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Abstract: Electroactive bacteria (EAB) are natural microorganisms (mainly Bacteria and Archaea) living
in various habitats (e.g., water, soil, sediment), including extreme ones, which can interact electrically
each other and/or with their extracellular environments. There has been an increased interest in
recent years in EAB because they can generate an electrical current in microbial fuel cells (MFCs).
MFCs rely on microorganisms able to oxidize organic matter and transfer electrons to an anode. The
latter electrons flow, through an external circuit, to a cathode where they react with protons and
oxygen. Any source of biodegradable organic matter can be used by EAB for power generation.
The plasticity of electroactive bacteria in exploiting different carbon sources makes MFCs a green
technology for renewable bioelectricity generation from wastewater rich in organic carbon. This
paper reports the most recent applications of this promising technology for water, wastewater, soil,
and sediment recovery. The performance of MFCs in terms of electrical measurements (e.g., electric
power), the extracellular electron transfer mechanisms by EAB, and MFC studies aimed at heavy
metal and organic contaminant bioremediationF are all described and discussed.

Keywords: electrogenic bacteria; exoelectrogenic bacteria; extracellular electron transfer mechanisms;
bio-recovery; water; wastewater; soil; sediment

1. Introduction

Electrogenic or electroactive bacteria (EAB) are natural microorganisms able to gener-
ate electricity through various metabolic processes. Although they have only recently been
exploited for practical applications, the first author who described electricity generation by
a microorganism was the Botanics Professor M.C. Potter at Durham University in 1911 [1].
He observed that immerging a platinum electrode into a liquid medium with a yeast and
a bacterial suspension, in the presence of glucose, produced a voltage of 0.3–0.5 V. Subse-
quently, further developments in this topic were performed by Barnet Cohen in 1931, who
was able to produce 35 V connecting a number of microbial half fuel cells in series mode [2].
These pioneer studies were the basis for the development of electromicrobiology, a new
discipline, which deals with the electron exchange between microorganisms and external
electronic devices, involving microbial functions that can be involved in the emerging field
of bioelectronics [3].

Bennetto and Allen [4] from King’s College (London) designed the “microbial fuel
cells” currently used: a two chamber bioreactor with a carbon felt electrode separated
by an ion exchange membrane. Kim et al. [5] identified the first electrogenic bacterium,
Shewanella oneidensis (ex Shewanella putrefaciens), which is a Fe(III)-reducing organism and
facultative aerobic/anaerobic bacterium [6].

Subsequently, electrochemical activity was observed in several different bacterial
strains, and various microbial fuel cells were designed and tested using pure cultures and
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enriched mixed cultures. Bond and Lovley discovered Geobacter sulforeducens, which can
effectively increase the performance of a microbial fuel [7]. The physiology, ecology, and
applications of this electrogenic bacterium were described by Lovley et al. [8]. Geobacter
sulfurreducens PCA and KN400 strains and Shewanella oneidensis strain MR-1 are considered
the model organisms in microbial electrochemistry [9].

In the last few years, interest in electrogenic bacteria has been growing in view of
their potential applications in green technologies dealing with renewable energy and en-
vironmental management [10]. The study of the functioning and identification of these
microorganisms is only possible using an interdisciplinary approach (combining e.g., mi-
crobial ecology, energy engineering, biotechnology and bioinformatics) and application
of the newest sequencing methods and metagenomic approaches. Thanks to the latter,
several microbial groups (including non-cultivable ones) involved in bioelectrochemical
processes are being identified. Because of their peculiar characteristics, electrogenic bacteria
have been exploited in the last decade for biotechnological applications, such as bioelec-
trochemical systems (BESs). BESs are electrical devices that rely on electrogenic bacterial
activity [11] and include various tools with different purposes [12]. BESs are able to reduce
pollutants, recycling elements, synthesizing new products, and generating electricity [13].
They can also be used for biodegradation/bioremoval of several contaminants [14–16]. BES
are in line with the circular economy model, because waste can be used as the fuel material,
converting it to energy [17].

There are various BES types, which include different technologies, such as micro-
bial fuel cells (MFC), microbial electrolysis cells (MEC), and microbial electrosynthesis
(MES) [11]. This review focuses on prokaryotic groups directly or indirectly involved in
the production of electricity within MFC, and examples of application for bioremediation
are reported.

MFCs are BES that transform organic waste into electricity through microbial elec-
trochemical reactions catalysed in the anodic and cathodic regions [18–20]. Electrogenic
bacteria develop a biofilm, under anaerobic conditions, on the anode (mainly located at
the bottom of an MFC) and catabolize (oxidize) organic compounds (including several
contaminants), producing and releasing protons (H+), electrons (e−), and carbon dioxide
(CO2). The electrons released by bacteria are transferred to the anode, and then through an
external circuit to the cathode, where oxygen acts as the electron acceptor. Protons flow
from the anode to the cathode through the electrolyte (water or soil/sediment), which also
provides organic matter used by the bacterial communities [21].

2. Electromicrobiomes in Natural Ecosystems

Microbial communities (mainly prokaryotic cells, but in some cases also fungi) that
live in natural environments where they can form biofilms, interacting electrically with
each other and/or their extracellular environment, are named “electromicrobiomes” [22].

These microorganisms are widely distributed in natural ecosystems [22,23] and have
been found in soil, water, sediment, intestinal systems, surfaces of corroding metals, and di-
gesters. Moreover, electromicrobiomes have been detected in extreme environments [9,24].
For example, Yamamoto et al. [25] isolated a novel bacterium, belonging to the genus
Thiomicrorhabdus, from a thermal vent; it has multiheme cytochrome-c proteins involved
in extracellular electron transfer. Interestingly, Ren et al. [26] also found several electroac-
tive bacteria genera in varnish rock, a dark-coloured coat rich in Fe/Mn forming on rock
surfaces, which it considered an extreme environment [24].

Recent works reported electroactive bacteria in freshwater ecosystems, such as rivers
or lake sediments [27–29]. Moreover, other authors found EAB in salt marsh [22], in mudflat
marine sediment, and brackish ecosystems [30,31]. For example, in a mangrove sediment,
typically rich in organic matter and anoxic conditions, these bacteria completely oxidized
organic matter to CO2 using electron acceptors such as Mn(IV) and Fe(III) [32,33]. Although
EAB have been investigated in marine and fresh water sediments, soil ecosystems have not
been well explored so far, despite having a biodiversity higher than water/sediment. Most
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studies have focused on microbial communities in paddy soils [34,35]. Electrogenic bacteria
were also found in plant tissue as endophytes in sweet potato roots (Dioscorea esculenta)
and angelica stems (Angelica sinensis) [36]. The human gut has also been demonstrated to
be a suitable environment for exoelectrogenic bacteria. In fact, Tahernia et al. [37] identified
five gut bacteria with extracellular electron-transfer capabilities. Table 1 reports a list of
electroactive bacteria found in various natural or anthropic habitats.

Table 1. Electroactive prokaryotic cells (Bacteria and Archaea) found in natural and anthropic environments.

Species Habitat References

Acidiphilium cryptum Coal/copper strip mine soil/sediment [38,39]

Acidithiobacillus ferrooxidans Acid mine drainage water [40]

Acinetobacter johsonii Marine water [41]

Alcaligenes faecalis Ubiquitous/wastewater [42]

Arcobacter butzleri Freshwater/seawater [33]

Brevibacillus agri Paper wastewater treatment sludge [43]

Clostridium ljungdahlii Anaerobic digesters [44]

Clostridium spp. Ubiquitous in environment [44,45]

Desulfuromonas sp. Salt marsh sediment [30]

Dietzia sp. River estuary sediment [46]

Enterococcus faecalis Human gut [37]

Escherichia coli Ubiquitous/wastewater [47]

Geobacter metallireducens Soil/sediment [47]

Geobacter sulfurreducens Soil/sediment [8]

Leptothrix sp. Aquatic environments/wastewater [48]

Methanobacterium palustre Hot springs/anaerobic digesters [49]

Methanococcus maripaludis Salt marsh sediment [44]

Nocardiopsis sp. Saline and alkaline soil/marine ecosystem [50]

Ochrobactrum anthropi YZ-1 Wastewater [51]

Pyrococcus furiosus Salt marsh sediment [52]

Shewanella oneidensis Deep sea anaerobic habitats/soil [53]

Sporomusa ovata Sugar beet leaf (endophyte) [53]

Thioalobacter Salt marsh sediment [30]

Thiomicrorhabdus spp. Deep-sea hydrothermal vents [25]

Pleomorphomonas sp. Plant roots (endophyte) [36,54]

Rahnella sp. Plant roots (endophyte) [36,55]

Shinella sp. Sugar cane steam (endophyte) [36,56]

Staphylococcus aureus Human gut [37]

Streptococcus agalactiae Human gut [37]

Winogradskyella poriferorum Marine water [41]

3. Extracellular Electron Transfer Mechanisms

Electroactive bacteria capable of extracellular electron transfer can also be termed
exoelectrogenic bacteria, exoelectrogens, electrochemically active bacteria, anode respir-
ing bacteria, or electricigens [57]. Currently, more than 100 microorganisms have been
described as electroactive bacteria able to perform extracellular electron transfer (EET) [9].
They interact electrically with other microbial species, minerals, or soluble extracellular
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electron acceptors and donors that cannot enter inside a cell [57,58]. Prokaryotic cells
coordinate their development, activity and mobility in these systems with advantageous
cell-to-cell interactions. As a result, biofilms that are complex and have a highly orga-
nized multicellular and multispecies structure are formed [59]. In biofilms, cells are linked
together and embedded in a matrix primarily composed of proteins, nucleic acids, and
carbohydrate polymers [60]. Cell-to-cell contact and transfer of electrons is facilitated by
extracellular polymeric compounds (EPS) [61].

Paquete et al. [61] summarized the main processes involved in electroactive microor-
ganism interactions such as quorum sensing, coordinated by the expression of genes
activated by a specific cell density and various environmental factors; outer-membrane vesi-
cles, which make possible cell communication between cells and EET; physical interactions
between neighbouring cells via nanotubes, type IV pili, multiheme c-type cytochromes,
cytochrome-nanowire systems; and small diffusible metabolites (e.g., hydrogen, formate or
flavins), which enable electron transfer between cells without a cell-to-cell contact [61].

Overall, electroactive microorganisms use a network of redox and structural proteins
to transfer electrons between their plasma membranes and extracellular minerals. In a
few model microorganisms, some of these mechanisms and proteins have been described.
In particular, Shi et al. [58] reported that these proteins generally cooperate in building
pathways that physically and electrically link redox reactions of metal ions associated
with external minerals with intracellular metabolic processes. For example, the EET path-
ways of the gram-negative Proteobacteria Geobacter sulfurreducens and Shewanella oneidensis
have been extensively investigated [62]. These bacteria are included among dissimilatory
metal-reducing microorganisms, a group of microorganisms (comprising both Bacteria and
Archaea) that can perform anaerobic respiration utilizing a metal as a terminal electron ac-
ceptor [63]. The most common metals used for these reactions are Fe(III) and Mn(IV), which
are reduced to Fe(II) and Mn(II), respectively [58,64–66]. Microbial strategies for EET have
evolved over billions of years [10], and electrons can be transferred from microorganisms
to multivalent metal ions, which are associated with minerals and vice versa [58].

Shewanella oneidensis strain MR-1 and two species of Geobacter (G. sulfurreducens DL-1
and G. sulfurreducens PCA) were the first bacteria identified as being able to use miner-
als that contain Fe(III), Mn(III), or Mn(IV) as terminal electron acceptors [67]. Further
studies on Shewanella revealed the direct involvement of six multiheme cytochromes and
porin-type outer membrane proteins in EET. Cytochromes form a trans-outer membrane
protein complex, which transfers electrons from the periplasmic proteins to the bacterial
surface [68–71]. On the bacterial surface, the porin-type proteins can physically transfer
electrons directly to minerals that contain Fe(III), as shown in Figure 1A.

Several studies have reported that outer membranes possess nanowires that can
mediate the transfer of electrons to minerals and make possible physical connections with
neighbouring cells [44,72–74].

In a similar way, the EET system in Geobacter (Figure 1B) involves multiheme type-c
cytochrome and porin-like outer membrane proteins. However, the number of proteins
potentially involved seems to be higher (Figure 1B). Interestingly, Geobacter has been
found to exchange electrons with bacteria of the same or different species, minerals, and
electrically conductive carbon materials (activated carbon, biochar, and carbon cloth) [58].
For example, Summers [75] found the Geobacter sulfurreducens PCA strain used nanowires
and their associated multiheme c-type cytochrome for accepting electrons from Geobacter
metallireducens GS-15.
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Figure 1. EET pathways of (A) Shewanella oneidensis: the quinol oxidases in the inner plasmic mem-
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bound into the membrane. In turn, CymA transfers electrons to periplasmic cytochromes (fumarate 
reductase, Fcc3 (also known as FccA), and tetraheme cytochrome, STC). In the outer membrane, the 
c-type cytochromes (MtrCAB) form conduits through membrane porins and transfers electrons 
from the periplasmic electron carriers to extracellular electron acceptors (minerals or electrodes). (B) 
Geobacter sulfurreducens: both inner heme-containing membrane proteins (ImcH and CbcL) are pro-
posed to oxidize quinols. Electrons are transferred to periplasmic c-type cytochromes. The PpcA 
and PpcD are the most abundant c-type cytochromes. The latter finally transfer electrons to OmaB-
OmbB-OmcB or OmaC-OmbC-OmcC porin–cytochrome trans-membrane protein complexes and 
then to extracellular electron acceptors (minerals or electrodes) [10,58,62]. 

The same G. metallireducens GS-15 strain has also been found to transfer electrons 
directly to methanogenic Archaea through nanowires [76]. 

The extracellular electron transfer mechanisms identified in Geobacter and Shewanella 
are similar; however, the fact that these bacteria are not phylogenetically related suggests 
that these functions evolved independently through convergent evolution. 

4. Electrogenic Bacteria in Microbial Fuel Cells 
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film growth on it [78]. Other natural materials (e.g., carbonized sponge-like natural pom-
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Figure 1. EET pathways of (A) Shewanella oneidensis: the quinol oxidases in the inner plasmic
membrane transfer electrons from reduced quinols (QH2) to the tetraheme c-type cytochrome (CymA)
bound into the membrane. In turn, CymA transfers electrons to periplasmic cytochromes (fumarate
reductase, Fcc3 (also known as FccA), and tetraheme cytochrome, STC). In the outer membrane,
the c-type cytochromes (MtrCAB) form conduits through membrane porins and transfers electrons
from the periplasmic electron carriers to extracellular electron acceptors (minerals or electrodes).
(B) Geobacter sulfurreducens: both inner heme-containing membrane proteins (ImcH and CbcL) are
proposed to oxidize quinols. Electrons are transferred to periplasmic c-type cytochromes. The PpcA
and PpcD are the most abundant c-type cytochromes. The latter finally transfer electrons to OmaB-
OmbB-OmcB or OmaC-OmbC-OmcC porin–cytochrome trans-membrane protein complexes and
then to extracellular electron acceptors (minerals or electrodes) [10,58,62].

The same G. metallireducens GS-15 strain has also been found to transfer electrons
directly to methanogenic Archaea through nanowires [76].

The extracellular electron transfer mechanisms identified in Geobacter and Shewanella
are similar; however, the fact that these bacteria are not phylogenetically related suggests
that these functions evolved independently through convergent evolution.

4. Electrogenic Bacteria in Microbial Fuel Cells

The properties of the anode materials are one of the important aspects for the electricity
production. Carbon-based materials, such as graphite fibre brushes, rods, felts, and fabrics,
are used to design electrodes due to their high performance, low cost, strong biocompatibil-
ity, and high electrical conductivity [77]. Some authors recently mixed a soybean–potato
powder with conductive materials to produce an anode able to promote biofilm growth
on it [78]. Other natural materials (e.g., carbonized sponge-like natural pomelo peel or
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carbonized neem wood, subsequently modified) and metallic compounds have also been
used and tested [79], although most of them have not been applied in full-scale MFCs so far.

Electric power (P) is generated by electron flows from anode to cathode. Power
generation is an essential parameter for estimating the performance of a microbial fuel
cell. P (measured in mW) is calculated in accordance with Ohm’s law. P is directly related
to voltage (V, measured in mV) and it is indirectly dependent on electrical resistance (R,
measured in ohms, Ω):

P = V2/R

Some authors report electrical performance of MFCs in terms of Power density (PD),
considering the surface (A) of the anode/cathode (W/m2) as follows [80]:

PD = P/A

In most cases, electrical measurements are acquired with commonly available voltage
meters, multimeters, and measurement acquisition systems connected in parallel with
the MFC circuit. Measurement acquisition systems can modulate operating conditions by
switching from open to closed-circuit conditions and vice versa, varying resistance and
modulating the charge (open circuit) and discharge (closed circuit) period [21].

5. MFCs for Wastewater Contaminant Removal

Electrogenic bacteria can be exploited for contaminant removal and bioremediation
processes by designing suitable microbial fuel cells. EAB releases electrons that can oxidize
and transform organic matter and contaminants in water rich in organic carbon, wastewater,
soil, or sediment [81]. Over the past few years, MFCs have shown a promising sustainable
technology for simultaneous energy generation and wastewater treatment, with reduced
solid waste production compared to conventional aerobic processes [51]. Indeed, aerobic
wastewater treatment is an energy-demanding process producing large amounts of residual
solids, which are costly to treat and dispose [82].

Some authors [83] have recently reviewed some mathematical models able to predict
microbial growth and substrate biodegradation for optimizing and controlling bioprocesses
and MFC design. The possibility of modelling the bacterial gene regulatory network could
be a good approach for improving knowledge on electroactive bacteria, and it may be a
starting point for designing more efficient MFCs and are essential for their scaling up.

Liu et al. [84] reported one of the first experiments with a single chamber MFC for
treating domestic wastewater and obtained a total chemical oxygen demand (COD) removal
of about 50%. Ye et al. [85] tested a dual-chamber MFC, including an anode chamber, using
anaerobic sludge from a wastewater treatment plant. The system obtained about 90% of
COD removal at 150 days of operation and a maximum voltage generation of 598.9 mV.
Dairy wastewater in a dual chamber MFC was also used as the electrolyte, as shown by
Sanjay et al. [86], and reached stable electric generation and a total COD reduction of 95.2%.

MFCs can decrease not only COD but also nitrate and heavy metal concentrations in
industrial wastewaters. For example, MFCs have been used to co-treat wastewater from
an industrial acid mine drainage (I-AMD), rich in heavy metals and with a low pH, with
municipal wastewater (MWW) [87]. For this purpose, a dual chamber MFC was filled with
50-50 of I-AMD and MWW and removal rates of Cd (42%), Cu (84%), Fe (71%), Al (77%),
Pb (55%) and As (42%) were obtained. Moreover, a reduction in total nitrate (higher than
90%) was achieved.

Moreover, Tacas et al. [88] tested an acclimated inoculum, obtained by mixing aliquots
of bacterial communities from a pristine hot spring, soil, water and pond water, in a dual-
chamber MFC. This MFC system was able to degrade more than 90% of a mixture of three
azo dyes (Sunset Yellow, Allura Red, and Tartrazine) in a few hours. The mixed consortium
was identified by amplification of the 16S rRNA by Illumina Miseq. A co-dominance
of Klebsiella spp. and Enterococcus faecalis was found, in accordance with their capability
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to degrade azo dyes. The occurrence of Klebsiella was also associated with its known
electrogenic activity [89,90].

It is generally known that emerging contaminants (e.g., antibiotics) are not removed
from traditional wastewater treatment plants [91]. In this context, Zang et al. [92] tested
the possible degradation of the nitroaromatic antibiotic chloramphenicol in dual-chamber
MFCs, separated by cationic exchange membranes. They inoculated an activated anaerobic
sludge microbial consortium at the anodes and added acetate as an electron donor.

A degradation of 84% of this antibiotic (50 mg/L as it initial concentration) was found
at 12 h. The anode biofilm community was identified and the exoelectrogenic Azonexus and
Comamonas bacteria were the dominant genera. Moreover, antibiotic degrading bacteria, such
as Azoarcus, Rhodococcus, Comamonas, Nitrososphaera, and Chryseobacterium, were identified.

The degradation of sulfamethoxazole and its metabolite 3-amino-5-methylisoxazole
(20 mg/L) was demonstrated by Wang et al. [93]. The antibiotic degraded 85% within
12 h in a dual-chamber MFC separated by a cation-exchange membrane. In this case, an
inoculum of sludge collected from a thermostatic anaerobic digester was used. In this
work, the microbial community was not identified. More recently, Cheng et al. [94] studied
antibiotic degradation in single chamber MFCs maintained for 2 months. They used an
inoculum of bacteria from a sewage treatment plant, supplied with sodium acetate and
phosphate buffer solution with different antibiotic concentrations of up to 40 mg/L of
sulfamethoxazole. The highest power density (821 mW/m2) and voltage (709 mV) were
obtained using 20 mg/L of the antibiotic. However, the highest removal rate (96%) was
found with the highest antibiotic concentration (40 mg/L). In the same work, they also
identified the laccase enzyme as involved in the antibiotic degradation. Geobacter was
dominant in the MFCs with the lowest antibiotic concentrations, presumably because it
resisted the antibiotic effect.

Other authors [95] tested two-chamber MFCs for degradation of the antibiotic sul-
famonomethoxine. They found 92% removal of 10 mg/L of this antibiotic. Adding the
antibiotic, the microbial community changed at the anode. In fact, a shift from electroactive
bacteria (e.g., Spirochaetaceae, Petrimonas, Acidovorax, and Geobacter) to bacteria with dual
functions of electricity generation and antibiotic degradation (Cupriavidus, Rhodococcus,
Sphaerochaeta, and Cloacibacillus) was observed.

There are few works that report study cases of microbial fuel cells at full scale, which
treat a high amount of wastewater. MFC scale-up and commercialization poses problems
such as high construction costs, difficulty in developing high power structures, the MFC
lifetime, and maintenance of a high level of efficiency, with difficulties in balancing yields
with overall system upscaling [96,97]. A full scale MFC system was tested by Liang et al. [98]
and operated for 1 year. It was a 1000 L modularized MFC system for treating municipal
wastewater. This system comprised 50 stacked MFC modules, each with a volume of 20 L
and equal dimension made of polyvinyl chloride (PVC) and separated by cation exchange
membranes. Both electrodes were of granular activated carbon to maintain a large ratio
of electrode surface area to the reactor volume. The MFC system provided removal rates
of COD from 70% to 90%, power outputs in the range of 0.42–3.64 W/m2, and an energy
recovery of 0.033 kWh per m3 of municipal wastewater. This work did not report any
information about the EAB involved in it.

Blatter et al. [99] set up a stretched 1000-L MFC for treating municipal wastewater.
The system (64 MFC modules) was made with transparent polyester and the electrodes
were of reticulated vitreous carbon. COD was removed from 80% to 95%, generating from
0.015 to 0.060 kWh/m3 of wastewater. It was the highest value for a scaled-up MFC fed
with municipal wastewater. The microbial community of the anode biofilm was studied
by sequencing 16S rRNA with Miseq Illumina. The electrogenic Geobacter was dominant
(>60%) at the anode and other microorganisms (e.g., nitrifying and denitrifying bacteria)
increased when Geobacter lost its dominance due to the substantial COD removal.
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6. MFCs for Bioremediation of Persistent Organic Pollutants (POPs) and Heavy Metals

MFCs can also be applied for remediating solid matrices (soil and sediment) from
organic and inorganic contaminants. In this case, soil or sediment are the electrolyte,
and they are termed terrestrial microbial fuel cells (TMFCs). TMFCs are more complex
if compared to other MFCs where the electrolyte is a liquid (e.g., water or wastewater).
Owing to soil and sediment heterogeneity and their variable abiotic factors (e.g., pH, texture,
organic carbon, and water content), TMFC performance can vary significantly [15,100]. In
particular, organic matter content can be a limiting factor in MFC electricity production
and durability as well as in decontamination process effectiveness [101]. The efficiency
of TMFC is generally lower than conventional liquid-based ones. Indeed, a conventional
MFC fed with wastewater can produce up to 1300 mW/m2 [102,103], unlike TMFCs, which
show lower performances.

Adding an external carbon source, such as glucose or compost, performance of ter-
restrial MFC electroactive bacteria can significantly improve [21,104–106]. Among abiotic
factors, water content is another key limiting parameter for an appropriate functioning of
this technology [107]. For example, if soil moisture is not suitable for electron transfer due
to water evaporation, the power output decreases. For this reason, soil water content needs
to be maintained constant to ensure anaerobic conditions at the anode and solute migration.
In fact, when TMFCs are used for restoring contaminated soils or sediments, moisture
needs to be close to its maximum water holding capacity [108]. For example, degradation of
polycyclic aromatic hydrocarbons (PAH) [109,110] and other persistent organic compounds
(POPs) [108] has been obtained in waterlogged soil. A recent work reports a petroleum
refinery wastewater treatment with dual chamber MFCs, adding fermented milk as a
co-substrate for improving hydrocarbon and COD removal. The substrate degradation
rate was reported as COD/m3-day and its maximum value (0.420 kg COD/m3-day) was
found for 80 petroleum refinery wastewater/20 fermented milk. In this work, the microbial
communities operating in these MFCs have not been analysed [111].

In another study, Cao et al. [112] tested the degradation of hexachlorobenzene (HCB)
in spiked (40–200 mg/kg) soil microbial fuel cells. The TMFCs were inoculated with an
anaerobic sludge, and with more than 51% of soil moisture, they obtained the highest
removal (71.15%); with lower soil water content, HCB removal decreased significantly
(38.92%), showing that this parameter is a key factor. HCB degraded via the reductive
dechlorination pathway under anaerobic conditions. The presence of the electrogenic
bacteria Geobacter sulfurreducens and Betaproteobacteria was detected with the fluorescence in
situ hybridization (FISH) technique. G. sulfurreducens was found between 105–107 cells/g
soil, depending on HCB concentration.

Hao et al. [110] recently reviewed degradation of PAH in soil and sediment MFCs.
Although they report several MFC laboratory studies, numerous gaps in knowledge of PAH
degradation are still present. For example, the distinction between electrochemical bacteria
and PAH degraders is not clear in most works. Moreover, the amount of PAHs adsorbed
by soil/sediment, which can hamper their biodegradation, has never been discussed. A
role of other organisms (e.g., algae, protozoa) in increasing microbial degradation of PAHs
is not excluded. Ultimately, syntrophy, competitive or parasitic behaviour, which can be
promoted by electron exchange between microorganisms in the complex biofilm microbial
communities, has to be investigated.

Borello et al. [21] tested the degradation of the organochlorine pesticide 2,2-bis (p-
chlorophenyl) 1,1-dichloroetylene (DDE) using microbial fuel cells with soil amended with
compost to improve the organic carbon source. The overall results showed that TMFCs
promoted a substantial (ca. 40%) DDE removal in 2 months compared to un-amended
control cells, with peaks of voltage generation at 540 mV with compost present. Compost
stimulated microbial activity and cell performance. The maximum power output was
55 mW and decreased strongly over time, in line with a decrease in microbial abundance and
microbial activity, presumably due to a decrease in organic carbon and soil water content.
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In another work, Li et al. [113] set up microbial fuel cells using marine sediment
polluted by petroleum hydrocarbon (PHC). These MFCs efficiently degraded PHCs with
an average from 39.7% to 48.3%. Wang et al. [114] tested MFCs for heavy metal decontami-
nation using an agricultural soil contaminated artificially with copper nitrate (Cu(NO3)2).
They demonstrated a migration of copper from the anode to the cathode thanks to the elec-
trical process occurring in the cell. The electrical field between the electrodes made possible
Cu2+ migration and precipitation as copper oxide (Cu2O) at the cathode, obtaining at the
same time a maximal voltage and power density of 539 mV and 65.77 mW/m2, respectively.

7. Plant-Microbial Fuel Cells and Constructed Wetland MFCs

Another type of microbial fuel cells is plant microbial fuel cells (Plant-MFCs). They are
designed to combine MFCs with plants with different photosynthesis processes (C3, C4 and
CAM) [115–118]. Plant-MFCs are a particular configuration of MFCs, where the electrolyte
is water or sediment/soil (in saturated conditions) and plants are added for increasing
electrical output and contaminant removal and/or organic matter degradation. Tubular
or flat-plane models are the most common configurations [119]. The tubular model Plant-
MFCs are the most studied and consist of a tube-shaped anode bordered by a membrane
and then a cathode; several connections are placed into soil/sediment. Materials such
as glass tubes/beakers, plastic containers, and polyvinyl chloride (PVC) are commonly
used to fabricate Plant-MFCs. These systems provide both oxygen to the final electron
acceptor (cathode), and organic substances in form of rhizodeposits, root exudates, and
root border cells [120]. Exudates, key components of the rhizosphere, positively affect root
colonization by microorganisms and enhance the metabolic activity of EAB [120]. Plants
provide significant amounts of carbon, as rhizodeposits, and up to 60% has been estimated
to be used as an energy source for microorganisms. A key factor is root development in the
anode compartment in submerged and anaerobic conditions [121,122].

Plant-MFCs have been used for reducing the organic load of wastewater effluents
because they are able to produce electricity more constantly and remove higher organic
matter loads [96,120]. A current of 26 ± 7 mW/m2 anodic geometric area was obtained in
a sediment microbial fuel cell, with rice plant presence, seven times higher than in their
absence; power production of up to 330 W/ha was calculated for the oxidation of the
rhizodeposits [123].

Plant-MFCs have also been used for contaminant removal (e.g., hydrocarbons and
heavy metals) from soil or sediments. For example, using a soil spiked with Cd(II)
(20 mg/kg), Oryza rufipogon, and Typha orientalis were used [124]. Plant uptake of Cd
in roots had a significant role in its remediation. A Cd remediation of 22–30% from
soil, with maximum voltages of 137.12–350.50 mV, respectively, was obtained. Moreover,
when adding supplementary organic carbon (chestnut biochar), Cd removal increased.
Anaeromyxobacter, Geobacter, Phenylobacterium, and Azospirillum (Proteobacteria) were the
dominant genera in the anode region.

The degradation (75–87%) of high molecular weight PAHs, such as pyrene (3.2 mg/kg)
and benzo[a]pyrene (1.7 mg/kg), was proven in a contaminated sediment using a Plant-
MFC with the Acorus calamus wetland species. The microbial community characterization of
the anode biofilms highlighted the dominance of the Geobacter, Desulfuromonas, Longilinea,
and Bellilinea genera. The facultative denitrifying bacterium Denitratisoma (which can
use oxygen if available) both protected Geobacter (an oxygen sensitive bacteria) from O2
presence at the anode and was simultaneously able to degrade organic contaminants.

In a Plant-MFC with sediment spiked with pyrene and phenantrene and planted with
the submerged macrophyte Vallisneria spiralis, a removal of these contaminants of 88% at
65 days was observed [125]. Bacillus and Clostridium (Firmicutes) and Geobacter were the
genera most enriched in the anode biofilm, under closed circuit conditions.

Table 2 reports various plant species used for Plant-MFCs. Overall, promising results
have been obtained with this type of MFC; however, only a few studies have been per-
formed on real contaminated soil or sediment. Although it is expected that exoelectrogenic
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and degrading bacteria work in cooperation, their specific functioning and relationships
have not been thoroughly investigated so far.

Table 2. Plant species commonly used for Plant-MFCs and their applications for heavy metals and
pyrene removal.

Plant Species Habitat,
Experimental Time Max. Voltage (mV) Contaminant Removal (%) Reference
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Table 2. Cont.

Plant Species Habitat,
Experimental Time Max. Voltage (mV) Contaminant Removal (%) Reference

Vallisneria spiralis
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Constructed wetlands (CWs) are engineered systems designed and constructed to
exploit natural processes involving common wetland vegetation, such as Typha latifolia
(bulrush), Elodea nuttallii (western waterweed), Cyperus papyrus (Nile grass), Canna indica
(purple arrowroot), Phragmites australis (common reed), soils or sediments, and their as-
sociated microbial communities to treat wastewater and/or improve water quality [132].
Constructed wetland is a broad ecotechnology including various technical solutions [133]
and designed to simulate natural wetlands (nature-mimicking), but operating within a
more controlled environment [134]. CWs have been used to treat wastewater from various
origins, such as industrial, municipal, agricultural, storm wastewater, and run-offs [135,136].
However, CW treatment efficiency can be moderate for organic contaminants and inefficient
for nutrient removal because of the unavailability of suitable terminal electron acceptors
such as oxygen in a major fraction system in the bottom area [137]. CWs are structurally
similar to single chamber MFCs: there is an upper aerobic zone and an anaerobic zone at
the bottom of the system. This structural similarity makes them compatible for integra-
tion [137]. In fact, in the last decade, considerable progress has been made in integrating
MFCs into constructed wetlands in the so-called CW-MFC system. In this case, the anode
(electron acceptor) is buried in the deep anaerobic region of the CW, while the cathode is
located in the surficial aerobic zone of the same CW. Both anode and cathode are connected
by an external circuit. This new technology, taking advantage of electrogenic bacteria on a
large scale, can be a cost-effective method for producing energy during the biodegradation
of organic matter [138].

The first application of a CW-MFC was described by Yadav in 2012 [139], demon-
strating the feasibility of simultaneous bioelectricity generation and treatment of textile
industrial wastewater containing different concentrations of methylene blue dye in a small
scale CW-MFC set up (internal diameter of 10.5 cm and length of 62 cm). A maximum
of 93% dye removal was achieved at 96 h of treatment and a reduction of 75% of COD
from wastewater was observed. The maximum power density and current density mea-
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sured by an external circuit was 15.73 mW/m2 and 69.75 mA/m2, respectively. In this
work, no information about the microbial community involved in the microbial fuel cells
was reported.

Lu et al. [140] characterized a microbial community by pyrosequencing a sediment
sample from a CW-MFC with Canna indica as the vegetal species. They found a dominance
of Proteobacteria (38%), followed by Acidobacteria (20%), Actinobacteria (9%), Chloroflexi
(8%), and Bacteroidetes (7%). The Geobacter genus was found at 7.4% in the anaerobic zone
of the CW-MFC, in accordance with its ecological functioning as an electroactive bacterium.

In another work, Xu et al. [141] detected several bacterial groups related to the nitrogen
cycle in a small scale CW-MFC with Phragmites australis as the vegetal species. In particu-
lar, they identified the ammonia oxidizing group Nitrosomonadaceae, the nitrite-oxidizing
bacterium Nitrospira, and other denitrifying bacteria, such as Bacillus and Thauera. They
also detected the EAB Geobacter and Desulfovibrio bacteria in the anaerobic zone. They
demonstrated CW-MFC to be a technology able to decrease both nitrogen content and
chemical oxygen demand, with an average removal rate of 82%, producing 266 mV of
voltage and with the highest power density of 3714 mW/m2. Although there are several
studies on the use of CW-MFCs for wastewater treatment [142–146], few have reported
organic contaminant degradation [147] and specific applications in full-scale systems. Fur-
ther research and development is needed to explore the feasibility and practicality of such
a system at a full-scale level. Furthermore, few works have investigated the microbial
community structure occurring in CW-MFCs, and identified the role of specific electrogenic
bacteria involved in the electricity production.

Both Plant-MFCs and CW-MFCs rely on synergistic actions, only partially unveiled,
between microorganisms and plants, which can provide key ecosystem services such as
soil and water decontamination [148]. Consequently, they can be used for contaminant
bioremediation as nature-based solutions.

8. Conclusions

Natural EAB are present in various environments (soil, water, sediments, human
gut, etc.), belong to several and, in many cases, phylogenetically distant groups, and can
have different ecological roles. Most works on MFCs report results in terms of electrical
performance (e.g., electric power and voltage) with an engineering approach, neglecting
investigations of EAB functioning. Indeed, an ecological approach aimed at functional and
phylogenetic identification of EAB and of specific biotic (intra and interspecific interactions)
and abiotic conditions that can improve their activity in MFCs is desirable. Consequently,
further studies on the ecology of these microorganisms are necessary. The effectiveness
of this green technology for bioremediation purposes can be improved not only by using
the most suitable materials and configurations but also by applying biostimulation (e.g.,
adding organic matter, plant species) or bioaugmentation strategies (e.g., inoculum of
selected bacteria) to maximize EAB activity.
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