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Abstract: Listeria monocytogenes is a deadly and costly foodborne pathogen that has a high fatality rate
in the elderly, pregnant women, and people with weakened immunity. It can survive under various
stress conditions and is a significant concern for the food industry. In this work, a data analysis
approach was developed with existing tools and databases and used to create individual and com-
bined protein interaction networks to study stress response, virulence, and antimicrobial resistance
and their interaction with L. monocytogenes. The networks were analyzed, and 28 key proteins were
identified that may serve as potential targets for new strategies to combat L. monocytogenes. Five of
the twenty-eight proteins (i.e., sigB, flaA, cheA, cheY, and lmo0693) represent the most promising
targets because they are highly interconnected within the combined network. The results of this study
provide a new set of targets for future work to identify new strategies to improve food preservation
methods and treatments for L. monocytogenes.

Keywords: antibiotic resistance; bacterial stress response; protein interaction network; Listeria
monocytogenes; virulence

1. Introduction

The Centers for Disease Control and Prevention (CDC) estimate that there are approx-
imately 48 million cases of foodborne illnesses per year in the United States. Listeriosis,
while not common, is one of the leading causes of death from foodborne illnesses [1]. In
the U.S., there are approximately 1600 infections per year that result in about 260 deaths,
corresponding to a hospitalization rate of 94% and a mortality rate of 16% [2]. The fatality
rate can be as high as 30% in the elderly, pregnant women, and people with weakened
immunity [3]. Listeria monocytogenes, the pathogen that causes listeriosis, has the third
highest mortality rate for foodborne pathogens in the U.S.

Listeria monocytogenes is a facultative intracellular pathogen that can survive a wide
range of stress conditions [4]. It has been found to be a highly occurring pathogen in
several countries, including the United States, United Kingdom, Australia, Canada, and
Mexico [5]. It is found in the environment and is carried by animals [6]; humans are
primarily infected with the bacteria from contaminated foods and surfaces [6]. For these
reasons, L. monocytogenes is one of the most concerning pathogens for the food industry [7].

Bacterial stress response is a microorganism’s ability to respond to external stresses by
expressing proteins that aid in survival. Food preservation methods control the presence
and growth of bacteria in the food chain by employing different types of stresses, e.g.,
thermal stress, acidic stress, osmotic stress, and oxidative stress [4]. Listeria monocytogenes is
difficult to control in foods because it can survive in low moisture, high salt concentrations,
and refrigerated conditions [8]. Understanding the key stress response proteins can lead to
the development of more effective food preservation methods and thereby reduce the risk
of exposure to L. monocytogenes.
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Virulence is a microorganism’s ability to cause disease through the expression of viru-
lence factors, i.e., proteins, that help bacteria to invade host cells, evade host defenses, and
cause diseases [9]. These include polysaccharide capsules that surround the outside of the
pathogen to protect it; surface components such as flagella (protein appendages) that propel
the pathogen to move within a host cell; adhesions (extracellular-bound proteins) that
enable the pathogen to interact with a host cell; exotoxins and enterotoxins secreted by the
pathogen; and Type III secretion systems (an assemblage of proteins) that help the pathogen
to secrete proteins into the host cell [10]. For example, in Listeria monocytogenes, the proteins
plcA and hly are known virulence factors that aid in the escape of the microorganism from
the host cell vacuole [11]. Disrupting the expression of virulence factors could lead to fewer
infections and better outcomes for patients who are exposed to L. monocytogenes.

Antibiotic resistance is a microorganism’s ability to defeat the drugs designed to
kill it [12]. Antibiotic resistance is a serious public health issue that is estimated to be a
leading cause of death worldwide after stroke and heart disease [13]. In 2019, the CDC
reported nearly three million infections and more than 35,000 deaths due to resistant
microorganisms [12]. In Europe, such infections were responsible for more than 426,000
illnesses and 33,000 deaths in 2019 [14]. Listeria monocytogenes is susceptible to a wide range
of antibiotics active against Gram-positive bacteria, except cephalosporins and fosfomycin,
for which it has inherent resistance [15]. The most common treatment for listeriosis is
ampicillin, used alone or in conjunction with gentamicin [15]. Although the presence of
ampicillin-resistant genes is not yet observed to be increasing in L. monocytogenes [16], this
is an ongoing risk due to lateral gene transfer in bacteria [17]. The identification of new
targets to combat antibiotic resistance will ensure that effective treatments continue to be
available for infected patients.

Previous studies have looked at the relationships between stress response and viru-
lence. For example, sigB is known to play a role in both stress response and virulence [18].
It has also been shown that there can be an interaction between virulence and antibiotic
resistance. For example, Listeria monocytogenes can be susceptible to fosfomycin, despite
having intrinsic resistance, due to the expression of the virulence genes prfA and hly [19]. In
this work, stress response, virulence, and antibiotic resistance are studied together. First, a
method is described to generate protein interaction networks using readily available tools
and resources in systems biology. The method is used to create individual and combined
protein interaction networks for stress response, virulence, and antimicrobial resistance for
L. monocytogenes. Lastly, the networks are analyzed to identify key proteins.

2. Materials and Methods

A data analysis approach was developed with existing tools and databases to create
protein interaction networks. The first step is to generate a list of proteins related to the
biological process of interest, e.g., stress response, virulence, and antibiotic resistance. There
are several databases available that can be used to generate protein lists, including but not
limited to Genemania [20], DisGeNet [21], UniProt [22], and Gene Expression Omnibus
(NCBI-GEO) [23]. From the protein list, a network is created and visualized using the
tools STRING and Cytoscape. STRING is a database of protein–protein interactions [24]
and Cytoscape is a multi-platform network visualization and analysis tool [25]. Both
Cytoscape and STRING have been previously used successfully for network development
and analysis, for example, to create a gene interaction network to study antibiotic resistance
mechanisms in Proteus mirabilis [26].

In a protein interaction network the nodes correspond to proteins and the edges
correspond to known or predicted protein interactions. The network can be manually
curated to add or remove nodes and edges based on published results or other criteria,
such as clustering analysis. Generally, nodes that are not highly interconnected may be
removed. The network is analyzed based on the topological features of the network to
identify key nodes. The functions of the proteins that correspond to the key nodes can be
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further studied using tools such as the functional enrichment analysis in STRING and the
online resource DAVID (Database for Annotation, Visualization, and Integrated Discovery).

DAVID provides a comprehensive set of functional annotation tools for investigators
to understand the biological meaning behind large lists of genes [27].

The general workflow to create a protein interaction network is summarized in Figure 1.
The specific workflow used for this work can be provided upon request.
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Figure 1. Overview of protein network development and analysis.

STRING is a database of known and predicted protein–protein interactions that in-
cludes both physical and functional protein associations. The STRING database currently
covers 24,584,628 proteins from 5090 organisms [24]. STRING generates a network from
an input list of proteins based on associations from a variety of data sources including
genomic context predictions, high-throughput lab experiments, automated text mining,
and previous knowledge in databases [24]. The network can be viewed within STRING or
exported for visualization and analysis outside of STRING; for example, the network can
be exported directly to Cytoscape.

Cytoscape is a software platform for visualizing complex networks and integrating
attribute data [28]. A network can be imported into Cytoscape from a variety of sources.
In addition, a network can be generated within Cytoscape. For example, various types of
queries can be performed using the STRING application in Cytoscape to generate a protein
list and protein network. The functionality of Cytoscape can be extended through a wide
range of applications supporting a variety of problem domains that can be downloaded
and managed directly in the software.

For this analysis, STRING and Cytoscape were used to generate and visualize protein
networks for stress response, virulence, and antibiotic resistance. Three individual protein–
protein interaction networks were generated in Cytoscape. The STRING: PubMed query
function was used to generate the initial protein lists for each network. The settings used to
generate the protein networks are listed in Table 1.
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Table 1. STRING settings to generate protein list and create network.

Parameter Stress Virulence Antibiotic
Resistance

Data source STRING: PubMed
query

STRING: PubMed
query

STRING: PubMed
query

Species Listeria monocytogenes
EGDe

Listeria monocytogenes
EGDe

Listeria monocytogenes
EGDe

Search term Stress response
Listeria

Virulence
Listeria

Antibiotic resistance
Listeria

Network type Full STRING network Full STRING network Full STRING network

Confidence (score)
cutoff 0.40 0.40 0.40

Max. number of
proteins 300 300 300

Options Load enrichment data Load enrichment data Load enrichment data

There are several options for the data source in Cytoscape. “STRING: PubMed query”
was selected to return a STRING network based on a protein list generated from a PubMed
query with the specified search term for each network. This resulted in a list of proteins from
the PubMed database by using the specified search term, creating the protein interaction
network using the STRING database, and displaying the network in Cytoscape. STRING
has two species options for Listeria monocytogenes. Listeria monocytogenes EGDe was selected
because it is a commonly used laboratory reference strain [29].

There were no changes made to the default settings for the STRING parameters. “Full
STRING network” was selected because it returns both functional and physical protein
associations. STRING ranks associations from lowest to highest based on the strength of the
supporting data. For this analysis, the confidence score cutoff was set to 0.4, which returns
associations that are of a medium-to-highest confidence score. The maximum number of
proteins was set to 300. These two settings were selected to ensure that the initial networks
included a large number of proteins for the subsequent analysis. In all three cases, the
maximum number of proteins, i.e., 300 proteins, was identified and used to create the
initial network.

The application Molecular Complex Detection (MCODE) is a clustering algorithm that
identifies densely connected regions in a protein interaction network that may represent
molecular complexes [30]. The MCODE application was used within Cytoscape to manually
curate the networks by removing nodes that were not part of a cluster. The settings used
for MCODE are listed in Table 2.

Table 2. MCODE settings for clustering analysis.

Parameter Setting

Find clusters In whole network
Include loops No
Degree cutoff 2

Haircut Yes
Fluff No

Node density cutoff N/A
Node score cutoff 0.2

K-score 2
Maximum depth 100

There were no changes made to the default settings in MCODE. Loops were not
included in the neighborhood density calculation. The degree cutoff was set to 2, meaning
only nodes with two or more connections would be scored. The haircut option was selected
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so that nodes connected to a cluster by only one edge were removed. Fluff was set to
No, ensuring that nodes would only belong to one cluster. The node score cutoff, which
determines which nodes to include in a cluster, was set to 0.2. This setting can also be
adjusted after the results are generated to change the cluster size. The K-score which
determines the minimum number of connections within a cluster was set to 2, resulting
in clusters with two or more connections. The maximum depth was set to 100 to avoid
arbitrarily limiting the cluster size.

The application CytoHubba scores the nodes within a network based on its topological
characteristics [31]. There are two settings in CytoHubba: one to specify the number of
nodes to be ranked and one to identify the ranking method. There are eight algorithms
available in CytoHubba that can be used to rank the nodes based on various features of the
network: MCC (Maximal Clique Centrality), DMNC (Density of Maximum Neighborhood
Component), MNC (Maximum Neighborhood Component), Degree, EPC (Edge Percolated
Component), Bottleneck, EcCentricity, and Closeness. CytoHubba was used to identify the
most highly connected nodes for each network. For this analysis, the top 25 nodes were
ranked to avoid arbitrarily limiting the number of nodes returned. The MCC algorithm
was used as the ranking method based on prior work that determined that MCC identified
more essential proteins compared to the other methods [31].

3. Results
3.1. Stress Response Network

The full stress response network that was generated resulted in 300 nodes with
1188 edges. The full network is included in the supplemental document Table S1. MCODE
analysis identified fourteen clusters ranging in size (from three nodes to forty-four nodes),
with a total of one hundred thirty-seven nodes among all the clusters. These nodes were
used to generate a reduced STRING network with 137 nodes and 599 edges. The nodes
included in the clustered network are also identified in Table S1. CytoHubba was used
to rank the top 25 nodes using the MCC algorithm, as discussed in the Methods section.
Figure 2 shows the top 25 nodes in a radial layout, with colors indicating each node’s rank;
red corresponds to the highest-ranked nodes while yellow corresponds to the lowest.
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The elbow method was used to identify the breakpoint in the scores for the top
25 nodes. There were seven nodes that had the highest scores according to the MCC
algorithm. The proteins corresponding to these nodes are groEL, dnaK, clpP, lmo1138, grpE,
dnaJ, and groES. More details about these proteins are included in Appendix A. Table A1
summarizes the functions of these proteins. Table A2 shows the STRING functional
enrichment annotations for the highest-ranked nodes. The Gene Ontological (GO) terms
show that the stress response network enriched the genes related to molecular functions
and biological processes and the KEGG pathway related to RNA degradation.

3.2. Virulence Protein Interaction Network

The full virulence network that was generated resulted in 300 nodes with 1544 edges.
The full network is included in the supplemental document Table S2. MCODE analysis
identified fourteen clusters ranging in size (from three nodes to thirty-three nodes), with a
total of one hundred forty-three nodes among all the clusters. These nodes were used to
generate a reduced STRING network with 143 nodes and 840 edges. The nodes included
in the clustered network are also identified in Table S2. CytoHubba was used to rank the
top 25 nodes using the MCC algorithm. Figure 3 shows the top 25 nodes in a radial layout,
with colors indicating each node’s rank; red corresponds to the highest-ranked nodes and
yellow corresponds to the lowest.
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The elbow method was used to identify the breakpoint in the scores for the top 25
nodes. There were 10 nodes that had the highest scores according to the MCC algorithm.
The proteins corresponding to these nodes are sigB, cheA, flaA, fliI, flgL, fliP, motB, cheY,
lmo0681, and lmo0693. More details about these proteins are provided in Appendix B.
Table A3 summarizes the function of each protein. Table A4 shows the STRING func-
tional enrichment annotations for the highest-ranked nodes. The GO terms show that
the virulence network enriched genes related to biological processes, cellular components,
and molecular function and the KEGG pathways related to flagellar assembly and bacte-
rial chemotaxis.
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3.3. Antibiotic Resistance Protein Interaction Network

The full antibiotic resistance network that was generated resulted in 300 nodes with
1771 edges. The full network is included in the supplemental document Table S3. MCODE
analysis identified sixteen clusters ranging in size (from three nodes to twenty-five nodes),
with a total of one hundred fifty-seven nodes among all the clusters. These nodes were
used to generate a reduced STRING network with 157 nodes and 1071 edges. The nodes
included in the clustered network are also identified in Table S3. CytoHubba was used to
rank the top 25 nodes using the MCC algorithm. Figure 4 shows the top 25 nodes in a radial
layout, with colors indicating each node’s rank; red corresponds to the highest-ranked
nodes and yellow corresponds to the lowest.
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information about each protein).

The elbow method was used to identify the breakpoint in the scores for the top
25 nodes. There were 17 nodes that had the highest scores according to the MCC algorithm.
The proteins corresponding to these nodes are sigB, flaA, cheA, cheY, lmo0693, fliM,
lmo0700, flgB, flgC, fliG, fliH, lmo0698, fliD, flhB, flhA, flgK, and flgL. More details about
these proteins are included in Appendix C. Table A5 summarizes the function of these
proteins. Table A6 shows the STRING functional enrichment annotations for the highest-
ranked nodes. The GO terms show that the antibiotic resistance network enriched genes
related to biological processes, cellular components, and molecular function and the KEGG
pathways related to flagellar assembly and bacterial chemotaxis.
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3.4. Combined Protein Interaction Network

A combined network was generated using the nodes from the top clusters in each of
the individual networks. The three individual clustered networks contained one hundred
seventy-two unique proteins. The Venn diagram in Figure 5 shows a breakdown of the num-
ber of nodes from each individual network that were used to create the combined network.
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The combined network has 172 nodes and 1429 edges. The full network is included
in the supplemental document Table S4. CytoHubba was used to rank the top 25 nodes
using the MCC algorithm. Figure 6 shows the top 25 nodes in a radial layout, with colors
indicating each node’s rank; red corresponds to the highest-ranked nodes and yellow
corresponds to the lowest.
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The elbow method was used to identify the breakpoint in the scores for the top
25 nodes. There were 21 nodes that had the highest scores according to the MCC algorithm.
The proteins corresponding to these nodes are cheA, flgB, flgC, fliG, fliI, motB, flaA, cheY,
fliM, lmo0693, lmo0700, flgK, flgL, flhA, flhB, fliD, fliP, lmo0681, lmo0698, sigB, and fliH.
More details about these proteins are included in Appendix D. Table A7 summarizes the
function of the protein corresponding to each of these nodes. It also specifies in which
individual networks each of the nodes is present. For example, two of the top twenty-one
nodes, sigB and flaA, are present in each of the three individual networks. Table A8 shows
the STRING functional enrichment annotations for the highest-ranked nodes. The GO
terms show that the combined network enriched genes related to biological processes,
cellular components, and molecular function and the KEGG pathways related to flagellar
assembly and bacterial chemotaxis.

4. Discussion

This study outlines a method to generate protein interaction networks using readily
available tools and resources. Three individual networks and a combined network were
created for stress response, virulence, and antibiotic resistance processes in Listeria monocy-
togenes. Each network was analyzed to identify the most highly interconnected proteins
and their functions, and the results were as follows. For the stress response network, the
key proteins are groEK, dnaK, lmo1138, clpP, grpE, dnaJ, and groES. The functions of these
proteins are summarized in Table A1 and the functional enrichment analysis from STRING
is summarized in Table A2. All these proteins have been previously associated with the
stress response in Listeria monocytogenes: dnak, dnaJ, groEL, groES, and grpE are chaperone
proteins involved in the temperature stress response [32,33], and clpP and lmo1138 are
involved in the degradation of misfolded proteins in the acid response [34,35].

For the virulence network, the key proteins are sigB, cheA, flaA, fliI, flgL, fliP, motB,
cheY, lmo0681, and lmo0693. The functions of these proteins are summarized in Table A3,
and the functional enrichment analysis from STRING is summarized in Table A4. Nine of
these ten proteins have been previously associated with virulence in Listeria monocytogenes:
sigB is a sigma factor that contributes to the regulation of virulence gene expression [36];
cheA and cheY are chemotaxis proteins that signal flagellar motors [37]; flaA is the main
flagellin protein [38]; fliI, fliP, and flgL are involved in flagellum synthesis [38,39]; motB
is involved in motor control [39]; and lmo0681 is a flagellum synthesis regulator [40].
These proteins are primarily involved in motility-related functions, which are known to be
virulence factors in bacteria [41].

For the antibiotic resistance network, the key proteins are sigB, flaA, cheA, cheY,
lmo0693, fliM, lmo0700, flgB, flgC, fliG, fliH, lmo0698, fliD, flhB, flhA, flgK, and flgL. The
functions of these proteins are summarized in Table A5, and the functional enrichment
analysis from STRING is summarized in Table A6. Sixteen of these seventeen proteins
are involved with chemotaxis and motility-related functions [42] and are not typically
associated with antibiotic resistance. However, there are links between these functions
and antibiotic resistance. A previous study found that chemotaxis and motility genes
are over-expressed in Listeria monocytogenes strains in which penicillin-binding and other
antibiotic response genes are also over-expressed [42]. The motility-related proteins flaA,
flgB, and flgC play a role in biofilm formation and have been shown to be upregulated in
response to bactericides [43,44]. Lastly, it has been shown that bacteria in biofilm exhibit
increased antibiotic resistance compared to planktonic cells [45]. These observations and the
results of this analysis support further studying of the role of these chemotaxis and motility-
related proteins in relation to antibiotic resistance. The full antibiotic resistance network,
Table S3, also contains multiple known resistance proteins. For example, the results include
fosX, which confers fosfomycin resistance [19]; eight pencillin-binding proteins (lmo0441,
lmo0550, lmo1438, lmo1855, lmo1916, lmo2229, lmo2754, and lmo2812) and two proteins
involved in the regulatory network (fri, lisR), all related to cephalosporin resistance [46];
msrA, which confers macrolide and streptogramin B resistance [47]; and gyrA, lmo2089,
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and lmo2741, that all confer resistance to fluoroquinolones [47,48]. However, these were
not determined to be highly interconnected nodes in the network.

For the combined network, the key proteins are cheA, flgB, flgC, fliG, fliI, motB,
flaA, cheY, fliM, lmo0693, lmo0700, flgK, flgL, flhA, flhB, fliD, fliP, lmo0681, lmo0698,
sigB, and fliH. The functions of these proteins are summarized in Table A7, and the
functional enrichment analysis from STRING is summarized in Table A8. They are generally
responsible for motility, chemotaxis, and protein transport and secretion.

Across the three individual networks there are a total of twenty-eight unique proteins
(cheA, cheY, clpP, dnaJ, dnaK, flaA, flgB, flgC, flgK, flgL, flhA, flhB, fliD, fliG, fliH, fliI, fliM,
fliP, groEL, groES, grpE, lmo0681, lmo0693, lmo0698, lmo0700, lmo1138, motB, and sigB).
Two of the highest ranked proteins (sigB and flaA) are present in all three networks. The
protein sigB is known to play a role in the regulation of the general stress response and
virulence in Listeria monocytogenes [7,18,49], and this analysis demonstrates that sigB is also
a key protein in the antibiotic resistance network. The protein flaA is a flagellar motility
gene involved in biofilm formation [50]. It is highly interconnected in both the virulence
and antibiotic resistance networks and is also involved in stress response. Lastly, there are
three proteins, cheA, cheY, lmo0693, that are present in the top nodes for the virulence and
antibiotic resistance networks.

Prior studies have investigated the key genes and proteins in the stress response [18,49],
virulence [7,11,19,51], and antibiotic resistance [26] of various microorganisms. This work
analyzes all three processes and their interaction as targets to combat Listeria monocytogenes.
To the best of the authors’ knowledge, this is the first work to create and analyze a protein
interaction network for antibiotic resistance and for the combined processes of stress
response, virulence, and antibiotic resistance. In addition, while previous works have
described genes and proteins for stress response and virulence, this work expands on those
results by identifying a larger network of proteins and the key targets within the network.
For example, Hecker et al. identified nine genes (sigB, gadCB, gadD, bsh, opuC, bilE,
inlA, inlB, prfA) involved in the stress response in L. monocytogenes [18], while this work
identifies seven key proteins expressed by different genes. Rantsiou et al., identified seven
virulence factors (plcA, iap, hly, prfA, plcB, mpl, and actA) in L. monocytogenes [7], while
this work identifies ten different key proteins expressed by different genes.

The results presented here provide the basis for further work to improve food preser-
vation methods to reduce the prevalence of L. monocytogenes in food supply; decrease
virulence to limit the severity of infections for people exposed to L. monocytogenes; and
mitigate against the risk of antibiotic resistance in L. monocytogenes by identifying new
treatments and synergistic compounds to maintain the effectiveness of current treatments
for people infected by L. monocytogenes. New inhibitors for these target proteins can be
evaluated using methods previously described in the literature [8,52]. An improvement
in even a single area can have a positive outcome on the control of L. monocytogenes. For
example, anti-virulence drugs can be developed to target virulence factors and used as
alternatives to antibiotic treatments [53,54].

While this analysis has identified several protein targets for further study, there are
potential disadvantages to the method. One disadvantage is that results may not include
all known key proteins for Listeria monocytogenes, or they may not be highly ranked within
the network. For example, prfA (lmo0200) is a known bacterial transcription factor that
controls the expression of key virulence factors [51], but it was not highly interconnected
within the network and therefore not included in the list of key proteins determined via
the analysis. Additionally, STRING includes proteins in the network based on direct and
indirect interactions in its database. Another disadvantage is that highly ranked proteins
included in the network based on indirect interactions may not actually be key proteins for
the biological process represented by the network. These disadvantages can be mitigated
during the manual curation step by including or excluding specific proteins. Another path
for further study of the networks generated in this analysis is to identify key proteins from
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other studies that were not included. The networks can then be manually curated and
analyzed with these proteins included.

5. Conclusions

Listeria monocytogenes is a deadly and costly foodborne pathogen that is difficult
to control and a significant concern for the food industry. Current methods to combat
the pathogen can be improved through a better understanding of the processes of stress
response, virulence, and antibiotic resistance and their interaction. The key proteins for
these processes were determined through the creation and analysis of individual and
combined protein interaction networks. Across the three individual networks, twenty-eight
key proteins were identified (cheA, cheY, clpP, dnaJ, dnaK, flaA, flgB, flgC, flgK, flgL,
flhA, flhB, fliD, fliG, fliH, fliI, fliM, fliP, groEL, groES, grpE, lmo0681, lmo0693, lmo0698,
lmo0700, lmo1138, motB, and sigB). While all of these proteins are potential targets for new
methods to combat L. monocytogenes, five of the twenty-eight proteins (sigB, flaA, cheA,
cheY, and lmo0693) represent the most promising targets because they are key proteins in
the combined network. These results provide a starting point for further work to identify
new strategies to improve food preservation methods and treatments for L. monocytogenes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11040930/s1, Table S1: stress response network;
Table S2: virulence network; Table S3: antibiotic resistance network; Table S4: combined network.
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Appendix A

Additional information for highest ranked proteins from the stress response network.

Table A1. Summary of top 7 nodes for stress response.

Rank Node Function

1 groEL
60 kDa chaperonin; prevents misfolding and promotes the refolding and
proper assembly of unfolded polypeptides generated under stress
conditions.

2 dnaK Heat shock 70 kDa protein; acts as a chaperone.

3 lmo1138

ATP-dependent Clp protease proteolytic subunit; cleaves peptides in
various proteins in a process that requires ATP hydrolysis; has a
chymotrypsin-like activity; plays a major role in the degradation of
misfolded proteins; belongs to the peptidase S14 family.

4 clpP

ATP-dependent Clp protease proteolytic subunit; cleaves peptides in
various proteins in a process that requires ATP hydrolysis; has a
chymotrypsin-like activity; plays a major role in the degradation of
misfolded proteins; belongs to the peptidase S14 family.

https://www.mdpi.com/article/10.3390/microorganisms11040930/s1
https://www.mdpi.com/article/10.3390/microorganisms11040930/s1
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Table A1. Cont.

Rank Node Function

5 grpE

HSP-70 cofactor; participates actively in the response to hyperosmotic and
heat shock by preventing the aggregation of stress-denatured proteins, in
association with DnaK and GrpE; it is the nucleotide exchange factor for
DnaK and may function as a thermosensor; unfolded proteins bind initially
to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes
its bound ATP, resulting in the formation of a stable complex; GrpE
releases ADP from DnaK; ATP binding to DnaK triggers the release of the
substrate protein, thus completing the reaction cycle; several rounds of
ATP-dependent interactions between DnaJ, DnaK, and GrpE are required
for fully efficient folding.

6 dnaJ

Chaperone protein DnaJ; participates actively in the response to
hyperosmotic and heat shock by preventing the aggregation of
stress-denatured proteins and by disaggregating proteins, also in an
autonomous, DnaK-independent fashion; unfolded proteins bind initially
to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes
its bound ATP, resulting in the formation of a stable complex; GrpE
releases ADP from DnaK; ATP binding to DnaK triggers the release of the
substrate protein, thus completing the reaction cycle; several rounds of
ATP-dependent interactions between DnaJ, DnaK, and GrpE are required
for fully efficient folding; also involved, together with DnaK and GrpE, in
the DNA replication of plasmids through the activation of initiation
proteins.

7 groES 10 kDa chaperonin; binds to Cpn60 in the presence of Mg-ATP and
suppresses the ATPase activity of the latter

Table A2. STRING functional enrichment analysis for top 7 nodes for stress response.

Category Description Proteins p-Value

GO Molecular
Function Unfolded protein binding dnaJ, dnaK, grpE,

groEL, groES 1.65 × 10−11

GO Molecular
Function Heat shock protein binding dnaJ, dnaK 3.04 × 10−5

GO Molecular
Function Chaperone binding grpE, groES 3.04 × 10−5

GO Molecular
Function Protein binding dnaJ, dnaK, grpE,

groEL, groES, clpP 4.91 × 10−10

GO Biological
Process Protein folding dnaJ, dnaK, grpE,

groEL, groES 3.36 × 10−10

GO Biological
Process

Chaperone cofactor-dependent
protein refolding

dnaJ, dnaK, groEL,
groES 8.61 × 10−10

GO Biological
Process Protein refolding dnaJ, dnaK, groE 1.05 × 10−6

KEGG Pathways RNA degradation dnaK, grpE, groEL 3.49 × 10−5

Appendix B

Additional information for highest ranked proteins from the virulence network.
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Table A3. Summary of top 10 nodes for virulence.

Rank Node Function

1 sigB
RNA polymerase sigma factor; sigma factors are initiation factors that
promote the attachment of RNA polymerase to specific initiation sites and
are then released.

2 cheA

Chemotaxis protein CheA; involved in the transmission of sensory signals
from the chemoreceptors to the flagellar motors; CheA is
autophosphorylated; it can transfer its phosphate group to either CheB or
CheY (by similarity).

3 flaA Flagellin; flagellin is the subunit protein which polymerizes to form the
filaments of bacterial flagella.

4 fliI Involved in type III protein export during flagellum assembly

5 flgL Lmo0706 protein; with FlgK, acts as a hook filament junction protein to join
the flagellar filament to the hook; belongs to the bacterial flagellin family.

5 fliP FliP, with proteins FliQ and FliR, forms the core of the central channel in
the flagella export apparatus.

7 motB Not available.

8 cheY
Chemotaxis protein CheY; involved in the transmission of sensory signals
from the chemoreceptors to the flagellar motors; CheY seems to regulate
the clockwise (CW) rotation (by similarity).

8 lmo0681 Lmo0681 protein; positive regulator of class III flagellar genes.

10 lmo0693 Not available.

Table A4. STRING functional enrichment analysis for top 10 nodes for virulence.

Category Description Proteins p-Value

GO Biological
Process Locomotion fliP, motB, flaA, cheY,

cheA, lmo0693, flgL, fliI 1.48 × 10−14

GO Biological
Process

Archaeal or bacterial-type
flagellum-dependent cell motility

fliP, motB, flaA, cheY,
lmo0693, flgL, fliI 1.23 × 10−12

GO Biological
Process

Bacterial-type
flagellum-dependent cell motility

fliP, flaA, lmo0693, flgL,
fliI 1.46 × 10−8

GO Biological
Process Chemotaxis motB, cheY, cheA,

lmo0693 9.88 × 10−8

GO Biological
Process Localization fliP, lmo0681, motB, flaA,

cheY, lmo0693, flgL, fliI 1.76 × 10−5

GO Biological
Process

Bacterial-type flagellum
organization fliP, lmo0681, fliI 3.89 × 10−5

GO Biological
Process Protein transport fliP, lmo0681, fliI 2.60 × 10−4

GO Biological
Process Protein secretion fliP, fliI 5.90 × 10−4

GO Cellular
Component Bacterial-type flagellum fliP, flaA, lmo0693, flgL 7.58 × 10−7

GO Cellular
Component

Bacterial-type flagellum basal
body fliP, lmo0693 0.0011

KEGG
Pathways Flagellar assembly fliP, motB, flaA, lmo0693,

flgL, fliI, sigB 3.04 × 10−12

KEGG
Pathways Bacterial chemotaxis motB, cheY, cheA,

lmo0693 5.23 × 10−7
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Appendix C

Additional information for highest ranked proteins from the antibiotic resistance
network.

Table A5. Summary of top 17 nodes for antibiotic resistance.

Rank Node Function

1 sigB
RNA polymerase sigma factor; sigma factors are initiation factors that
promote the attachment of RNA polymerase to specific initiation sites and
are then released.

2 flaA Flagellin; flagellin is the subunit protein which polymerizes to form the
filaments of bacterial flagella.

3 cheA

Chemotaxis protein CheA; involved in the transmission of sensory signals
from the chemoreceptors to the flagellar motors; CheA is
autophosphorylated; it can transfer its phosphate group to either CheB or
CheY (by similarity).

4 cheY
Chemotaxis protein CheY; involved in the transmission of sensory signals
from the chemoreceptors to the flagellar motors; CheY seems to regulate
the clockwise (CW) rotation (by similarity).

4 lmo0693 Not available.

4 fliM Lmo0699 protein; with FliG and FliN, it makes up the switch complex
which is involved in switching the direction of the flagella rotation.

4 lmo0700 One of three proteins involved in switching the direction of the flagellar
rotation.

8 flgB
Flagellar basal body rod protein FlgB; structural component of flagellum,
the bacterial motility apparatus; part of the rod structure of flagellar basal
body.

8 flgC Flagellar basal-body rod protein FlgC; with FlgF and B, it makes up the
proximal portion of the flagellar basal-body rod.

8 fliG One of three proteins involved in switching the direction of the flagellar
rotation.

8 fliH Lmo0715; binds to and inhibits the function of flagella-specific ATPase FliI

12 lmo0698 One of three proteins involved in switching the direction of the flagellar
rotation.

13 fliD

Flagellar hook-associated protein 2; required for morphogenesis and for
the elongation of the flagellar filament by facilitating polymerization of the
flagellin monomers at the tip of the growing filament; forms a capping
structure, which prevents flagellin subunits (transported through the
central channel of the flagellum) from leaking out without polymerization
at the distal end.

14 flhB Membrane protein responsible for substrate specificity switching from
rod/hook-type export to filament-type export.

14 flhA Membrane protein involved in the flagellar export apparatus.

14 flgK Flagellar hook-associated protein 1; with FlgL acts as a hook filament
junction protein to join the flagellar filament to the hook.
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Table A6. STRING functional enrichment analysis for top 17 nodes for antibiotic resistance.

Category Description Proteins p-Value

GO Biological
Process Locomotion

flhB, flhA, flaA cheY, cheA,
lmo0693, lmo0698, fliM,
lmo0700, flgK, flgL, fliD,
flgB, flgC, fliG

5.24 × 10−27

GO Biological
Process

Archaeal or bacterial-type
flagellum-dependent cell
motility

flhB|, flhA, flaA, cheY,
lmo0693, lmo0698, fliM,
lmo0700, flgK, flgL, fliD,
flgB,
flgC, fliG

3.27 × 10−25

GO Biological
Process

Bacterial-type
flagellum-dependent cell
motility

flhB, flhA, flaA, lmo0693,
lmo0698, fliM, lmo0700,
flgK, flgL, fliD, flgB, flgC,
fliG

3.58 × 10−23

GO Biological
Process

Bacterial-type flagellum
organization

flhB, flhA, fliM, lmo0700,
flgK, flgC, fliG, fliH 3.07 × 10−13

GO Biological
Process Chemotaxis

cheY, cheA, lmo0693,
lmo0698, fliM, lmo0700,
fliG

1.83 × 10−12

GO Biological
Process

Bacterial-type flagellum
assembly

flhB, flhA, fliM, lmo0700,
flgK, flgC, fliG 6.63 × 10−12

GO Biological
Process

Bacterial-type
flagellum-dependent swarming
motility

flhB, flhA, fliM, lmo0700,
flgC, fliG 4.05 × 10−10

GO Biological
Process Cellular process

flhB, flhA, flaA, cheY, cheA,
lmo0693, lmo0698, fliM,
lmo0700, flgK, flgL, fliD,
flgB, flgC, fliG, fliH, sigB

1.60 × 10−4

GO Cellular
Component Bacterial-type flagellum

flaA, lmo0693, lmo0698,
fliM, lmo0700, flgK, flgL,
fliD, flgB, flgC, fliG

3.57 × 10−19

GO Cellular
Component

Bacterial-type flagellum basal
body

lmo0693, lmo0698, fliM,
lmo0700, flgB, flgC, fliG 4.43 × 10−12

GO Cellular
Component Bacterial-type flagellum hook flgK, flgL, fliD, flgC 2.66 × 10−7

GO Cellular
Component

Bacterial-type flagellum
filament flaA, fliD 1.90 × 10−4

GO Cellular
Component

Bacterial-type flagellum basal
body, rod flgB, flgC 1.90 × 10−4

GO Cellular
Component Extracellular region flaA, flgK, flgL, fliD 0.0017

GO Molecular
Function Motor activity lmo0693, lmo0698, fliM,

lmo0700, fliG, fliH 4.55 × 10−11

KEGG
Pathways Flagellar assembly

flhB, flhA, flaA, lmo0693,
lmo0698, fliM, lmo0700,
flgK, flgL, fliD, flgB, flgC,
fliG, fliH, sigB

5.24 × 10−27

KEGG
Pathways Bacterial chemotaxis

cheY, cheA, lmo0693,
lmo0698, fliM, lmo0700,
fliG

2.71 × 10−11
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Appendix D

Additional information for highest ranked proteins from the combined network.

Table A7. Summary of top 21 nodes for the combined network.

Rank Node Networks 1 Function

1 cheA V, AR

Chemotaxis protein CheA; involved in the transmission
of sensory signals from the chemoreceptors to the
flagellar motors; CheA is autophosphorylated; it can
transfer its phosphate group to either CheB or CheY (by
similarity).

2 flgB AR

Flagellar basal-body rod protein FlgB; structural
component of flagellum, the bacterial motility
apparatus; part of the rod structure of flagellar
basal-body.

2 flgC AR
Flagellar basal-body rod protein FlgC; with FlgF and B
makes up the proximal portion of the flagellar
basal-body rod.

2 fliG AR One of three proteins involved in switching the
direction of the flagellar rotation.

2 fliI V Involved in type III protein export during flagellum
assembly.

2 motB V Not available.

7 flaA S, V, AR Flagellin; flagellin is the subunit protein which
polymerizes to form the filaments of bacterial flagella.

8 cheY V, AR

Chemotaxis protein CheY; involved in the transmission
of sensory signals from the chemoreceptors to the
flagellar motors; CheY seems to regulate the clockwise
(CW) rotation (by similarity).

8 fliM AR
Lmo0699 protein; with FliG and FliN, it makes up the
switch complex which is involved in switching the
direction of the flagella rotation.

8 lmo0693 V, AR Not available.

8 lmo0700 AR One of three proteins involved in switching the
direction of the flagellar rotation.

12 flgK AR
Flagellar hook-associated protein 1; with FlgL, it acts as
a hook filament junction protein to join the flagellar
filament to the hook.

12 flgL V, AR
Lmo0706 protein; with FlgK, it acts as a hook filament
junction protein to join the flagellar filament to the hook;
belongs to the bacterial flagellin family.

12 flhA AR Membrane protein involved in the flagellar export
apparatus.

12 flhB AR
Membrane protein responsible for substrate specificity
switching from rod/hook-type export to filament-type
export.

12 fliD AR

Flagellar hook-associated protein 2; required for
morphogenesis and for the elongation of the flagellar
filament by facilitating polymerization of the flagellin
monomers at the tip of the growing filament; forms a
capping structure, which prevents flagellin subunits
(transported through the central channel of the
flagellum) from leaking out without polymerization at
the distal end.
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Table A7. Cont.

Rank Node Networks 1 Function

12 fliP V FliP, with proteins FliQ and FliR, forms the core of the
central channel in the flagella export apparatus.

12 lmo0681 V Lmo0681 protein; positive regulator of class III flagellar
genes.

12 lmo0698 AR One of three proteins involved in switching the
direction of the flagellar rotation.

20 sigB S, V, AR

RNA polymerase sigma factor; sigma factors are
initiation factors that promote the attachment of RNA
polymerase to specific initiation sites and are then
released.

21 fliH AR Lmo0715; binds to and inhibits the function of flagella
specific ATPase FliI.

1 S = stress response network, V = virulence network, AR = antibiotic resistance network.

Table A8. STRING functional enrichment analysis for top 21 nodes for the combined network.

Category Description Proteins p-Value

GO Biological
Process Locomotion

fliP, flhB, flhA, motB, flaA,
cheY, cheA, lmo0693,
lmo0698, fliM, lmo0700,
flgK, flgL, fliD, flgB, flgC,
fliG, fliI

2.04 × 10−31

GO Biological
Process

Archaeal or bacterial-type
flagellum-dependent cell
motility

fliP, flhB, flhA, motB, flaA,
cheY, lmo0693, lmo0698,
fliM, lmo0700, flgK, flgL,
fliD, flgB, flgC, fliG, fliI

8.13 × 10−30

GO Biological
Process

Bacterial-type
flagellum-dependent cell
motility

fliP, flhB, flhA, flaA,
lmo0693, lmo0698, fliM,
lmo0700, flgK, flgL, fliD,
flgB, flgC, fliG, fliI

1.34 × 10−25

GO Biological
Process

Bacterial-type flagellum
organization

fliP, flhB, flhA, lmo0681,
fliM, lmo0700, flgK, flgC,
fliG, fliH, fliI

4.02 × 10−18

GO Biological
Process

Bacterial-type flagellum
assembly

fliP, flhB, flhA, fliM,
lmo0700, flgK, flgC, fliG,
fliI

5.99 × 10−15

GO Biological
Process Chemotaxis

motB, cheY, cheA, lmo0693,
lmo0698, fliM, lmo0700,
fliG

1.24 × 10−13

GO Biological
Process

Bacterial-type
flagellum-dependent swarming
motility

fliP, flhB, flhA, fliM,
lmo0700, flgC, fliG, fliI 3.31 × 10−13

GO Biological
Process Localization

fliP, flhB, flhA, lmo0681,
motB, flaA, cheY, lmo0693,
lmo0698, fliM, lmo0700,
flgK, flgL, fliD, flgB, flgC,
fliG, fliI

7.22 × 10−12

GO Biological
Process Protein secretion fliP, flhB, flhA, fliI 1.42 × 10−6
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Table A8. Cont.

Category Description Proteins p-Value

GO Biological
Process Protein transport fliP, flhB, flhA, lmo0681, fliI 7.73 × 10−6

GO Biological
Process Cellular process

fliP, flhB, flhA, lmo0681,
motB, flaA, cheY, cheA,
lmo0693, lmo0698, fliM,
lmo0700, flgK, flgL, fliD,
flgB, flgC, fliG, fliH, fliI,
sigB

1.99 × 10−5

GO Cellular
Component Bacterial-type flagellum

fliP, flaA, lmo0693,
lmo0698, fliM, lmo0700,
flgK, flgL, fliD, flgB, flgC,
fliG

9.12 × 10−20

GO Cellular
Component

Bacterial-type flagellum basal
body

fliP, lmo0693, lmo0698, fliM,
lmo0700, flgB, flgC, fliG 3.31 × 10−13

GO Cellular
Component Bacterial-type flagellum hook flgK, flgL, fliD, flgC 6.61 × 10−7

GO Cellular
Component

Bacterial-type flagellum
filament flaA, fliD 3.00 × 10−4

GO Cellular
Component

Bacterial-type flagellum basal
body, rod flgB, flgC 3.00 × 10−4

GO Molecular
Function Motor activity lmo0693, lmo0698, fliM,

lmo0700, fliG, fliH 1.96 × 10−10

GO Molecular
Function

Nucleoside-triphosphatase
activity

lmo0681, lmo0693, lmo0698,
fliM, lmo0700, fliG, fliH, fliI 8.98 × 10−6

KEGG
Pathways Flagellar assembly

fliP, flhB, flhA, motB, flaA,
lmo0693, lmo0698, fliM,
lmo0700, flgK, flgL, fliD,
flgB, flgC, fliG, fliH, fliI,
sigB

2.04 × 10−31

KEGG
Pathways Bacterial chemotaxis

motB, cheY, cheA, lmo0693,
lmo0698, fliM, lmo0700,
fliG

2.49 × 10−12
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