBR)
was determined to have a 90% removal efficiency by immobilized cells of the thermophilic
bacterial strain Geobacillus stearothermophilus ATCC 10,149 [51]. However, there are few
reports published on azo dye removal by psychrotolerant bacteria so far [52]. Interestingly,
the psychrophilic bacterial strain Psychrobacter almentarius, isolated from seawater sediment,
was able to decolorize three reactive dyes: Reactive Black 5, Reactive Golden Ovifix, and
Reactive Blue BRS [53]. Recently, a psychrotolerant, halophilic, alkalophilic, and xenobiotic
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degrader, Actinobacterium Zhihengliuella sp. ISTPL4 has been explored for its potential to
degrade the azo dye methyl red [54,55].

In another study, the four bacterial strains, namely Shewanella indica strain ST2, Oceani-
monassmirnovii strain ST3, Enterococcus faecalis strain ST5, and Clostridiumbufermentans strain
ST12 demonstrated high tolerance to salinity (>20 g L−1), temperature (35–50 ◦C), and pH
(<4 and >8), as well as the presence of metals except for Cd, Cu, and Pb [56]. Halotolerant,
alkali-thermo-tolerant bacterial mixed cultures have been investigated as cost-effective
biodegraders of Direct Red 81 (DR81) with ≥70% decolorization within 24 h of dye up
to 600 mg/L at 60 ◦C, pH 10, and 5% salinity [57]. Many thermophilic bacteria have
shown the potential for treating textile industry effluents with high salinity [58]. Typical
dye-degrading bacterial strains are listed in Table 1:

Table 1. List of potential extremophiles and functional key enzymes/substrates in dye
biodegradation.

Group Name of Bacterial Strain key
Enzymes/Substrates Type of Dyes Efficiency References

Thermophiles

Geobacillus stearothermophilus
ATCC 10149 Extracellular laccase Remazol Brilliant Blue R 90% [59]

Anoxybacillus sp. PDR2 Quinone
oxidoreductase Direct Black G 90% [60]

Nivibacillus thermophiles SG-1
Gene encoding
riboflavin
biosynthesis protein

Azo dye (Orange I) 100% [61]

Consortium of
Caldanaerobacter and
Pseudomonas

not reported Acid Orange 7 90% [62]

Caldanaerobacter Xylose Acid Orange 7 97% [63]

Geobacillus thermoleovorans
KNG 112 not reported amaranth R.I and red E azo

dyes ~98% [64,65]

Geobacillus yumthangensis Laccase

Organic dyes, including
Alizarin, Acid red 27, Congo

red, bromophenol blue,
Coomassie brilliant blue

R-250, Malachite green, and
Indigo carmine

~99% [66]

Thermus sp. Laccase xylidine 98% [67]

Geobacillus thermoleovorans Not reported Methylene Blue and Acid
Orange G 100% [68]

Psychrophiles

Micrococcus antarcticus Psychrophilic
β-glucosidase Starch stain not reported [69]

Psychrobacter almentarius Not reported
Reactive Black 5, Reactive

Golden Ovifix, and Reactive
Blue BRS

~100% [53]

Psychrobacter sp. Not reported Fast orange, Methanil yellow,
and Acid fast red ~85% [70]

Zhihengliuella sp. Lignin peroxidase
and laccase Methyl red 98.87% [55]

Bacillus sp. Azo-reductase
Amido black 10B, Evans blue,
Janus green, Methyl orange,
Methyl red, and orange G)

~98% [52]
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Table 1. Cont.

Group Name of Bacterial Strain key
Enzymes/Substrates Type of Dyes Efficiency References

Alkaliphiles

Bacillus licheniformis LS04 Laccase Reactive black 5 >80% [71]

Bacillus fermus Not reported Direct Blue-14 >92.76% [72]

Nesterenkonia lacusekhoensis
EMLA3 Not reported Methyl red 97% [73]

Pseudomonas mendocina Laccase
Mixture of reactive red (RR),

Reactive brown (RB), and
Reactive black (RBL)

58.40% [35]

Bacillus subtilis Intracellular
azoreductase Mixed azo dyes 87.35% [74]

Halopiger aswanensis

Lignin Peroxidase
(LiP), Manganese
Peroxidase (MnP),
and laccase

Malachite Green, Methyl
orange ~93% [75]

Halophiles

Halomonas sp Azoreductase Acid Brilliant Scarlet GR [76]

Halomonas sp. strain A55 Not reported different dyes ~100% [77]

Nesterenkonia lacusekhoensis
EMLA3 Not reported methyl red 97% [73]

Mixture of Enterococcus,
unclassified Enterobacteriaceae,
Staphylococcus, Bacillus, and
Kosakonia.

Laccase, lignin
peroxidase,
manganese
peroxidase, azo
reductase, and
NADH–DCIP
reductase

Congo red, Direct Black G
(DBG), Amaranth, Methyl

red, and Methyl orange
~100% [78]

Bacillus circulans BWL1061

Azoreductase,
NADH-DCIP
reductase, and
laccase

Methyl orange >90% [79]

Alcaligenes faecalis

Azoreductase,
laccase and
NADH-DCIP
(nicotinamide
adenine dinucleotide-
dichlorophenol
indophenols)
reductase

Acid Scarlet 3R ~100% [80]

Bacillus sp. strain CH12 Not reported Reactive Red 239 ~100% [48]

4. Enzyme-Linked Bioremediation of Dyes

In recent decades, the enzymatic processes carried out by “biocatalysts” for the treat-
ment of dye-contaminated wastewater have been considered because they overcome the
drawbacks of physicochemical methods. The currently used dye removal methods are
summarized in Figure 3. Several enzymes, such as hydrolases, laccases, azoreductases,
and lignin peroxidases, are effective in cleaving the aromatic rings and amines of dye
molecules [9,48,81,82]. Specifically, the azoreductase activity of a mixed extremophilic
bacteria was found to be optimal at 70 ◦C and stable at temperatures above 50 ◦C and
in a wide pH range of 4–9 [57]. Bacterial degradation of dyes can be carried out in the
presence of various substrates. For example, Navitan Fast Blue S5R is aerobically degraded
by Pseudomonas aeruginosa in the presence of glucose as a carbon source for bacterial growth
and metabolism [83]. In another study, Aeromonas hydrophila was shown to degrade Crystal
Violet dye using laccase enzymes and lignin peroxidase with sucrose and yeast extract as
substrates [84]. Pham et al. found that Bacillus sp. React3 is capable of degrading up to 97%
of Methylene Blue using lignin peroxidase in the presence of tryptone and yeast extract [9].
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The common mechanisms of biological degradation of dye effluents using bacterial
enzymes usually involve two steps. First, NADH or NADPH produced by azoreductases
from bacteria serve as electron donors for the cleavage of the azo linkage (N=N) and form
toxic metabolites or aromatic amines. Second, the toxic metabolites further transform
into non- or less toxic compounds [57]. Azoreductases are enzymes that are more active
under anaerobic conditions than during aerobic processes or respiration [85]. However,
some previous studies have illustrated that these azoreductases behave differently with no
clear degradation patterns [86,87]. The real physiological role of azoreductases needs to be
studied more to answer correctly the still questionable activity of azo dye consumption [87].

Laccases are multicopper oxidase enzymes that are important biocatalysts for various
industrial applications. These enzymes lack cofactors but use molecular oxygen as an
electron acceptor to carry out their oxidation reactions, making them more versatile and
able to use various substrates by adding redox mediators to the reactions. They can degrade
dyes through non-specific free radical-mediated mechanisms without yielding hazardous
products. Moreover, they are active over a wide pH range, stable at high temperatures,
and tolerant to detergents [88]. Therefore, microbial laccases have potential opportunities
for commercial applications. A recent study investigated laccases produced from Bacillus
cereus (B. Cereus) and Pseudomonas parafulva (P. parafulva) and the enzyme activity was
optimal at 50 ◦C [17]. In another study, laccases produced by Bacillus sp. NU2 showed
a high catalytic potential with optimal activity at 60 ◦C, and pH 8 for the detoxification
of various dyes such as Congo Red, Methyl Orange, Remazol Brilliant Blue R, Reactive
Blue 4, and Malachite Green [89]. Laccases that served as good dye decolorizing agents
have been produced from the thermophilic bacterial species Streptomyces psammoticus and
Stenotrophomonas maltophilia [90,91].

Catalase was determined to the role of protecting bacteria against oxidative damages
caused by dye [37,92]. Further research has identified a catalase and a laccase isolated from
the extremophile Geobacillus thermo pakistaniensis which can bleach colors [93].
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Hydrolase enzymes containing protease, amylase, and cellulase are responsible for
breaking bonds of C-N; C-C; and C-O in dye degradation. Previous studies have inves-
tigated the contribution of amylases produced by Bacillus megaterium and Anoxybacillus
rupiensis and a serine protease produced from Bacillus sp. were investigated in the previous
studies that exposed capacity in the degradation of dyes [93–95]. The glucose oxidase
enzyme can remove natural pigments through bio-bleaching by glucose oxidation mecha-
nisms [96]. In the dye textile industry, stain and color preservatives can be removed from
fabrics using the cellulase Puradax HA produced by Bacillus sp. [97]. Alkali-thermophilic
thermozymes have been evaluated in bioscouring processes at alkaline pH and high temper-
atures [98]. Alkaline pectinases generated by Bacillus sp. and Pseudomonas sp. can be used
to protect cellulose and fiber from damage [94,99]. Recently, cold-adapted amylases and
proteases that can eliminate stain-containing starch were successfully commercialized [100].
In another study, alkaline protease produced from bacterial consortia has been shown the
decolorization capacity of Direct Red-81 (68.8%) and Direct Organge-34 (70.78%) [101].

Peroxidases, including manganese peroxidases and lignin peroxidases, are being
discovered as they are directly involved in the degradation of dyes and xenobiotics. In par-
ticular, bacterial peroxidases are preferred to fungal peroxidases because bacteria are more
flexible during protein engineering to enhance catalyst activity [102]. Thermosediminibacter
spp. have been investigated as promising candidates for the production of peroxidases
(DyP), laccases, and azoreductases involved in dye decolorization [103]. Lignocellulosic
biomass is currently considered not only an abundant renewable source for the production
of biofuels and valuable bioproducts, but also a significant substrate or biosorbent for dye
removal because of its eco-friendly nature and natural availability [9]. Lignin is one of
three different polymers decomposed from lignocellulose and may be a suitable substrate
for extremophilic lignin peroxidase-producing bacteria to enhance LiP production which
contributes to the dye degradation process. The promising halotolerant and alkalophilic
Bacillus ligniniphilus L1 has illustrated high-value utilization of lignin at pH 9 [27].

Compared to other extremozymes, psychrophilic enzymes have lower thermal sta-
bility, higher structural flexibility, and greater specific activity [104]. On the other hand,
superoxide dismutases (SODs) are antioxidant enzymes that play important roles in the
cellular defense against harmful environmental factors. Both SODs and catalase (CAT)
enzymes are found in the thermophilic bacterium Exiguobacterium profundum [36].

Although extremozymes have been investigated for several decades, their character-
istics, structures, and functions have changed over time. Therefore, further studies on
the potential activities of these extremophiles and their enzymes in certain conditions to
obtain maximum efficiency in biological applications are needed, and would be an exciting
venture for researchers.

5. Discussion and Future Prospective

The utilization of microorganisms in the dye degradation process has increased due
to their unique metabolic pathways and protein frameworks that help them mineralize
and completely decolorize the dye under specific ecological conditions [105]. In-depth
studies on the enzymes, genes, and metabolic mechanisms responsible for the decoloriza-
tion by extremophiles are currently needed for application in wastewater treatment. The
possibility of identifying, isolating, cloning, and transferring genes that encode the de-
grading enzymes should be explored to identify potential superdegrading microorganisms
from extremophiles.

Several studies have demonstrated that bacterial biomass is a promising biosorbent
material for textile dye bioremediation because it provides sources of carbon and nitro-
gen [9,106]. Therefore, hybrid adsorbent systems are highly efficient for dye removal at low
operating costs. However, the mechanisms involved in the link between the living/dead
cell biomass and dyes are complex. Moreover, the consequences of final biomass disposal
and dye effluents after absorption are still uncontrolled and neglected.
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Agrowaste is considered an excellent substrate source for polyenzyme production in
the fermentation process, eliminating hemicellulose, cellulose, and lignin [9,107]. Therefore,
multi-enzyme-producing bacteria are potential candidates for various waste decompo-
sitions in the polypolluted form. Interestingly, most bacterial strains which have high
adaptation under stress have been investigated as multiple enzyme-producing candidates
in recent studies [9,108]. Therefore, more practical research regarding the ecology, taxon-
omy, and molecular properties of these special bacteria should be carried out to better
understand the correlation between the high extreme tolerance and enzyme-producing
capacity during the degradation process of toxicants.

The biological degradation of dyes can be performed in the presence or absence of
oxygen. Although anaerobic conditions are mostly responsible for the degradation of azo
dyes in the first step of azo-linkage cleavage, the aromatic amines formed in the second
step can be degraded by bacteria almost exclusively under aerobic conditions. Thus, the
combination of both anaerobic and aerobic phases in one treatment process may speed up
the process and improve its efficiency [109].

Other important biocompounds that should also be considered are extremolytes. These
are small organic molecules that accumulate inside cells and are either synthesized or taken
up by extremophilic bacteria. They play a crucial role in protecting the macromolecules and
cell structures of extremophiles by forming and stabilizing protective water layers [110].
In addition, the biosurfactants secreted by extremophiles during dye degradation should
be further studied in terms of changes in their composition and function under certain
operating conditions.

Because extremophiles have huge potential applications with superior performance in
a wide range of areas, they need to be considered as a great replacement for many current
conventional methods. Developing novel isolation methods to investigate unculturable or
fastidious bacteria such as designing the nutrient components of culture media, equipment,
and optimizing the growth conditions based on characteristics, adaptation mechanisms,
and metabolic pathways should be continued as an independent further step. However,
studying these polyenzyme-producing extremophiles is more challenging because of the
lack of knowledge about particular physiological features and molecular properties due to
the change in their complex metabolic pathways under extreme environments. However,
the long-term effects of using extremophilic bacteria and their by-products should be
verified with each original dye effluent input.

6. Conclusions

The specificity of special biological molecules, complex metabolic pathways, and
robustness enables extremophiles to easily face multiple environmental stresses. Thus, they
have attracted significant attention as powerful sources for biological applications and in-
dustrial purposes and the development of bioremediation techniques using biomass and en-
zymes as super catalysts. The demand for extremophilic bacteria and multi-extremozymes
and their potential applications have increased tremendously. Therefore, it is expected that
new methods, both dependent and independent, will be developed to provide a pool of
extremely competitive cells and catalysts for waste treatment and other bio-based applica-
tions. It is necessary to figure out the link between the capacity of enzyme production and
the removal rate of dye under each certain extreme conditions based on the components
of the original dye effluent that may affect the efficiency of the dye degradation process.
Additionally, understanding the changes in the metabolic pathways and physiological
properties of polyenzyme-producing bacteria under harsh fluctuating environmental condi-
tions may help in the discovery of novel enzymes and their potential functions. Moreover,
insight into the genetic diversity, metabolic engineering, and extremolytes of these potential
extremophiles is needed to further study their outstanding characteristics such as structure
and biochemical properties and significant values to achieve sustainable development goals
in environmental and industrial fields.
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