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Abstract: The extent of tick-borne diseases (TBDs) in the United States is largely unknown and under-
reported. Equitable diagnostic and treatment options may vary by geographic location. Triangulating
multi-modal data sources informed by a One Health approach provides robust proxies for human
TBD risk. Using data from the Indiana Department of Natural Resources collected from hunters
during the white-tailed deer (Odocoileus virginianus) hunting season and other sources, we employ a
mixed-methods approach based on thematic mapping and mixed effects modelling to determine if
deer population density aligns with official disease data at the county level from (1) positive canine
serological reports for, anaplasmosis, and Lyme Disease (LD); (2) positive human cases of ehrlichiosis,
anaplasmosis, LD, and Spotted Fever rickettsioses; and (3) tick infectivity. We propose the need
for multimodal data analysis using a variety of potential proxies to better estimate disease risk and
inform public health policy and practice. We find similar spatial distributions between deer popu-
lation density and human and canine TBDs in northeastern and southern Indiana, which are rural
and mixed geographic areas. Overall, LD is more prevalent in the northwest, central-western, and
southeastern counties, while ehrlichiosis is more common in the southern counties. These findings
hold true across humans, canines, and deer.

Keywords: tick-borne disease surveillance; Lyme disease; white-tailed deer; wildlife population density

1. Introduction
1.1. Tick-Borne Diseases: Pathogens and Hosts

The field of disease ecology faces the challenge of linking ecological and epidemi-
ological approaches to better inform human disease risk from vector-borne diseases [1].
While vector-borne diseases are attributable to bacteria, viruses, and parasites transmitted
through the bites of ticks, mosquitoes, and fleas [2], the majority of vector-borne diseases in
the United States (U.S.) are spread by ticks; these Tick-Borne Diseases (TBDs) accounted
for 77% of the 642,602 cases reported to the Centers for Disease Control and Prevention
(CDC) between 2004 and 2016, consisting of 16 diseases, including Lyme Disease (LD),
Ehrlichiosis (EHR), and Spotted Fever Rickettsioses (SFR) [2]. The CDC notes that these
numbers reflect significant under-reporting, such that the true extent of LD and other TBDs
is largely undetermined and potentially underestimated [3,4]. Ixodes scapularis (I. scapularis)
ticks are known to be widespread in the eastern U.S. However, limited surveillance may
account for underreporting outside of the Northeast [5–7]; yet the geographic range of
I. scapularis is spreading rapidly, contributing to the increase in LD cases [6].

Passive tick surveillance is the primary framework for current public health system
and practice in the U.S., and relies on reporting of ticks found on people, livestock, or pets,
and identification of concomitant disease. Active tick surveillance entails direct collection
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of ticks from host animals, such as deer and other mammals. Both approaches are limited
by time involved in tick collection and testing, and could be improved with more detailed
documentation, identification of relevant tick habitats, and incorporation of proxy data
associated with TBD risk.

Vector-borne pathogen transmission is affected by a variety of factors from tick ecology, the
number of pathogens carried, their reservoirs, and hosts. White-tailed deer (Odocoileus virginianus)
serve as primary reservoir hosts for Ehrlichia chaffeensis (E. chaffeensis), which is the pathogen
that causes human monocytic ehrlichiosis (HME) [8]. The cycle of tick transmission involves
feeding on infected reservoir hosts and then transmitting Borrelia burgdorferi (Bb) to the
host [9]. White-tailed deer (also referred to in this article simply as “deer”) present differing
roles as non-competent hosts for LD, but primary hosts for the adult ticks that carry
Lyme disease [10]. Unlike small mammals, deer are not reservoirs for LD in particular,
but rather are inadvertent hosts. Deer are also noted as important hosts for E. ewingii,
another pathogen found in humans and canines, transmitted by the Lonestar tick, as
well as the Blacklegged Tick Ixodes scapularis [11]. The role of wildlife in the circulation
of Anaplasma phagocytophilum has yet to be clearly determined, but several species of
wild ruminants, including deer, have been considered by some researchers as possibly
important reservoirs [12,13]. A natural opportunity for assessing deer density and disease
risk occurred on a small island in Denmark, where deer density plummeted following an
epidemic; human Lyme neuroborreliosis cases declined in tandem with the host and tick
reduction [14]. Despite their resilience to contracting LD, deer nonetheless serve as large
“mobile hosts” for pathogen-carrying ticks such as I. scapularis infected with bb or other
bacterial agents [15].

Ixodes scapularis ticks responsible for transmitting LD have a broad range of potential
hosts—including lizards, rodents, and deer—that may cross paths and transmit infected
ticks to humans and/or their pets. The complex feeding cycle of ticks often involves
multiple feeding and egg-laying rounds on their deer or rodent hosts before transmission
of pathogenic bacteria to a susceptible host; these cycles are impacted by factors such as
vegetation, ecological suitability, and a variety of environmental considerations.

However, to date, extant research has not provided definitive resolutions for deter-
mining ecological factors associated with human TBD risk. Studies combining ecological,
entomological, zoological, and human epidemiological data are scarce. However, impor-
tantly, “more targeted tick and pathogen surveillance coupled with studies of human and
tick behavior could improve understanding of key risk factors and inform public health
interventions.” [1].

Noting the gaps in the literature, we introduce a promising approach for determining
and informing efforts for monitoring human TBD risk, adopting a broad application of
the One Health model, which is interdisciplinary and focuses on the interconnections
between humans and animals. Within the One Health Model approach, we draw upon
recent research that incorporates triangulation of various fauna-related disease risk proxies
to inform public health practitioners and officials about human disease risk by ecosystem
and different spatial levels of analysis [16–18]. These efforts are of particular importance
and used in areas where medical practitioners may be unfamiliar with related disease pre-
sentations or lack access to adequate disease surveillance (e.g., outside of the northeastern
U.S. region). In states such as Indiana, education levels and access to care vary widely
across rural and metropolitan areas.

This research was guided by a basic question: Does deer population density align
with official disease data at the county level? Principal data included (1) human cases
of ehrlichiosis, anaplasmosis, Lyme disease, and Spotted Fever Rickettsioses; (2) canine
serological reports on ehrlichiosis, anaplasmosis, and Lyme disease; and (3) tick infectivity
incidence and levels. We explored these data and related issues using both descriptive
statistics to provide estimated associations and means, and mapping to enable visualization
and interpretation of spatial trends.
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1.2. Assessment of Human TBD Risk

Next to mosquitoes, ticks are the most common parasitic disease vector in the world
and, in the U.S., ticks are the most prevalent vector for infectious disease, responsible for
LD, Rocky Mountain spotted fever and Spotted Fever Rickettsiosis (SFR), Anaplasmosis
(ANA), southern tick associated rash illness, and a number of other serious diseases.
Active TBD diagnosis, monitoring, and surveillance remain limited by data gaps and
time, geography, equipment, funding, and testing opportunities. Carbon dioxide (CO2)
trapping, removal of ticks from hosts such as deer, birds, lizards, or small mammals, and
dragging surveys to collect ticks from their natural environments are some of the most
common collection, monitoring, and active surveillance strategies. Although repeated
visits and collection provide greater precision in estimating tick density and identifying
disease, the limitations are many, including personal risk, securing permits, or identifying
suitable habitats. Moreover, these techniques are designed to acquire in situ ticks, and
so may be less representative of the tick populations and habitats where most humans
are infected with TBDs. Active tick surveillance outcomes also are affected by the sample
techniques, such as CO2 trapping, rodent collection, or dragging [19]. In a study of ticks in
Southern Indiana, tick presence and species were affected by sampling methods as well
as climate [19]. To date, and with over 3100 counties and municipalities in the U.S., the
information sourced from both active and passive surveillance does not fully inform public
health disease prevention, estimation, or intervention.

Passive surveillance that extends beyond simple reporting to public health agencies
has the potential to provide further evidence-based, timely, and geographically salient
information to medical practitioners, the public, patients, and public health officials. Specif-
ically, the promising use of data proxies, based on, for example, canine, livestock, or other
wildlife data can help inform human disease risk at the local level [16–18].

1.3. Deer Density and Tick-Borne Disease Risk

Deer have been evaluated for their role in spreading tick-borne pathogens, including
LD. Deer hosts are not susceptible to Bb infection and, therefore, may dilute the prevalence
of these related pathogens and thus reduce infectivity of ticks that feed on them [20].
Conversely, high deer density has the capacity to contribute to disease risk by sustaining
a high nymphal tick population [20]. Deer are known to serve as a solid host for blood
feeding, even if not suitable reservoirs for Bb [21,22].

Higher densities of I. scapularis are found in more forested areas [23], which is where
higher levels of deer population density occur and, thus, likely have a higher likelihood
of serving as hosts. Deer populations increase the spatial distribution of ticks given that
deer habitats serve as primary breeding grounds for wintering tick eggs, even if the deer
hosts do not directly spread disease [24]. Adult ticks tend to be more common on deer
overall; moreover, adults ticks are less-successful vectors for transmitting LD, as they are
more easily detected and removed by their human hosts [24]. Although deer may play a
role in the tick life cycle, studies point to a limited association of deer populations with
human TBD risk. Some research shows a an increase in LD rates that occurred decades after
increases in deer populations, or indicate an association between deer density and increased
ticks [25–28]. Nymphal tick populations were also found to be unaffected by increases
in white-tailed deer populations [29–31]. Recent research expands active surveillance by
assessing deer population movement by sex, differing times of day, and by seasons, finding
that deer have expansive reach into residential areas and backyards [32]. Overabundance
of deer is also found in areas of low LD risk [33,34].
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To date, considerable research on TBD risk is focused on Lyme disease. Scholarly
efforts to identify differences in TBDs and human disease risk associated with white-tailed
deer by local geographic areas are rare. With the overall purpose of ascertaining the
prevalence of deer populations relative to human TBD risk, we used Indiana as a case
study due to its detailed and transparent public health reporting, varied ecosystems, and
established and closely-monitored deer populations. Additionally, from a public health
perspective, Indiana populations vary, substantially in some counties, by educational
attainment and health indicators. Our work is informed by and builds upon research
incorporating statistical and thematic mapping of official public health-data using human
and canine reports of tick-borne diseases by county in Indiana [35]. Based on county-level
data, significant spatial variation has been found among ticks in studies conducted in
Indiana, showing that their range has been expanding into the Midwest over time, with an
increasing geographic prevalence particularly of I. scapularis in the region [23].

Related findings are compared to tick presence, including nymphal ticks, and deer
density proxies, by county in Indiana. Hunters, as reporters of “deer kills,” have served as
observers and checks on the deer population, assisting in building One Health multimodal
datasets for determining human disease risk.

1.4. Indiana Ecosystems and Deer

Medically important ticks are found throughout Indiana. For example, the American
Dog tick is present in all 92 counties, and is known to feed on a wide range of mammals,
including deer [36]. The Lonestar tick is found in moist woodlands throughout the state,
but primarily in the southern counties. I. scapularis is found throughout the state, with
adults feeding on deer and other mammals, and nymphal ticks acting as the primary vector
of LD transmission to human and canine hosts. The Brown Dog tick, although not native to
Indiana, is present in the state and is a known vector of canine EHR [36]. I. scapularis is an
increasing public health concern across the United States, as it is associated with multiple
pathogens such as Lyme disease, anaplasmosis, babesiosis, Borrelia miyamotoi disease,
Powassan virus disease, and ehrlichiosis, with LD accounting for more than 70 percent of
TBD cases [26]. Changes in Indiana’s ecosystems reveal expanding tick migration patterns
and disease risks due in large part to climate shifts and environmental changes. For
example, work by Keith Clay and his associates involving mapping tick boundaries and
disease risk in Indiana has shown that “just in the past 10 years, we are seeing things shift
considerably”. As Clay notes, “you used to never see lone star ticks in Indiana; now they
are very common.” [15].

Ecoregions are defined by spatial characteristics ranging from hydrology, geology,
wildlife, vegetation, and climate (Figure 1). Indiana has eight identified ecoregions contain-
ing diverse mixtures of prairies, marshes, dunes, forests, and streams. Within Indiana’s
ecosystems, smaller climate and vegetation divergences are notable. For example, within
the Central Cornbelt Plains, four separate smaller divisions provide a changing landscape
from prairie to marshes and swamp forests [37].
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Figure 1. Indiana Ecoregions by County.

2. Materials and Methods

Our analyses employ multi-modal databases in an effort to triangulate indicators that
may serve as proxies for human disease risk within the state of Indiana (Table 1). County-
level data included human TBD reports confirmed by positive serology and reported to the
State by medical practitioners; confirmed tick infectivity; deer density as defined by deer
mortality and observations; and canine cases of TBDs.

Table 1. Definition of variables and data sources. IDOH = Indiana Department of Health;
CAPC = Companion Animal Parasite Council; IDNR = Indiana Department of Natural Resources;
US = United States.

Variable Name Definition (4-Year Average between 2017 and 2020) 1 Data Source

Human LD Human LD rate per 100,000 people IDOH
Human SFR Human SFR rate per 100,000 people IDOH
Human EHR Human EHR rate per 100,000 people IDOH
Human ANA Human ANA rate per 100,000 people IDOH

Human EHRANA Human EHRANA rate per 100,000 people IDOH
Canine LD Canine LD rate per 100,000 people CAPC 2

Canine EHR Canine EHR rate per 100,000 people CAPC 2

Canine ANA Canine ANA rate per 100,000 people CAPC 2

Deer Observation The number of deer observations per hour IDNR 3

Deer Mortality The number of deer deaths by hunting and collision IDNR 3

Tick Infectivity The positive infection rate of Borrelia burgdorferi IDOH
County Population 4 2010 and 2020 Decennial US Censuses US Census 5

1 For information on Tick Infectivity indicators, please see description in Section 2.2; 2 CAPC: https://capcvet.org/
maps#/2020/all-year/lyme-disease/dog/united-states (accessed 15 December 2022); 3 IDNR: https://www.in.
gov/dnr/fish-and-wildlife/wildlife-resources/animals/white-tailed-deer/county-data/ (accessed 15 December
2022); 4 County populations as reported by the official US Decennial Censuses were used to convert frequencies
into rates (per 100,000 people); 5 U.S. Census: https://data.census.gov/ (accessed 15 December 2022).

https://capcvet.org/maps#/2020/all-year/lyme-disease/dog/united-states
https://capcvet.org/maps#/2020/all-year/lyme-disease/dog/united-states
https://www.in.gov/dnr/fish-and-wildlife/wildlife-resources/animals/white-tailed-deer/county-data/
https://www.in.gov/dnr/fish-and-wildlife/wildlife-resources/animals/white-tailed-deer/county-data/
https://data.census.gov/
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2.1. Data Acquisition

Specifically, five general datasets were consolidated for comparative analysis:

1. Human TBD Case Rates for Spotted Fever Rickettsiosis (SFR); Ehrlichiosis (EHR);
Anaplasmosis (ANA); Ehrlichiosis or Anaplasmosis, indeterminate (EHRANA); and
Lyme Disease (LD) as provided by the Indiana Department of Health (IDOH) via a
data request.

2. Canine TBD Case Rates for EHR; ANA; and LD, obtained from the Companion Animal
Parasite Council’s (CAPC’s) online public data dashboard. The CAPC provides canine
serological testing data online [38] via IDEXX Laboratories and IDEXX Diagnostics.

3. Deer Population as reported by the Indiana Department of Natural Resources’ (IDNR’s)
Annual Deer Reports. Two measures were used:

(1) Deer Mortality is the official number of deer reported as killed (“harvested”)
by hunters and vehicle collisions via the “CheckIN Game” (CING) system.
Hunters are required to report deer harvest per state law. “Damage Permits”
are also issued for hunting deer that are causing property or agricultural
damage (e.g., eating crops).

(2) Deer Observation is the rate of deer sightings per hour as estimated by the
IDNR’s “Archer’s Index”, a systematic wildlife reporting protocol. These data
are thus voluntarily reported by hunters, unlike Deer Mortality.

4. Tick Infectivity data for the rate of Borrelia burgdoferi infection in adult and nymphal
ticks, as provided by the IDOH via a data request.

5. County-Level environmental, geographical, and population data obtained from offi-
cial US reports, including the Decennial Census and the US Geological Survey.

2.2. Data Aggregation and Standardization

Where possible, data were acquired and aligned by-county by-year. Indiana has
92 counties and the period of interest (POI) (2017–2020) encompasses 4 years, resulting in
368 county years of data (e.g., Adams County, 2017). Data were aggregated across years to
create a “one-way” by-county dataset for the purpose of descriptive spatial statistics; aggre-
gation was performed via sum (total across all years) and via measures of central tendency
(mean/median across all years, excluding years with missing or n = 0 data). Aggregated
data are reported as n (%), mean (1 standard deviation), and median (interquartile range).

Some data were originally reported across-county. For example, Deer Observations
were only provided at the “Deer Management Unit” (DMU) level due to the sparsity of
the data at the county-level, as reported by the IDNR. A DMU is a contiguous grouping of
counties similar in development, hunter density, and other variables—Indiana’s 92 counties
have been organized into 9 DMUs by IDNR via collaboration with Purdue University [39].
Deer Observation data were thus excluded from county-level descriptive statistics and
aggregation, and analyses involving Deer Observations required aggregation of the other
variable to the DMU-level.

Tick Infectivity data were originally reported by-county but across-year—i.e., the data
were already aggregated (summed) across the period of interest (2017 through 2020). We
used the aggregated sums as they were in keeping with intentions to aggregate data across
years; since we did not have by-year data, we did not calculate by-county means or medians
for Tick Infectivity as we did for the other data.

Human and CAPC TBD case data were standardized at the county level as rate per
100,000 people per year using by-county US Decennial Census data. Data standardized
using the 2020 US Decennial Census. Other variables—notably Deer Mortality—were not
standardized to county populations. This was done because, unlike TBD rates amongst
humans or canine pets, deer population is more dependent on natural factors other than
human population; e.g., county area, forest cover, or ecoregion. In addition, Deer Obser-
vation and Tick Infectivity data were already standardized: the former was provided as a
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standard “rate per hour”, and Tick Infectivity was standardized as a “percentage of ticks
positive for Bb”.

2.3. Statistical Analysis

Associations between variables of interest were initially explored using Pearson cor-
relations and simple linear regressions; final estimates were generated using multi-level
Mixed Effects Models (MEMs) to account for repeated measures and elapsed time. The
generic MEM included the two variables of interest (one considered dependent, the other
independent), a continuous variable representing year (to detect any linear year-to-year
changes in the dependent variable), and an interaction between the independent variable
and year (to detect any changes in the primary association between the independent and
dependent variables over time). In addition to these fixed effects, the MEM included
random nested effects for County nested within Deer Management Unit (DMU) to account
for repeated measures, and a random crossed effect of year to account for year-specific
variability separate from any continuous across-year effects.

Every MEM was generated by starting with the base generic model described above.
If, after fitting, any of the random effects were observed to have had a negligible effect
on the model (i.e., accounted for ~<0.1% of residual variance), they were removed to
prevent over-fitting and the MEM re-run. Finally, a Likelihood-Ratio test was conducted
for each MEM to determine if it accounted for significant various relative to a simple linear
regression. Individual effects were considered statistically significant below a p-value of
0.1. Data were organized and groomed in Microsoft Excel for Mac (v16.68), and all analyses
were conducted using Stata (v16.1).

2.4. Mapping and Visualization

Thematic maps of the deer density proxies and human and canine TBDs by DMU
and county in Indiana were created using Tableau 2022.2. In order to determine the best
placement of values into different classes in the maps, we used natural breaks classification,
the most broadly used method in thematic mapping. This clustering method minimizes
the variance within classes while maximizing the variance between classes to find the
best breakpoints. We employed ArcGIS Pro 3.0 to map Indiana’s ecoregions because it is
more suitable for visualizing geographical features. For this mapping, this study utilized
Indiana Level III shape and layer data provided by the U.S. Environmental Protection
Agency (EPA).

3. Results

Out of all human TBD cases (n = 1070), just over half (53.9%) were attributed to
LD, and approximately a quarter (24.9%) were attributed to SFR. The remainder were
predominantly EHR or EHRANA; only 5 ANA cases were reported (Table 2).

Table 2. Summary statistics of Human TBD frequency across 2017–2020 as reported by the IDOH. In
addition to the number (%) of counties with at least one of each TBD case and the total number (%) of
cases across counties, the table provides means and medians both for the raw total number of cases
and the rate of incidence per 100,000 people. Only TBD+ counties were considered when calculating
these statistics. TBD = Tick-borne Disease; IDOH = Indiana Department of Health; EHR = Ehrlichiosis;
ANA = Anaplasmosis; LD = Lyme Disease; SD = Standard Deviation; IQR = InterQuartile Range.

SFR EHR ANA EHRANA LD ANY TBD

TBD+ Counties, n (%) 43 (46.7%) 32 (34.8%) 4 (4.3%) 39 (42.4%) 71 (77.2%) 78 (84.8%)
Cases, n (%) 266 (24.9%) 109 (10.2%) 5 (0.5%) 113 (10.6%) 577 (53.9%) 1070 (100.0%)

Cases, Mean (SD) 6.2 (7.5) 3.4 (3.1) 1.3 (0.5) 2.9 (2.6) 8.1 (16.7) 13.7 (19.0)
Cases, Median (IQR) 3.0 (5.0) 2.0 (3.5) 1.0 (0.5) 2.0 (3.0) 3.0 (7.0) 8.0 (16.0)

Rate, Mean (SD) 6.1 (6.9) 6.0 (5.5) 4.6 (4.5) 4.8 (4.8) 5.6 (4.5) 9.2 (8.4)
Rate, Median (IQR) 4.1 (7.5) 4.7 (4.6) 4.2 (7.6) 3.5 (4.5) 4.1 (5.0) 6.3 (10.1)
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A given county reported an average of 13.7 (19.0) human TBD cases. However, the
distribution of human TBD cases was heavily skewed by several high-case counties (such
as St. Joseph), with a statistical skewness of 2.58. This can be seen in the noticeably lower
median number of human TBD cases reported by a given county of 6.5 (IQR = 15).

When considering counties that reported at least one human case of a given TBD,
the TBD with the highest mean cases per county was LD at 8.1 (16.7); after adjusting for
population, SFR was observed to have the highest mean rate per county at 6.1 (6.9) cases
per 100,000 people. The median cases and rates were more clustered across TBDs, likely
due to their skewed distribution across counties: the lowest median rate was observed in
EHRANA at 3.5 (4.5), and the highest was EHR at 4.7 (4.6).

Of Indiana’s 92 counties, 77 (83.70%) reported canine serological testing data to the
CAPC between the years of 2017 and 2020 (Table 3). Notably, five of these counties that
provided data reported conducting no serological tests, leaving 72 (78.26%) counties with
at least one reported Canine TBD. The county with the highest number of serological tests
conducted was Lake, with 89120 tests conducted throughout the POI. Lake County also
reported the highest total number of TBD+ tests; out of 89120 tests conducted, 3078 were
LD+ (3.45%), 851 were EHR+ (0.95%), and 370 were ANA+ (0.42%).

Table 3. Summary statistics of canine TBD frequency across 2017–2020 as reported by the CAPC.
In addition to the number (%) of counties with at least one of each TBD case, and the total number
(%) of cases across counties, the table provides means and medians both for the raw total num-
ber of cases and the rate of incidence per 100,000 people. Only TBD+ counties were considered
when calculating these statistics. TBD = Tick-borne Disease; CAPC = Companion Animal Parasite
Council; EHR = Ehrlichiosis; ANA = Anaplasmosis; LD = Lyme Disease; SD = Standard Deviation;
IQR = InterQuartile Range.

Canine TBD Tested LD+ EHR+ ANA+ ANY TBD+

Counties, n (%) 72 (78.3%) 69 (75.0%) 69 (75.0%) 63 (68.5%) 70 (76.1%)
Total Cases, n (%) 634,586 (100.0%) 22,782 (3.6%) 12,400 (2.0%) 2605 (0.4%) 37,787 (6.0%)
Cases per County, Mean (SD) 8813.7 (14481.7) 330.2 (583.4) 179.7 (261.1) 41.4 (72.8) 539.8 (784.8)
Cases per County, Median (IQR) 3608.0 (9716.0) 128.0 (347.0) 53.0 (215.0) 20.0 (38.0) 284.5 (655.0)
Rate per 100 k per County, Mean (SD) 2508.7 (2239.2) 137.6 (194.9) 70.7 (112.0) 11.9 (10.7) 216.0 (245.8)
Rate per 100 k per County, Median (IQR) 2307.1 (2738.3) 58.2 (148.7) 22.1 (68.8) 8.8 (13.6) 149.0 (230.1)

Out of all Canine TBD+ cases across all counties (n = 37,787), the large majority were
attributed to either LD (60.3%) or EHR (32.8%), with the remaining 6.9% attributable to
ANA (Table 3). When considering counties that reported at least one Canine case of a
given TBD, the TBD with the highest mean cases per county was LD at 330.2 (583.4);
after adjusting for population, LD continued to have the highest rate per county at 137.6
(194.9) cases per 100,000 people. The median cases and rates were more clustered across
TBDs, likely due to their skewed distribution across counties: the lowest median rate was
observed in ANA at 8.8 (13.6), and the highest was LD at 58.2 (148.7).

All counties in the state of Indiana are required to report various deer mortality metrics
to the IDNR. Out of all deer killed (n = 530,002), the vast majority were attributed to hunting
permits (87.5%), with vehicle collisions (11.4%) making up most of the remainder; only 1.1%
of deer mortality was attributed to damage permits (Table 4). The county with the highest
number of deer killed was Steuben, with 12,350 throughout the POI. Steuben County also
reported the third highest number of vehicle collisions with deer (n = 1806), following
behind Allen (n = 1825) and Kosciusko (n = 1831) Counties. While all counties reported at
least one deer death due to hunting and vehicle collisions, 17 (18.5%) counties reported
that no deer were killed under damage permits; the highest number of damage permit kills
was reported in Washington County (n = 454).
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Table 4. Summary statistics of deer mortality across 2017–2020 as reported by the IDNR. Deer
mortality can be attributed to three main causes: killed under a hunting permit (“harvested”), killed
by a vehicle collision, or killed under a special damage permit issued to farmers for deer who
cause agricultural/property damage. The table presents the number (%) of counties with at least
one instance of each type of mortality, and the total number (%) of kills across counties as both
means and medians. Only counties with at least one instance of mortality were considered when
calculating these statistics. Deer Mortality was not standardized to county population, so no Rates
per 100 k are reported. IDNR = Indiana Department of Natural Resources; SD = Standard Deviation;
IQR = InterQuartile Range.

Deer Mortality All Mortality Harvest Collisions Damage Permits

Counties, n (%) 92 (100.0%) 92 (100.0%) 92 (100.0%) 75 (81.5%)
Total Mortality, n (%) 530,002 (100.0%) 463,700 (87.5%) 60,269 (11.4%) 6033 (1.1%)
Mortality by County, Mean (SD) 5760.9 (2760.0) 5040.2 (2512.5) 655.1 (387.7) 80.4 (104.5)
Mortality by County, Median (IQR) 5487.0 (4079.8) 4709.5 (3949.8) 582.5 (406.3) 42.0 (84.0)

Tick infectivity data were reported for ticks gathered from 74 (80.4%) of Indiana’s
counties, 59 (64.1%) of which reported at least one Bb+ test (Table 5). Out of a total of
4834 ticks tested across all counties, just over a quarter (26.6%) were Bb+. The Bb+ rate
was higher in adult ticks (~34.1%) than it was amongst nymphal ticks (~12.9%) across
all counties. This trend continued in the by-county Bb+ rates aggregated as means and
medians, with adults having a higher Bb+ rate.

Table 5. Summary statistics of tick infectivity across 2017–2020 as reported by the Indiana Department
of Health. Ticks—divided into Adults and Nymphs—were submitted for testing were assayed for the
presence of Bb, the main bacterial agent responsible for Lyme Disease. The table presents the number
(%) of counties that tested ticks or at reported least one Bb+ tick (see column headers), and the total
number (%) of tested ticks or Bb+ ticks across counties as means and medians, both for the raw totals
and the percentage rate of Bb+ infectivity. Only counties with at least one tested tick or Bb+ tick (see
column headers) were considered when calculating these statistics. IDOH = Indiana Department of
Health; Bb = Borrelia burgdorferi; SD = Standard Deviation; IQR = InterQuartile Range.

Tick Infectivity Tested, All Bb+, All Tested,
Adult Bb+, Adult Tested,

Nymph
Bb+,

Nymph

Counties, n (%) 74 (80.4%) 59 (64.1%) 72 (78.3%) 57 (62.0%) 62 (67.4%) 38 (41.3%)

Total Ticks, n (%) 4834 (100.0%) 1288 (26.6%) 3139 (64.9%) 1070 (22.1%) 1695 (35.1%) 218 (4.5%)

Ticks per County, Mean (SD) 65.3 (65.9) 21.8 (24.7) 43.6 (44.4) 18.8 (21.3) 27.3 (26.8) 5.7 (5.0)

Ticks per County, Median (IQR) 52.0 (72.0) 15.0 (30.0) 33.0 (45.0) 13.0 (21.0) 20.0 (34.0) 4.0 (6.0)

Bb+ Rate, Mean (SD) – 25.9%
(14.1%) – 33.6%

(18.7%) – 15.9%
(9.0%)

Bb+ Rate, Median (IQR) – 27.6%
(18.2%) – 36.2%

(26.3%) – 14.2%
(10.6%)

Spatial Mapping and Association

Deer in Indiana are abundant and serve as both non-competent hosts and reservoirs
for the disease. This study explores the importance of disaggregating disease reports at the
county level to distinguish nuances in spatial overlaps among varying types of proxies. The
left map in Figure 2 shows nine Deer Management Units (DMUs), contiguous groupings of
counties sharing similarities in human development, hunter density, and other variables.
The other maps in Figure 2 present deer observation per hour (left map) and deer mortality
rate (right map) by DMU level. All values in these two maps indicate a four-year average
between 2017 and 2020. The DMU with the highest deer observations per hour is Northeast,
followed by Dearborn Upland, Northwest, and Wabash Valley. Similarly, these four DMUs
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also have relatively high deer mortality rates. However, in the South and Muscatatuck
Plateau DMUs, deer observations per hour are low, while the deer mortality rates are high.
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Figure 2. DMUs, deer observations per hour, and deer mortality rate by DMU (4-year average
between 2017 and 2020).

Statistically, including a random effect for DMU to account for repeated measures
revealed a significant, positive association between these variables (coef. = 2575 Deer
Mortality per 1 Deer Observation per Hour, p = 0.060).

Figure 3 shows spatial patterns of the Bb+ (tick infectivity) rate (left map), human
LD rate (middle map), and canine LD rate (right map) by county. Human and canine
LD rates indicate the four-year average of LD cases per 100,000 people between 2017 and
2020. Considering most of the canine LD cases are associated with pet owners, it is also
standardized by human population size to be directly comparable with human LD rates. A
county without a value in the maps indicates a county where disease reports are absent.
No value does not necessarily indicate no disease. A similar pattern of hotspots with high
rates of LD is found between human and canine LD maps, including northwestern, central
western, and southeastern areas in Indiana. The positive Bb infection rate is relatively high
in northeastern, central western, and southeastern areas. However, it is not easy to identify
apparent hotspots compared to LD maps.

When estimated using the MEM, the association between Human and Canine LD
became n.s. (p = 0.608); in addition, the effect of time on Human LD rate was n.s. (p = 0.320),
as was the interaction between time and Canine LD rate (p = 0.611). In addition, MEM
estimates showed a significant positive effect between Bb+ and Canine LD (2.66 Canine LD
cases per 100 k for every 1% higher Bb+, p = 0.028) and a weaker positive effect between
Bb+ and Human LD that approached significance (0.04 Human LD cases per 100 k for
every 1% higher Bb+, p = 0.102). Both the Human and Canine LD models showed a strong
positive effect of time on case rate, estimating an additional 0.72 Human LD (p = 0.001) and
34.02 Canine LD (p < 0.001) cases per 100 k people per year.

Figure 4 presents similar spatial patterns of human SFR (left map), human EHR
(middle map), and canine EHR (right map) rates per 100,000 people. All values in the three
maps indicate a four-year average between 2017 and 2020. A county without a value in both
maps indicates a county where disease reports are absent. No value does not necessarily
indicate no disease. There are spatial similarities among the three TBD rates in southern
counties in Indiana. These patterns differ from the positive Bb infection rate and human
and canine LD rate in Figure 3 above, which have hotspots in northern and central western
counties besides the southern area.
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Figure 4. Human SFR and EHR, and canine EHR rates by county (4-year average between 2017
and 2020).

MEM estimates revealed that Canine EHR was negatively associated with Human
EHR (−10.11 Human EHR per 1 additional Canine EHR, p < 0.001) and positively associated
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with Human SFR (6.32 Human SFR per 1 additional Canine EHR, p = 0.033). There was
no significant effect of time on Human EHR (p = 0.181) or Human SFR (p = 0.362), but
significant interactions between time and Canine EHR were observed in both models: the
positive association between Canine EHR and Human SFR decreased by −0.003 Human
SFR cases per Canine EHR case per year (p = 0.033), and the negative association between
Canine EHR and Human EHR increased by 0.005 Human EHR cases per Canine EHR per
year (p < 0.001). A significant, negative association was observed between Human SFR and
Human EHR (−616.04 Human EHR per 1 additional Human SFR, p < 0.001). Time had a
significant positive effect on Human SFR (0.38 Human SFR cases per year, p = 0.029) and
also significantly interacted with the association between Human SFR and Human EHR:
every year increases the positive association by 0.31 Human EHR cases per Human SFR
case (p < 0.001)

Figure 5 illustrates spatial distributions of human ANA (left map) and canine ANA
(right map) rates per 100,000 people by county. All values in the three maps indicate a
four-year average between 2017 and 2020, and a county without a value in both maps
indicates a county where diseases are not reported. The canine LD rate forms hotspots in
northwestern and central western counties. However, spatial associations between human
and canine ANA rates are not found because of its inefficient data size.
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Figure 5. Human and canine ANA rates per 100,000 people by county (4-year average between 2017
and 2020).

Statistically, the very small sample—which consists of counties with both Canine and
Human ANA (n = 2)—precluded the calculation of regression/correlation coefficients.
A Likelihood-Ratio Test of the fitted MEM was n.s. (p = 0.320), which indicates that the
inclusion of random effects did not improve the model relative to a simple linear regression.

Figure 6 compares spatial patterns of deer mortality by hunting and collision (left
map), the positive Bb infection rate (middle map), and the human LD rate per 100,000
people (right map) at the county level. The values in deer mortality and human LD rate
maps indicate four-year averages between 2017 and 2020. A county without a value in the
maps indicates a county where disease reports are absent, so no value does not necessarily
indicate no disease. Deer mortality shares the common hotspots with the positive Bb
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infection rate in northeastern and southwestern counties. These areas belong to Northeast
DMU (northeastern counties) and South, Dearborn Upland, and Muscatatuck Plateau
DMUs (southeastern counties). On the other hand, deer mortality shows spatial similarities
with human LD rate in the northwestern and central western areas, which shares common
part with Northwest DMU (northwestern counties), Wabash Valley DMU (central western
counties), and South, Dearborn Upland, and Muscatatuck Plateau DMUs (southeastern
counties). However, they are not apparent compared to the positive Bb infection rate.

Microorganisms 2023, 11, x FOR PEER REVIEW 14 of 26 
 

 

 
Figure 6. Deer mortality, the positive Bb infection rate, and human LD rate by county (4-year aver-
age between 2017 and 2020). 

The MEM-estimated association between Human LD and Deer Mortality was nega-
tive and n.s. (−2818 Deer Mortality per additional 1 Human LD case per 100 k, p = 0.355). 
The model included a significant positive time effect on Deer Mortality (31 Deer Mortality 
per year, p = 0.032); the interaction between time and the association between Deer Mor-
tality and Human LD was n.s. (1.40 Deer Mortality per Human LD case per year, p = 0.355). 

While a very weak positive correlation was observed between Deer Mortality and 
Bb+ in Pearson’s correlations and simple linear regressions (p = 0.9313), theMEM model 
estimated that their association was significant and positive (6.92 Deer Mortality per ad-
ditional 1% Bb+, p = 0.052). Deer Mortality was also observed to significantly increase over 
time (34.19 Deer Mortality per year), p = 0.014). 

Figure 7 shows spatial distributions of human SFR (left map), EHR (middle map), 
and ANA (right map) rates per 100,000 people at the county level. These are four-year 
averages between 2017 and 2020. Since a county without a value in the maps indicates a 
county where disease reports are absent, no value does not necessarily indicate no disease. 
Unlike the human LD rate, hotspots with high human SFR and EHR rates are in southern 
Indiana counties. In terms of DMU, Southwest DMU and South DMU cover the hotspots. 
However, due to the small data size of human ANA rates, it is hard to identify the spatial 
similarities with deer mortality by hunting and collision. 

Figure 6. Deer mortality, the positive Bb infection rate, and human LD rate by county (4-year average
between 2017 and 2020).

The MEM-estimated association between Human LD and Deer Mortality was negative
and n.s. (−2818 Deer Mortality per additional 1 Human LD case per 100 k, p = 0.355). The
model included a significant positive time effect on Deer Mortality (31 Deer Mortality per
year, p = 0.032); the interaction between time and the association between Deer Mortality
and Human LD was n.s. (1.40 Deer Mortality per Human LD case per year, p = 0.355).

While a very weak positive correlation was observed between Deer Mortality and
Bb+ in Pearson’s correlations and simple linear regressions (p = 0.9313), theMEM model
estimated that their association was significant and positive (6.92 Deer Mortality per
additional 1% Bb+, p = 0.052). Deer Mortality was also observed to significantly increase
over time (34.19 Deer Mortality per year, p = 0.014).

Figure 7 shows spatial distributions of human SFR (left map), EHR (middle map), and
ANA (right map) rates per 100,000 people at the county level. These are four-year averages
between 2017 and 2020. Since a county without a value in the maps indicates a county
where disease reports are absent, no value does not necessarily indicate no disease. Unlike
the human LD rate, hotspots with high human SFR and EHR rates are in southern Indiana
counties. In terms of DMU, Southwest DMU and South DMU cover the hotspots. However,
due to the small data size of human ANA rates, it is hard to identify the spatial similarities
with deer mortality by hunting and collision.
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Figure 7. Deer mortality and human SFR, EHR, and ANA rates per 100,000 people by county (4-year
average between 2017 and 2020).

Statistically, the very small sample size of counties with both Human ANA and Human
EHR (n = 2), or with Human ANA and Human SFR (n = 3), precluded the calculation
of regression/correlation coefficients. In addition, a Likelihood-Ratio Test of the Human
ANA/EHR MEM was n.s. (p = 0.320), which indicates that the inclusion of random effects
did not improve the model relative to a simple linear regression. However, the MEM for
Human SFR and Human ANA had a significant Likelihood-Ratio Test (p = 0.0046), and
estimated a significant negative association (−99.59 Human ANA per 1 additional Human
SFR, p < 0.001). While time had a n.s. effect on Human ANA (p = 0.650), the negative
association between Human ANA and Human SFR appeared to significantly strengthen
over time (−0.14 Human ANA cases per 1 additional Human SFR case per year, p < 0.001).

Figure 8 compares spatial similarities of deer mortality by hunting and collision (left
map) and canine LD rate per 100,000 people at the county level. These are four-year
averages between 2017 and 2020, and a county without a value in the maps indicates a
county where disease reports are absent. Lack of canine data does not imply no disease. The
deer mortality map shares the common hotspots with high canine LD rates in northeastern,
central western, and southwestern counties, similar to the human LD rate. These counties
are covered by Northeast DMU (northeastern counties), Wabash Valley (central western
counties), and parts of South, Dearborn Upland, and Muscatatuck Plateau DMUs.

When modeled via MEM, the association between Canine LD and Deer Mortality was
positive but not significant (p = 0.398), and this association did not significantly vary over
time (p = 0.398). However, Deer Mortality significantly increased over time in the model
(44.83 Deer Mortality per year, p = 0.004).
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Figure 8. Deer mortality and canine LD rate by county (4-year average between 2017 and 2020).

Figure 9 visualizes spatial patterns of canine EHR (left map) and ANA (right map) per
100,000 people at the county-level to compare with deer mortality by hunting and collision.
Numbers in the maps are four-year average values between 2017 and 2020, and a county
without a value indicates a county where disease reports are absent. Unlike the canine LD
rate, the canine EHR rate has a hotspot in the southern area where deer mortality is high.
The hotspot belongs to Southwest, South, and Muscatatuck Plateau DMUs. On the other
hand, canine ANA shows similar distribution to canine LD rate, which has high rates in
northwestern and central western counties. These counties are covered by Northeast DMU
(northeastern counties) and Wabash Valley (central western counties).

A MEM estimated that the association between Canine EHR and Canine ANA was in
fact negative, albeit n.s. (p = 0.408), and did not change over time (p = 0.408). The model
estimated a significant increase in Canine EHR over time (12.23 Canine EHR cases per 100 k
per year, p = 0.011).

Table 6A,B summarize the outcomes of the bivariate associations presented above, as
well as several additional exploratory comparisons conducted after the spatial analysis.
Deer Mortality was significantly positively associated with both Human EHR (24797 Deer
Mortality per Human EHR case per 100 k, p = 0.023) and Canine EHR (923 Deer Mortality
per Canine EHR case per 100 k, p < 0.001). Both models also reported significant increases
in Deer Mortality over time (Human EHR: 44.32 Deer Mortality per Year, p = 0.006; Canine
HER: 71.74 Deer Mortality per Year, p < 0.001), and indicated that the positive association
between Deer Mortality and EHR is significantly decreasing over time (Human EHR:
−12.29 Deer Mortality per Human EHR case per 100 k per Year, p = 0.023; Canine EHR:
−0.46 Deer Mortality per Canine EHR case per 100 k per Year, p < 0.001). Lastly, Tick
Infectivity was analyzed for association with EHR and SFR: all associations were weakly
negative, with the largest effect observed between Bb+ and Human SFR (−0.05 Human
SFR cases per 100 k per 1% Bb+, p = 0.020), and the association between Bb+ and Human
EHR was similarly significant (−0.04 Human EHR cases per 100 k per 1% Bb+, p = 0.004).
However, the association between Bb+ and Canine EHR was n.s. (p = 0.316). In all three
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models, TBD case rates were significantly influenced by time: EHR significantly increased
over time in both Humans (0.62 Human EHR per 100 k per year, p = 0.002) and Canines
(18.98 Canine EHR per 100 k per year, p < 0.001). In contrast, Human SFR exhibited a
significant downward trend over time (−0.54 Canine EHR per 100 k per year, p = 0.009).
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and 2020).

Table 7 summarizes hotspots of deer mortality and human and canine TBD rates in
Indiana at the DMU-level, as also shown in Figure 10. The first column indicates hotspots
by DMU, and the second column shows the average deer mortality rate by DMU. The
DMU with the highest average deer mortality rate was Northeast (2703) DMU, followed
by South (1945), Muscatatuck Plateau and Dearborn Upland (1855 and 1791), Northwest
(1785), and Wabash Valley (1759) DMUs. In TBD-related columns (third to last columns),
‘O’ indicates that each TBD rate shares spatial similarities with deer mortality pattern.
For example, the positive Bb infection rate has two ‘O’s, which means its hotspots are
distributed in Northeast and Muscatatuck Plateau & Dearborn Upland DMUs. Human
and canine LD rates both are high in Muscatatuck Plateau & Dearborn Upland, Northwest,
and Wabash Valley DMUs. Human SFR, human EHR, and canine EHR have hotspots in
South DMU. Though the canine ANA rate is high in Northeast and Wabash Valley DMUs,
the human ANA rate does not show any cluster because of its inefficient reported cases for
mapping. These imply that deer population density could be related to human and canine
TBD distributions.
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Table 6. (A) Summary of Mixed Effects Models (MEMs) conducted between variable pairs. Each pair lists the model components and parameters used in their final
MEM: the level of analysis (DMU or County) and the inclusion of the fixed effect of Year (i.e., time), of the fixed effect of Year’s interaction with the Main Effect
Each, the random nested effect of DMU, the random nested effect of County, and the random crossed-effect of Year across the nested DMU > County groups. Each
pair includes Table 6 of its associated spatial comparison map, if applicable. DMU = Deer Management Unit; MEM = Mixed Effects Model; LD = Lyme Disease;
Bb = Borrelia burgdorferi; Bb+ = Percentage of ticks infected with Bb; EHR = Ehrlichiosis; SFR = Spotted Fever Rickettsiosis; ANA = Anaplasmosis. (B) Summary of the
outcomes of the Mixed Effects Models (MEMs) conducted between variable pairs. Each pair lists the Main Effect (i.e., of the Independent Variable on the Dependent
Variable), Time Effect (i.e., of Year on the Dependent Variable), and Interaction Effect (i.e., of Year on the Main Effect); all effects are listed in format Coefficient
(Standard Error), with their associated significance indicated by ** (p < 0.05), * (p < 0.1), or no asterisk (p ≥ 0.1). Effects that could not be estimated are indicated
by a double dash (–). Each pair also lists its models’ number of observations (n), the total number of nested groups (k), and the outcome of a Likelihood-Ratio
test conducted between the model and a simple linear regression. Each pair includes Table 6 of its associated spatial comparison map, if applicable. DMU = Deer
Management Unit; MEM = Mixed Effects Model; LD = Lyme Disease; Bb = Borrelia burgdorferi; Bb+ = Percentage of ticks infected with Bb; EHR = Ehrlichiosis;
SFR = Spotted Fever Rickettsiosis; ANA = Anaplasmosis.

(A)

Figure Number Independen t
Variable

Dependent
Variable

County- or
DMU-Level

Year (Fixed
Covariate)

Year (Fixed
Interaction with

Ind. Var.)

Year (Random
Crossed Effect)

DMU (Random
Nested Effect)

County (Random
Nested Effect)

Figure 2 Deer Mortality Deer Observations DMU No No No Yes N/A
Figure 3 Bb+ Canine LD County Yes No No Yes Yes
Figure 3 Canine LD Human LD County Yes Yes No Yes Yes
Figure 3 Bb+ Human LD County Yes No Yes Yes Yes
Figure 4 Canine EHR Human EHR County Yes Yes Yes Yes Yes
Figure 4 Human SFR Human EHR County Yes Yes Yes Yes No
Figure 4 Canine EHR Human SFR County Yes Yes No Yes Yes
Figure 5 Canine ANA Human ANA County Yes Yes Yes No No
Figure 6 Human LD Deer Mortality County Yes Yes Yes Yes Yes
Figure 6 Bb+ Deer Mortality County Yes No Yes Yes Yes
Figure 7 Human EHR Human ANA County Yes Yes No Yes No
Figure 7 Human SFR Human ANA County Yes Yes No Yes No
Figure 8 Canine LD Deer Mortality County Yes Yes Yes Yes Yes
Figure 9 Canine ANA Canine EHR County Yes Yes Yes Yes Yes

Figures 8 and 9 Canine EHR Deer Mortality County Yes Yes Yes Yes Yes
Figures 6 and 7 Human EHR Deer Mortality County Yes Yes Yes Yes Yes
Figures 3 and 4 Bb+ Canine EHR County Yes No No Yes Yes
Figures 3 and 4 Bb+ Human EHR County Yes No Yes Yes Yes
Figures 3 and 4 Bb+ Human SFR County Yes No No Yes Yes
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Table 6. Cont.

(B)

Figure Number Independen t
Variable

Dependent
Variable Observations (n) Total Nested

Groups (k)
Main Effect (Ind.
Var. × Dep. Var.)

Time Effect (Year
× Dep. Var.)

Interaction (Time
× Main Effect) LR-Test p-value

Figure 2 Deer Mortality Deer Observations 36 9 2575.08 (1368.5) * – – <0.001
Figure 3 Bb+ Canine LD 280 77 2.66 (1.21) ** 34.02 (6.34) ** – <0.001
Figure 3 Canine LD Human LD 280 77 0.84 (1.64) 0.18 (0.18) 0 (0) <0.001
Figure 3 Bb+ Human LD 368 92 0.04 (0.02) 0.72 (0.22) ** – <0.001
Figure 4 Canine EHR Human EHR 280 77 −10.11 (1.73) ** 0.17 (0.13) 0.01 (0) ** 0.001
Figure 4 Human SFR Human EHR 368 9 −616.04 (47.25) ** 0.38 (0.17) ** 0.31 (0.02) ** 0.005
Figure 4 Canine EHR Human SFR 280 77 6.32 (2.97) ** −0.16 (0.18) 0 (0) ** <0.001
Figure 5 Canine ANA Human ANA 280 1 – – – 0.336
Figure 6 Human LD Deer Mortality 368 92 −2817.75 (3043.74) 31.16 (14.56) ** 1.4 (1.51) <0.001
Figure 6 Bb+ Deer Mortality 368 92 6.92 (3.55) * 34.19 (13.88) ** – <0.001
Figure 7 Human EHR Human ANA 368 9 – – – 0.320
Figure 7 Human SFR Human ANA 368 9 −99.59 (10.31) ** −0.01 (0.03) 0.05 (0.01) ** 0.005
Figure 8 Canine LD Deer Mortality 280 77 80.17 (94.77) 44.83 (15.41) ** −0.04 (0.05) <0.001
Figure 9 Canine ANA Canine EHR 280 77 −491.84 (594.81) 12.23 (4.83) ** 0.24 (0.29) <0.001

Figures 8 and 9 Canine EHR Deer Mortality 280 77 923 (151.7) ** 71.73 (18.57) ** −0.46 (0.08) ** <0.001
Figures 6 and 7 Human EHR Deer Mortality 368 92 24796.68 (10898.62) ** 44.32 (16.22) ** −12.29 (5.4) ** <0.001
Figures 3 and 4 Bb+ Canine EHR 280 77 −0.76 (0.76) 18.98 (3.44) ** – <0.001
Figures 3 and 4 Bb+ Human EHR 368 92 −0.04 (0.01) ** 0.62 (0.2) ** – <0.001
Figures 3 and 4 Bb+ Human SFR 368 92 −0.05 (0.02) ** −0.54 (0.21) ** – <0.001

Table 7. Summary of Deer Mortality and TBD Rates Hotspots by DMU. TBD = TickBorne Disease; DMU = Deer Management Unit; Bb = Borrelia burgdorferi;
LD = Lyme Disease; EHR = Ehrlichiosis; SFR = Spotted Fever Rickettsiosis; ANA = Anaplasmosis.

Hotspots by
DMU Deer Mortality Bb+ Human

LD
Human

SFR
Human

EHR Human ANA Canine
LD

Canine
EHR

Canine
ANA

Northeast 2703 O - - - - - - -
South 1945 - - O O - - O -

Muscatatuck &
Dearborn 1855 and 1791 O O - - - O - -

Northwest 1785 - O - - - O - O
Wabash Valley 1759 - O - - - O - O
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4. Discussion

By employing a One Health perspective and triangulating multi-modal animal and
human data, we sought to understand and assess human Tick-Borne Disease (TBD) risk.
Our work builds upon recent research that incorporates county-level data on TBDs matched
with other national and state information from scholarly and official sources to determine
risk patterns [19,40]. The One Health Model is supported by the CDC and focuses on the
connectivity among animals, humans, and zoonotic disease. The lack of county-level data
available to public health practitioners and researchers from official sources such as the
CDC on TBDs other than LD has created an immediate need for innovative approaches to
determining the factors in pathogen transmission. Simply stated, “Where ticks are found,
tick-borne diseases can present a threat to human and animal health” [41]. The World
Health Organization (WHO) recommends the adoption of a One Health Model to assess
TBD risk among humans and animals worldwide [42]. Hosts and vectors engage in complex
environments that are variable in nature, prompting scholars to call on veterinarians and
medical practitioners to unite in addressing TBDs [43]. The current paper expanded on
One Health Model premises and introduced triangulation beyond canines and humans,
extending innovative analyses to include wildlife and tick infectivity.

Using data drawn from county-level databases on deer mortality, tick infectivity, and
TBD rates amongst canines in Indiana, as well as spatial overlap with ecosystem regions,
associations between these factors and human TBD cases were analyzed via Mixed Effect
Models and mapping to better determine the extent to which deer are a potential means
of vector transmission at a granular spatial level, along with associated potential proxies
of disease risk. Findings suggest that passive One Health surveillance using mutli-modal
databases with specific proxies can provide a robust alternative for indicating human
disease risk.
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Using multimodal data analysis using a variety of proxies to better estimate disease
risk, we find similar spatial distributions between deer population density and human and
canine TBDs in northeastern and southern Indiana, which are rural and mixed geographic
areas. Overall, LD is more prevalent in the northwest, central-western, and southeastern
counties, while ehrlichiosis is more common in the southern counties. These findings hold
true across humans, canines, and deer, which is notable given the varying tick vectors that
carry both human and canine ehrlichiosis in particular.

Previous research has demonstrated that sources other than official public health
data—such as canine serological reports or self-reported human tick bite encounters—may
offer robust proxies for determining TBD risk among humans [16–18,39]. Moreover, cur-
rent scholarship indicates that additional research is needed to assess deer as accurate
proxies for human TBD risk. Deer are known hosts for medically important ticks, mak-
ing them potential proxies for understanding human disease risk at a larger scale than
local ecosystems.

Our mixed effect analysis showed a significant positive association of Deer Mortality
with EHR in both canines and humans. This suggests that deer may be a useful proxy for
EHR and similar TBDs, such as SFR (which was observed to also have a strong positive
association with Deer Mortality). We used two variables to estimate overall deer population:
Deer Mortality, the official number of deer fatalities in each county, and Deer Observations,
a separate official measure of deer population based on in situ sightings by hunters in each
DMU. Unlike Deer Mortality, Deer Observation is reported via a survey, includes fawns in
addition to adults, and is standardized into “deer observations per hour”; accordingly, as a
scientific measurement, Deer Observations are more flexible and adaptable than gross deer
fatalities. Deer Mortality and Deer Observations were significantly positively correlated
with each other, supporting the validity of Deer Observations as another measure of
deer population.

LD rates between humans and canines were not significantly associated with each
other; ANA also was not significant between species, although this may be attributable to
the relative rarity of ANA cases in Indiana. Human EHR and SFR were both significantly
associated with Canine EHR. Interestingly, Canine EHR was negatively correlated with
Human EHR, yet positively correlated with Human SFR. Indiana’s human TBD reporting
also distinguishes between SFR and EHR. However, the CAPC does not test for SFR in
Canines, so there is no opportunity for EHR and SFR to be conflated in the Canine data. It
may be that the positive association between Canine EHR and Human SFR in Indiana—in
addition to the significant negative association between EHR and SFR in Humans—is
similar to a situation in Virginia where-by an apparent increase in SFR was actually due to
an increase in EHR. Gaines et al. noted that a reported increase in SFR cases in Virginia
may in fact be mis-reported EHR and related diseases, due to flaws in how physicians and
commercial laboratories test and report outcomes to the state departments, and based on
testing of tick vectors [44].

Tick Infectivity was positively correlated with LD in canines and humans. This is
not particularly unusual, as Tick Infectivity was specifically based on the detection rate
of Borrelia burgdoferi, the primary bacterial agent that causes LD, while EHR and SFR are
caused by a different family of bacteria (Anaplasmataceae). However, Tick Infectivity (i.e., the
presence of B. burgdoferi) was also negatively correlated with the case rates of EHR and SFR
in humans (n.s. with EHR in Canines). This suggests that there may be competition between
Anaplasmataceae and Borreliacaea over limited tick reservoirs and their associated vectors
(e.g., deer). In addition, local spatial factors—e.g., climate or access to forested areas—may
influence the infectivity of these bacterial families via interactions with their environment
and hosts, resulting in regions more susceptible to LD or to EHR/SFR. Interestingly, Deer
Mortality was significantly positively correlated with Tick Infectivity—i.e., the more deer
in a county, the more likely ticks in that county hosted B. burgdoferi. This observation may
be explained by ticks on deer being a more suitable and/or effective host for B. burgdoferi,
whereas Anaplasmataceae bacteria are better suited to ticks on other host animals.
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Importantly, studies to date largely have not disaggregated deer population data by
both county and disease. Nor do they typically compare TBDs separately across small
spatial units of analysis, such as counties, or within ecosystems. Additionally, the impor-
tance of smaller mammals in the spread of Borrelia to ticks has been identified, as these
fauna serve as competent hosts for the pathogen [27,30,32]. For example, dusky-footed
woodrats have been shown elsewhere to be key factors in human disease risk, implying
that peri-domestic exposure is more salient than recreational exposure in assessing TBD
risk [1].

We also observed relevant patterns that may inform additional studies focusing on
the presence of specific ticks—and their animal vectors—relative to geographical and
ecological factors, and considering the potential drawbacks of current standards for clinical
TBD testing and reporting. Spatial overlap of both Human and Canine LD, as well as
Canine ANA, was indicated in northwestern and southeastern areas of Indiana. Similarly,
EHR was found in the south-central area of the state among both Canines and Humans.
This is an area of higher deer density, and white-tailed deer are known reservoirs of the
ticks and bacteria known to cause EHR. Accordingly, health officials might act to raise
public awareness of high risks of tick bites in brushy or wooded areas in these counties
in particular.

In sum, public health risks are occurring in the face of continued increases in tick-borne
diseases across the United States. However, there is a lack of disease-specific information
from active or passive surveillance to effectively distinguish disease risk among humans.
Those afflicted find themselves in search of diagnosis and report traveling more than
50 miles for medical care and waiting more than seven years for diagnostic confirma-
tion [40]. This research suggests that county-level data may prove useful, providing greater
insights and information for application in this regard. As counties in Indiana vary in
population density, age, incomes, education levels, and access to healthcare, different indi-
viduals and groups may be at higher risk and can face inequitable diagnosis and treatment
without proper disease-risk data. Additionally, environmental factors continue to impact
both the explosion of vector-borne diseases in some regions and the uneven distribution
of risk and access to healthcare [45]. There remains a lack of highly sensitive and specific
direct detection methods for LD, relying mainly on antibody testing. Seronegative LD
testing also confounds data issues, as some patients may develop chronic symptoms sans
a positive antibody test [46,47]. Case reports also indicate Bb relapses following multiple
courses of antibiotic therapy [48].

This study has offered a way to pinpoint disease risk in different geographic locations,
demonstrating the usefulness of triangulating multimodal databases to generate relevant
information. Related findings imply that public health systems may be able to determine
risk factors at the local level and develop appropriate prevention materials, including
clinical symptoms of diseases such as EHR. While not nearly as notorious as LD, EHR and
other TBDs are increasingly prevalent, posing critical personal and public health risks.

Limitations

This study was exploratory in nature, pointing to areas and opportunities for further
research, which also are revealed in the study limitations. First, there was a limited number
of years due to data availability, including data on tick infectivity, which was provided
pre-aggregated for the years 2017–2020. Future work should capitalize on the tentative
results presented here by incorporating TBD data (or potential proxies of such) from other
databases, and/or replicating our approach in regions with more available data and robust
data collection systems (e.g., other states). Additionally, data regarding other tick-borne
diseases, such as babesiosis, bartonellosis and tick-transmissible viral pathogens (e.g.,
Powassan, Bourbon virus, and other emerging viral pathogens), were not available for this
study. Lastly, the skewed distribution of both human and canine TBD data across counties
indicates that future work should consider analyzing data at the DMU-level rather than the
county-level; while county-level effects are almost certainly present, the physical region
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of DMUs were defined statistically based on geographic and ecological data, whereas
counties were primarily defined by sociopolitical effects presumably independent of deer,
tick, and TBD occurrence. In addition, the high number of counties increases the number of
observations needed; aggregating by-DMU could identify gross effects at the DMU-level,
which could then be explored with targeted county-level analyses.

Tick infectivity is a difficult variable with which to work, as active surveillance and
testing of ticks depend on researchers, funding, and geographic location selection. For tick
infectivity, a lack of data does not necessarily equate to zero ticks or no disease. Second,
canine data accounts for only approximately 30% of all positive canine disease cases [49].
As with active tick collection, lack of canine data does not imply no disease; some counties
are rural and may have limited access to veterinarians capable of serological testing and
who submit these results to the CAPC. A third limitation is human data, which is reported
to the state by clinicians. Many patients will be diagnosed after a clinical examination
and/or without testing, and these would not appear in the dataset. In the thematic maps,
there are counties where disease reports are absent.

5. Conclusions

This study extends public health entomological efforts by including multi-modal
datasets to assess human TBD risk. We investigate deer density and other One Health
indicators, using both spatial and statistical approaches. The analyses conducted in this
study suggest the need for finer-grained, disaggregated data on tick-borne diseases. In
general, spatial patterns reveal positive associations among diseases, but the geographic
alignments are unique. It is a noteworthy result that the highest frequency of human
tick-borne diseases occurred in three contiguous northwest counties. Overall, Lyme disease
is more prevalent in the northwest, central-western, and southeastern counties, while
ehrlichiosis is more common in the southern counties. These findings hold true across
humans, canines, and hunting data, which served as a proxy for deer density.
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