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Abstract: Mushrooms are capable of bioconverting organic residues into food. Understanding
the relationship between high-quality yields and substrate biomass from these residues is critical
for mushroom farms when choosing new strains. The objective of this exploratory study was,
therefore, to analyze whether exotic mushrooms, namely, Pleurotus eryngii, Flammulina velutipes, and
Agrocybe aegerita, could biologically convert the substrate into edible mushrooms as effectively as
Lentinula edodes (baseline). Five experiments were carried out. Biological efficiency, biodegradability
coefficient, mass balance and chemical characterization of the substrate were evaluated. Strategically
hydrating the sawdust enabled L. edodes to achieve the greatest biodegradability and biological
efficiency of 0.5 and 94.2 kg dt−1, respectively. The values for L. edodes on wheat straw without
hydration were 0.2 and 68.8 kg dt−1, respectively. From 1000 kg of fresh substrate, P. eryngii produced
150.1 kg of edible mushrooms, making it technically competitive with L. edodes on wheat straw
(195.9 kg). Hence, P. eryngii was the most reliable option for scaling among the exotic mushrooms.
The analytical insights from our study provide further knowledge to advance the field’s prominence
in high-throughput mushroom-producing systems, particularly for exotic mushrooms.
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1. Introduction

The Food and Agriculture Organization’s experts estimate that the world’s population
will be 10 billion people by 2050, and the agriculture and food security ecosystem must
be aware of the commitment, cooperation, and coordination necessary to effectively feed
people sustainably in the future [1]. Therefore, for every stakeholder [2], how to feed people
sustainably is humanity’s most fundamental challenge and will likely become harder to
solve in the near future with an increasing population and changing global climate.

Agricultural crops are influenced daily by abiotic and biotic factors [3]. One way to
reduce these impacts is to grow crops in protected environments but this is not always
possible. Crops that require large expanses of land or acreage of land, such as soybeans,
wheat and corn, are examples of this [4,5]. However other crops, such as horticultural
crops, and mushrooms are amenable to cultivation in protected environments. Mushrooms
are nutritious foods that provide vitamin D, minerals, dietary fiber, and protein and can
contribute to fulfilling the requirements for food and nutrient security of Agenda 2030
for Sustainable Development [6,7]. Some critical components found in mushrooms are
minerals and antioxidants that help to prevent hidden hunger, and some components
are medicinal.
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The global edible mushroom industry is structurally heterogeneous. It consists of an
extensive range of actors, kinds of production, and agribusiness models, from smallholder
farming to high-tech production systems [8,9]. The most commercially valuable genera of
mushroom-producing fungi worldwide are Agaricus spp. [7,10,11], Lentinula spp. [12], and
Pleurotus spp. [7].

Shiitake (L. edodes) ranks first in the world’s production of edible mushrooms [13].
Its mycelium can secrete lignin-degrading enzymes [14], making it capable of producing
fruiting bodies on wood or any similar artificial material that is cost effective [15]. Thus,
the traditional cultivation of shiitake on oak logs has been replaced in part by cultivation in
plastic bags with sterilized enriched sawdust since this method offers a higher biological
efficiency and a shorter cultivation cycle. Moreover, the feasibility of cultivating shiitake
in pasteurized straw offers a very important alternative since straw is generally an easily
accessible substrate [16].

Water availability during shiitake cultivation is probably the most important factor
influencing growth and fruiting body production [17]. At the end of the harvest of each
flush, blocks can be soaked in water to rehydrate the substrate and induce the development
of fruiting bodies for the next flush [18]. This method is frequently used since mycelial
growth compacts the substrate and hinders hydration of the samples by other means [16].

Pleurotus eryngii, Flammulina velutipes, and Agrocybe aegerita are exotic species cultivated
in Asia [7,19]. Similar to L. edodes, they produce of lignin-degrading enzymes. Hence, they
can grow on wood trunks and straw in nature. Most notably, they can adapt to a wide
range of commercial substrates or even agricultural, agro-industrial, or forestry waste,
recycling them into protein-rich biomass via biodegradation and biotransformation.

Tea waste [20], millet, rice, wheat, barley, oat straw [21,22], spent coffee grounds [23],
fruit peels [24], and food waste digestate [25,26] can serve as a raw base for cultivation
material. Each kind of material used will have an impact on production parameters, such as
mycelium run period, method of sterilization, total cultivation time, productivity, presence
of contaminants, and amount of mushroom waste.

The efficiency of production is related to reducing the generation of waste at the end
of the crop time and improving the production environment to achieve the highest and
best mushroom quality for a given substrate mass [21]. Intensive production of edible
mushrooms is often conducive to the occurrence of diseases and pests in fungus-growing
waste material, even if it is sterile and consists of a sufficient quantity of nutrients for
mycelial growth [27]. Thus, the level of waste generation and the quantity of mushrooms
produced must be carefully characterized.

The primary objective of our study was to analyze whether exotic mushrooms, namely,
P. eryngii, F. velutipes, and A. aegerita, could biologically convert lignocellulosic substrate
to edible mushrooms as effectively as the reference species, L. edodes. The secondary
objective was to compare the bioconversion of lignocellulose and other components of the
substrates by L. edodes in a growing system on pasteurized wheat straw-based substrates
without hydration.

2. Materials and Methods
2.1. Experimental Design

Four cultivated species of edible mushrooms were studied: L. edodes (Berk.) Pegler,
A. aegerita (V. Brig.) Vizzini, F. velutipes (Curtis) Singer, and P. eryngii (DC.) Quél. Lentin-
ula edodes was cultivated under two different growing systems: a sterilized substrate with
additional hydration, and a pasteurized substrate without hydration. Thus, five indepen-
dent growing cycles were carried out in experimental climate-controlled growing rooms.
Initially, the chemical characterization of the substrates in each experiment (Table S1, Sup-
plementary Material) was carried out in duplicate according to the methodology described
below. In each experiment, six bags of substrate were selected, which were weighed at the
beginning of the cycle, monitored for their productivity (biological efficiency), and weighed
again. Finally, the spent mushroom substrate of each bag was chemically characterized.
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Biological efficiency (BE, kg dt−1), a practical estimate of the ability of mushrooms to
convert substrate into fruiting bodies, was calculated according to Equation (1) [28]:

BE = (TWFM/DWS)·100 (1)

where TWFM is the total weight of fresh mushrooms harvested (kg), and DWS is the dry
weight of substrate (kg). The biodegradability coefficient (Km) was defined according to
Equation (2) [29]:

Km = OML/OMI (2)

where OML is the organic matter lost from the process (kg), and OMI is the organic
matter input into the process (kg). Mass balances were calculated based on the initial and
final weights of fresh substrates before and after the growing cycles and their analytical
composition was determined. The productivity of the different cultivated species, and the
composition of fruiting bodies were also assessed.

2.2. Individual Growing Cycle Description

The spawn used in all the experiments described below was prepared using wheat
grain supplemented with 2% CaCO3 for the different strains. The inoculation rate was 2%
(w/w) for all experiments.

In the first experiment testing L. edodes, the Fungisem S-5-3 strain (Fungisem Micelios
S.A., Autol, Spain) was inoculated on a sterilized sawdust-based commercial substrate. The
substrate was deposited in plastic bags with a 3.3 kg wet weight and incubated prior to
filling in the growing room. The substrates were then matured for 33 days (T 24 ± 1 ◦C; RH
85–90%; CO2 > 2000 ppm), after which they were immersed in water (24 h, 15 ◦C), followed
by fruiting induction (T 15–16 ◦C; RH 90%; CO2 800–1000 ppm; light 200–500 lux). The
mean weight of the bags after hydration was 5.4 kg bag−1. Before hydration, the plastic
bag was removed, and harvest began 43 days after filling. Two additional hydrations of
the substrate were performed between flushes. The total duration of the growth cycle was
95 days.

In the second experiment testing L. edodes, the same strain from the previous experi-
ment, Fungisem S-5-3, was used to inoculate a pasteurized wheat straw-based commercial
substrate. The substrate was deposited in plastic bags with a 17.4 kg wet weight and
incubated prior to filling in the growing room. After filling, fruiting induction conditions
were directly applied (T 16–18 ◦C; RH 85–90%; CO2 1000–1200 ppm, light 200–500 lux). To
induce flushing, the plastic bag was removed and harvest began 7 days later. The total
length of the growing cycle was 62 days.

In the third experiment testing P. eryngii, the Fungisem ER-24 strain (Fungisem Micelios
S.A., Autol, Spain) was used to inoculate a sterilized sawdust-based commercial substrate.
The substrate was deposited in plastic bags with a 3.1 kg wet weight and incubated prior
to filling in the growing room. After filling, the room was kept under vegetative growth
conditions for four days (T 22–23 ◦C; RH 90–95%; CO2 > 2000 ppm), after which fruiting
induction was carried out (T 16–17 ◦C; RH 85–90%; CO2 700–800 ppm; light 200–500 lux).
To induce flushing the plastic bag was cut superficially. Harvest began 13 days after filling,
and the total length of the growing cycle was 38 days.

In the fourth experiment (F. velutipes), the Gurelan FV strain (Gurelan Mycelium S.C.,
Huarte, Spain) was used to inoculate a sterilized sawdust-based commercial substrate. The
substrate was deposited in plastic bags with a 4.1 kg wet weight and incubated prior to
filling in the growing room. After filling, fruiting induction conditions were directly applied
(T 14–15 ◦C; RH 85–90%; CO2 1000–1200 ppm, light 200–500 lux). To induce flushing, the
plastic bag was cut superficially. Harvest began 17 days after filling, and the total length of
the growing cycle was 43 days.

In the fifth experiment testing A. aegerita, the Gurelan AA9 strain (Gurelan Mycelium
S.C., Huarte, Spain) was used to inoculate a sterilized sawdust-based commercial substrate.
The substrate was deposited in plastic bags with a 4.1 kg wet weight and incubated prior
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to filling in the growing room. After filling, the room was kept under vegetative growth
conditions for three days (T 22–23 ◦C; RH 90–95%; CO2 > 2000 ppm), after which fruiting
induction was carried out (T 15–16 ◦C; RH 85–90%; CO2 600–700 ppm; light 100–250 lux).
To induce flushing, the plastic bag was cut superficially. Harvest began 13 days after filling,
and the total length of the growing cycle was 51 days.

2.3. Chemical Analysis

To determine the chemical characteristics of the substrates, the following measure-
ments were taken: pH; moisture content; organic matter and ash; total N content and crude
protein; C/N ratio; crude fiber; crude fat; N-free extracts; total carbohydrates; acid deter-
gent fiber; neutral detergent fiber; cellulose, hemicellulose; lignin, and neutral detergent
soluble, following the methodology proposed by Zied et al. [30]. For the fruiting bodies,
the water content, dry matter, organic matter, and ash were also determined [31,32].

2.4. Data Analyses

The results are presented as diagrams to allow easy comparison of the fungi by
biodegradability and biological efficiency (bar plot), balance of mass (Sankey or flowchart),
and substrate composition at the beginning and the end of production (arrow plot). Further-
more, contour plotting was performed to model biodegradability upon proximal, structural,
and chemical properties changing with fungal cultivation, thus improving the illustration
and conveying major findings and novel results of our study. The data were analyzed in
the environment of the R-project for statistical computing and graphics.

3. Results and Discussion
3.1. Biodegradability and Biological Efficiency

By analyzing the obtained data on biodegradability and biological efficiency (Figure 1),
it can be observed that L. edodes with and without hydration effectively transformed both
woody (sawdust) and non-woody (wheat straw) substrates into harvestable masses of
mushrooms at 0.5 and 0.2 biodegradability, respectively (Figure 1A). Specifically, strategi-
cally introducing water into the system enabled the primary decomposer mushroom to
degrade organic matter with a higher biological efficiency (94.2 kg dt−1) than possible when
not hydrated (68.7 kg dt−1) through the mushroom-growing material. The physical environ-
ment for mycelial growth and fruiting varies between substrates. In the case of straw-based
substrates, their structure reduces the compaction effect during mycelial growth compared
with substrates based on sawdust, which facilitates its hydration by conventional irrigation.
In any case, immersion hydration increased the biodegradability of L. edodes by 58.3%
relative to that obtained with wheat straw substrate and conventional irrigation. This
increase was not only influenced by hydration but also by the substrate composition.

Comparatively, P. eryngii (Km = 0.2; BE = 39.6 kg dt−1) converted more substrate
into biomass, indicating that this species was the most effective exotic mushroom for
biotransformation, followed by F. velutipes (Km = 0.15; BE = 30.4 kg dt−1) and A. aegerita
(Km = 0.05; BE = 31.8 kg dt−1), based on biodegradability. A study by Fornito et al. [33]
on the degradative ability of mushrooms on silage consisting of corn reported incomplete
colonization of the substrate by A. aegerita. The mycelial network of the exotic fungus was
not capable of completely colonizing the substrate; thus, the bioconversion of labile C (an
unstable fraction of the total C pool in raw materials) into biomass decreased, as did the
biological efficiency, which is consistent with the lowest biodegradability of A. aegerita
in this study. P. eryngii achieved higher levels of biotransformation compared with both
F. velutipes and A. aegerita, making it technically comparable with L. edodes (Ref. II) in
biodegradability. An effective decomposer is likely to convert more organic matter into
mushrooms. However, the ability of fungi to biodegrade matter in our study could be
predicted from the significant positive correlation of 0.9 between biodegradability and
biological efficiency (Figure 1B). Some statistics not predicted the correlational model could
be attributable to the impact of either the substrate’s qualities (e.g., nutritional composition
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and raw materials used) or genetic aspects of the strains (e.g., hybrid or not and whether it
was adapted to the substrate).
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Figure 1. Biodegradability and biological efficiency of exotic mushrooms relative to L. edodes with
(Ref. I) and without (Ref. II) hydration as a supplementary level of management (A). The functional
relationship between the ability of mushrooms (L. edodes, A. aegerita, F. velutipes, and P. eryngii) to
transform matter into health-promoting, nutrient-dense biomass (B). The larger the bar, either of
biodegradability or biological efficiency, the greater the ability of the fungus to transform lignocellu-
losic substrate into a mass of edible mushrooms. Significance: * p-value < 0.05.

3.2. Sensitivity of the Substrate to Biotransformation

Mushrooms degrade the substrate matter and export part of the energy they require
for fruiting into a harvestable mass. With the support of microbial metabolism, they deplete
the substrate (Figure 2). By analyzing the composition of the substrate at the beginning and
the end of the cropping cycle, we could characterize the fungal biotransformation and how
the fungi influenced the biological process. The mushrooms biotransformed the matter in
distinctive ways, and the system shaped the performance both positively and negatively.
Shiitake (Ref. I) changed the proximal properties of the substrate, primarily by decreasing
organic matter (−46.2%), and by relative decreases in dry matter (−41.9%) and increases in
ash (4.7%) in the spent mushroom substrate, indicating mineralization.

The sawdust substrate (Figure 3A) consisted of 48.3 g kg−1 moisture, while the wheat
straw substrate (Figure 3B) consisted of 71.5 g kg−1 moisture. However, the cereal base was
likely denser in oxidisable organics (14.4 g kg−1 ash), enabling L. edodes to perform extensive
mineralization and increase the ash content in the residual wheat straw by 27.3%. Although
the wheat straw had greater mineralization than sawdust (Figure 2), it was not nutritionally
sufficient to support competitive production relative to sawdust with hydration. However,
it included larger amounts of cellulose (Figure 3B) and could provide carbohydrates as
sources of metabolisable energy [34] to support the appreciable production of shiitake.
Studies on producing shiitake on cereal by-products are preliminary, yet they provide
knowledge to progress the formulation of non-wood substrates.
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For instance, Yu et al. [35] studied the production of L. edodes in corncobs, stressing the
importance of using an alternative substrate to wood. Because the demand for woody raw
material is likely to exceed the supply in the coming years, the authors analyzed whether
the corncob could be useful as a cereal base in composite substrates to produce shiitake.
Substrates consisting of 50% corncob, 20% oak sawdust, 28% wheat bran, and 2% gypsum
resulted in the fastest mycelial growth of the fungus, the most appealing browning on the
log, and consequently, the largest production of fruiting bodies (722.1 g log−1) and highest
biological efficiency (80.2%).

The structural composition, regardless of the polymer, positively affected biodegrad-
ability. Cellulose and hemicellulose were more likely to contribute to enzymatic activity
than lignin, proving a predominantly cellulolytic biotransformation by F. velutipes and
A. aegerita, while both L. edodes and P. eryngii performed lignocellulolytic decomposition
(Figure 4).
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The comparative analysis of biodegradation of lignocellulose and other components
of substrates and the consequent bioconversion into fruiting bodies of different species of
edible fungi focuses on advancing knowledge for several practical applications: (i) mul-
tipurpose use of substrates with different species to simplify the work and reduce costs
in the substrate production facilities and raw material transport; (ii) recycling of spent
mushroom substrates into new substrates for either the same or different mushroom species
to allow a better use of the biomass; and (iii) optimization of substrate formulations by
using chemically complementary materials to maximize biodegradation and bioefficiency
in the production of fruiting bodies.

Edible mushrooms consist of a plethora of hydrolytic and ligninolytic enzymes, mak-
ing them capable of hydroxylation [19]. Enzymology determines both biodegradability and
biological efficiency when producing edible mushrooms on lignocellulosic substrates [36].
For instance, the mycelium of shiitake can secrete lignin-degrading enzymes, making it
capable of producing fruiting bodies on wood or any similar artificial material that is cost
effective [15].

The fungal biodegradation of lignin is an oxidative process [37], and phenol oxidases,
such as peroxidases in P. ostreatus or any similar white-rot fungus, are key enzymes [38–40].
While lignin peroxidases cleave non-phenolic units in lignin, manganese peroxidases can
generate Mn3+ as a diffusible oxidizer on phenolic and non-phenolic units in the polymer,
primarily via peroxidation [41,42]. Copper-oxidizing laccases can catalyze biodegradation
over phenolic and electron-rich substrates [43].

P. eryngii degraded more hemicellulose (−37.50%) and lignin (−23.1%) than cellulose
(−18.2%). In contrast, F. velutipes and A. aegerita degraded the cellulosic fraction of the
substrate, decreasing it by 31% and 16.8%, respectively, in the structural composition of the
residual material. Furthermore, neither species decomposed lignin, and thus, the content of
the polymer increased by 6.2% and 6.4% in the final substrate for F. velutipes and A. aegerita,
respectively (Table S1, Supplementary Material).

F. velutipes and A. aegerita both proved to be predominantly cellulolytic exotic mush-
rooms. Cellulolytic fungi can produce a battery of special enzymes, namely cellulases.
Cellulases, according to their type of enzymatic activity, can act as endoglucanases, cel-
lobiohydrolases, exoglucanases, or beta-glucosidases [40,44]. They are diverse and consist
of a wide range of functional proteins capable of hydrolyzing highly crystalline cellu-
lose [45]. The biodegradation of cellulose and hemicelluloses is likely to depend on similar
enzymes. However, hemicelluloses (e.g., pentoses and hexoses) are more heterogeneous
than celluloses and thus require more enzymes for effective degradation [46].

Xie et al. [47] studied the biodegradation by F. velutipes of a composite substrate
consisting of 50% ramie’s stalk, 20% cottonseed hull, 25% wheat bran, 4% corn starch,
and 1% CaCO3 and computed a value of 119.7% for biological efficiency. The fungus was
highly capable of degrading lignin (12.7–32%), cellulose (14.4–30.2%), and hemicellulose
(9.3–25.7%), and the enzymes laccase, peroxidase, cellulase, and hemicellulase catalyzed
the process. Laccase and peroxidase both acted more effectively than any other enzyme
until fruiting, while the cellulase, hemicellulose, and even ligninolytic enzymatic complex
determined the biodegradation after fruiting levelled off when the substrate reached a C/N
ratio of about 30:1.

3.3. Technical Feasibility of Mushroom-Producing Systems on the Balance of Mass

We designed our systems to be scalable. They consisted of the following key elements:
substrate, growing room, fruiting bodies, and waste. We quantified the water, organic
matter, and ash at every point to determine the balance of mass and identify which flows
could limit production. By computing the mass entering and leaving the physical systems,
we could compare them and uncover tractable problems of management. For instance,
by introducing 1000 kg substrate (48.3% water, 47.2% organic matter, and 4.5% ash) into
the system with an additional level of management by hydration (584 kg), we optimally
produced 488.2 kg of L. edodes, consisting of 92.6% water, 6.8% organic matter, and 0.6%
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ash (Figure 5). Although hydration maximized production, thereby resulting in the highest
biodegradability and biological efficiency, the room lost an intermediate quantity of mass
of 227.1 kg (20.5% water, 81.6% organic matter, and −2.10% ash) and generated 868.8 kg of
waste. Such values are important for the final designation of spent mushroom substrates
after mushroom production. The residual material from L. edodes (Ref. I) could be useful as
scaffolds for bioconstruction and green/clean engineering [48].
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The system producing L. edodes on a substrate consisting of wheat straw without
hydration yielded 195.9 kg of edible mushrooms, making it technically comparable to
systems focusing on P. eryngii (150.1 kg) (Figure 6); however, less than half this amount was
produced in the substrate with sawdust (Ref. I). This difference is due to the absence of
mycelial maturation, which in the substrate with sawdust is reached by a longer period of
mycelium run (browning process). Certainly, the mycelial layer resulted in less water loss
in the cultivation rooms (20.5%) relative to wheat straw (94.7%), although the cereal base
generated less waste (372 kg) (Figure 6).

In particular, P. eryngii, which had the highest biodegradability and biological efficiency
among the tested exotic mushrooms, generated 747.6 kg of spent substrate (57.6% water,
34.6% organic matter, and 7.8% ash), ranking it third in the production of waste. F. velutipes
generated 869.3 kg of waste (64.9% water, 30.1% organic matter, and 5% ash), ranking first,
while A. aegerita generated 828.2 kg of waste (65.6% water, 30.6% organic matter, and 3.8%
ash), placing it in second rank. The ranking by loss of material straight from the growing
room shifted to P. eryngii (102.3 kg; 59.1% water, 37.1% organic matter, and 3.8% ash),
A. aegerita (80.9 kg; 108.2% water, 2.9% organic matter, and −11.1% ash), and F. velutipes
(26 kg; 3.9% water, 118.5% organic matter, and −22.3% ash).

Interestingly, the lowest loss of water (3.9%) from F. velutipes was even lower than
that from L. edodes (Ref. I) with mature mycelium (20.5%). This suggests a specific cellu-
lar characteristic of the F. velutipes mycelium, which could be due to some biochemical
compound or morphological structure that reduces/prevents the evaporation of water,
since the cultivation time was intermediate (43 days) between P. eryngii (38 days) and
A. aegerita (51 days). Future studies can be developed to elucidate these mechanisms in
F. velutipes, which demonstrates a high potential for biotechnological application. It would
be promising to introduce this/these gene(s) into other edible and medicinal mushroom
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species to reduce the amount of water applied to the cultivation chambers throughout the
harvest cycle.
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According to the analysis of the proximal composition of the mushrooms, A. aegerita
concentrated more water (91.1%) but less organic matter (8%) than the other species.
P. eryngii proved the least effective at concentrating water (86.7%), which allows a longer
shelf life for commercialization. F. velutipes had an intermediate water content (87%) and
concentrated organic matter (12%) as effectively as P. eryngii. We found a similar trend
for ash, which ranged from 0.9% for both P. eryngii and A. aegerita to 1% for F. velutipes,
although the exotic mushrooms distinctly mineralized the substrate.

Overall, among the exotic mushrooms, P. eryngii produced the largest quantity of
fruiting bodies. Additionally, it generated the lowest quantity of waste, potentially making
it easier to handle the downstream, whether for recycling or reuse as a base for the for-
mulation of new substrates to enable cheaper, cleaner, and safer production. F. velutipes
and A. aegerita had lower biodegradability. The larger portion of ash (non-combustible)
in the waste could make it challenging to reuse waste (SMS) as an alternative feedstock
for bioenergy.

4. Conclusions

By hydrating through the substrate, we enhanced the growth of L. edodes on sawdust;
however, it generated a larger quantity of waste after mushroom cultivation. P. eryngii
could be technically comparable to L. edodes without hydration, making it the most reliable
option for scaling exotic mushrooms. This fungus demonstrated lignocellulolytic activity
by decomposing structural polymers as a whole, similar to L. edodes. In contrast, A. aegerita
and F. velutipes could not degrade lignin, indicating that these are both predominantly
cellulolytic microorganisms. Analytical insights into biodegradability and how exotic
mushrooms and substrates can interact to determine the breakdown of biomolecules are



Microorganisms 2023, 11, 897 11 of 13

timely and will likely improve decision-making on biomaterials and strains to address
particular demands of microbial metabolism.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11040897/s1; Table S1: Balance of mass in the
systematic cultivation of L. edodes and exotic fungi capable of producing edible mushrooms.
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