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Abstract: Viruses infect all living organisms, but the viruses of most marine animals are largely
unknown. Crustacean zooplankton are a functional lynchpin in marine food webs, but very few
have been interrogated for their associated viruses despite the profound potential effects of viral
infection. Nonetheless, it is clear that the diversity of viruses in crustacean zooplankton is enormous,
including members of all realms of RNA viruses, as well as single- and double-stranded DNA viruses,
in many cases representing deep branches of viral evolution. As there is clear evidence that many
of these viruses infect and replicate in zooplankton species, we posit that viral infection is likely
responsible for a significant portion of unexplained non-consumptive mortality in this group. In
turn, this infection affects food webs and alters biogeochemical cycling. In addition to the direct
impacts of infection, zooplankton can vector economically devastating viruses of finfish and other
crustaceans. The dissemination of these viruses is facilitated by the movement of zooplankton
vertically between epi- and mesopelagic communities through seasonal and diel vertical migration
(DVM) and across long distances in ship ballast water. The large potential impact of viruses on
crustacean zooplankton emphasises the need to clearly establish the relationships between specific
viruses and the zooplankton they infect and investigate disease and mortality for these host–virus
pairs. Such data will enable investigations into a link between viral infection and seasonal dynamics
of host populations. We are only beginning to uncover the diversity and function of viruses associated
with crustacean zooplankton.

Keywords: crustacean zooplankton; virus transmission; virus discovery; viral mortality; zooplankton
morality; zooplankton disease; zooplankton virus; viral ecology

1. The Roles of Viruses and Planktonic Crustaceans in Marine Ecosystems

Viruses are by far the most abundant biological entities in the ocean, but their impacts
on most marine metazoans are unknown. Across marine ecosystems, viruses exert their
influence through infection, shaping microbial communities, driving evolutionary adap-
tation and altering the flow of energy through food webs in the process [1–4]. Viral lysis
maintains the species diversity of phyto- and bacterioplankton by preventing the prolonged
dominance by a taxon [5–7] and some viruses have been implicated in the termination
of phytoplankton blooms [7–9]. This lysis moves organic matter from the classical food
web into the microbial loop in a process known as the viral shunt [1,10], modulating the
efficiency of carbon export into the deep ocean [11] and paradoxically increasing bacterial
and primary production [12,13]. Many viruses need not kill their hosts in order to be
transmitted or have reservoir hosts in which their effects are benign, while others even
confer an adaptive benefit [14]. In multicellular hosts generally, fatal disease is likely to
be the exception rather than the rule in viral infection, as many strategies for replication
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and proliferation do not necessitate severe disease. Despite new bioinformatic tools [15]
and the recent explosion in virus discovery [16,17], many viruses of marine multicellular
eukaryotes remain uncharacterised. Additionally, some viruses discovered in meta-omic or
environmental reads lack an assigned host, since the inference of host–virus relationships
from sequencing data can be difficult [18–20]. As a result, viral discovery has outpaced
our understanding of which viruses infect whom and what their ecological roles might be.
There is therefore a need to identify the viruses of key groups of marine organisms and
uncover their impacts on host populations and the communities in which they are situated.
One such group is crustacean zooplankton, whose functional importance far outweighs
our knowledge of their viruses.

Crustacean zooplankton are among the most abundant animals on Earth and belong to
the Pancrustacea, a broad evolutionary group of arthropods that is proposed to encompass
both insects and crustaceans [21]. Planktonic members of the Pancrustacea range in size
from cladocerans that are less than half a millimetre in length, to large copepods and small
shrimp over a centimetre long. Barnacles and larger crustaceans such as decapods also
have planktonic larval and juvenile stages with different functional roles than their adult
forms [22].

Crustacean zooplankton also play key roles as trophic links in food webs and in
altering the cycling of organic matter in marine ecosystems. They consume bacteria, phyto-
plankton and other zooplankton, facilitating the transfer of nutrients and energy to higher
trophic levels, but in the process also release dissolved organic matter (DOM) through
sloppy feeding and particulate organic matter (POM) through faecal pellets, carcasses and
moults. Mesozooplankton are estimated to consume from 4–12 Gt C y−1 (8–24%) of global
primary production directly, in addition to another 3.4–11.5 Gt C y−1 indirectly by grazing
unicellular zooplankton, or 15–44% of global epipelagic primary production [22–25]. Much
of the consumed primary production is respired or lost through non-consumptive mortality
and excretion [23]; zooplankton vertical migration and faecal pellet generation constitute
an estimated 25–70% of global biological carbon sequestration overall, and as much as
50–90% at lower latitudes [26,27]. Estimates of POM export from sinking zooplankton
are not well constrained due to the lack of knowledge of the magnitude and causes of
non-consumptive mortality; there is especially little known about disease. As the connector
between primary production and larger animals, changes in the abundance of zooplankton
and the composition of zooplankton communities caused by disease could have cascading
effects through the food web [22,28]. Understanding the magnitude and effects of disease
on zooplankton mortality and community composition is necessary both to improve the
accuracy of ocean production models and to obtain a complete picture of marine food webs.

Few viral diseases of crustacean zooplankton are characterised, and the magnitude of
zooplankton mortality due to viruses is unknown, as is the potential impact of zooplank-
ton as vectors of viral disease. In many cases where mortality of zooplankton has been
measured, the cause of death is unclear and mortality estimates are poorly constrained.
Proposed causes of unexplained zooplankton mortality include environmental stress, star-
vation, toxin exposure and disease. Viral diseases in some larger crustaceans are well
documented [29,30], and some of these viruses are also found in planktonic freshwater
and marine crustaceans [31–37]; however, their impacts are understudied and largely a
mystery in hosts that are not harvested for food. Additionally, even though zooplank-
ton are known vectors of aquaculture and phytoplankton pathogens [36–40], the suite of
pathogenic viruses harboured by abundant zooplankton is not established.

Viruses infect all living organisms, but the viruses infecting or transmitted by crus-
tacean zooplankton and their effects on marine food webs are understudied. In this review,
we summarise what is known about these pathogens and propose that widespread viral
disease likely accounts for some of the non-consumptive mortality in crustacean zooplank-
ton, with consequences for biogeochemical cycling. We also present examples of crustacean
zooplankton as vectors of both fish and crustacean viruses and mechanisms of potential
disease transmission. Finally, we propose approaches to (1) link viruses to zooplankton dis-
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ease and mortality, (2) examine the roles of viruses in regulating zooplankton populations
and (3) uncover the impacts of crustacean zooplankton as vectors of marine viruses.

2. The Pathogens: Viral Disease in Crustacean Zooplankton and Its Impacts

Despite being relatively understudied, the presence of diverse viruses in the crustacean
zooplankton which have been examined suggests that infection plays an important role in
zooplankton communities. Most of this viral diversity has been documented in copepods,
with limited evidence of replication and disease. As crustacean zooplankton contain
diverse viruses and many lethal viral diseases of other crustaceans have been described,
viral infection likely contributes to the unexplained non-consumptive mortality observed in
this group. This mortality potentially alters zooplankton community composition, reduces
prey availability to larger animals and lowers grazing pressure on primary producers and
microzooplankton. These factors would also impact biogeochemical cycling and nutrient
regeneration, since zooplankton carcasses, faecal pellets and sloppy feeding are important
sources of POM and DOM in the ocean.

2.1. The Viruses of Crustacean Zooplankton

There are few investigations into the symptomatology of zooplankton viral diseases and
a definitive link to host mortality has not been established in marine species. Many viruses
associate with and infect crustacean zooplankton, and some replicate and cause disease (Table 1);
however, arthropods have sophisticated innate and specific immunity making it difficult to
demonstrate the link between infection, viral replication and disease [41–43]. Viruses that
cause disease include large double-stranded (ds) DNA iridoviruses that infect the decapod
shrimp Acetes erythraeus as well as several Daphnia species and some copepods [44–47]. Small
single-stranded (ss) DNA circoviruses have been associated with local population declines
of the freshwater amphipod Diporeia, which was also found to carry viral haemorrhagic
septicaemia virus (VHSV), a major pathogen of finfish [32,48]. Gammarid amphipods also
carry diverse RNA viruses, including chu-, bunya-, partiti- and picorna-like viruses, among
others [49]. Viral diseases of large decapods in the wild [29] and in aquaculture [50,51] have
been reviewed extensively; yet, the impacts of these viruses on the planktonic larval stages
are unknown. These viruses could contribute to the high larval mortality rates observed
in planktonic crustaceans [52,53]. Isopod parasites of the shrimp Latreutes fucorum and
the shore crab Hemigrapsus oregonensis also carry viruses [54,55], but it is unclear if these
viruses are shared by, acquired from or transmitted to the crustacean hosts.

The viruses associated with copepods, their symptomology and prevalence in host
populations have been recorded in some cases. For example, in Tampa Bay, Florida, the
calanoid copepods Acartia tonsa and Labidocera aestiva are infected by the circoviruses
Acartia tonsa copepod circo-like virus (AtCopCV) and Labidocera aestiva copepod circo-
like virus (LaCopCV), respectively [56]. In different locations in Tampa Bay, LaCopCV
was estimated to occur in 50 to 100 percent of host animals, with average viral loads
ranging between 102 and almost 106 copies individual−1. By contrast, AtCopCV was not as
commonly detected in Acartia tonsa, but did show seasonal peaks in prevalence, correlated
with A. tonsa population increases and declines [56]. In 2013, Eaglesham and Hewson
reported a similar pattern of detection of these two viruses over a larger range of sampling
sites [57].



Microorganisms 2023, 11, 1054 4 of 21

Table 1. Viruses associated with or infecting crustacean zooplankton.

Virus Name Virus Order, Family Associated Organism Order—Family, Genus
or Species

Evidence of
Replication Disease Caused References

Daphnia iridescent virus 1
(DIV-1) Pimascovirales, Iridoviridae Branchiopoda—Daphnia sp. Yes White fat cell disease [47]

Unnamed circo-like viruses Cirlivirales, Circoviridae Amphipoda—Diporeia sp. No ND [48,58]

Labidocera aestiva copepod
circovirus (LaCopCV) Cirlivirales, Circoviridae Copepoda—Labidocera aestiva Yes ND [56]

Acartia tonsa copepod circovirus
(AtCopCV) Cirlivirales, Circoviridae Copepoda—Acartia tonsa Yes ND [56]

Zooplankton invertebrate
iridescent virus (ZoopIIV(HR)) Pimascovirales, Iridoviridae Copepoda—Gladioferens pectinatus, Boeckella

triarticulata, Gippslandia estuarina Yes Zooplankton iridoviral disease [46]

White spot syndrome virus
(WSSV) Unclassified, Nimaviridae

Copepoda—Acartidae, Oithonidae, Tachididae,
Centropagidae, Corycaeidae, Temoridae, Calanidae,
Paracalanidae, Pontellidae, Peltididae, Metrididae,

Miraciidae, Cyclopidae, Ameiridae,
Pseudodiaptomidae, Ergasilus manicatus
Amphipoda—Caprellidae, Gammaridea

Cirripedia—undocumented family
Branchiopoda—Artemiidae

Mysida—Mysidae
Euphausiacea—Euphausiidae

Variable White spot disease [33,35,38,39,59–64]

Viral haemorrhagic septicaemia
virus (VHSV) Mononegavirales, Rhabdoviridae Amphipoda—Diporeia sp. No Viral haemorrhagic septicaemia [32]

Unnamed mononega-like viruses Mononegavirales, Artoviridae

Copepoda—Caligus spp., Lepeophtheiris spp.,
Tracheliastes sp., Pseudodiaptomus sp.
Amphipoda—Eulimnogammarus sp.,

Ommatogammarus sp., Hyatellopsis sp.

No ND [49]

Unnamed mononega-like viruses Mononegavirales, Rhabdoviridae
Copepoda—Caligus spp.

Amphipoda—Carinurus bicarinatus, Gammarus
spp.

No ND [49]

Unnamed chu-like viruses Jingchuvirales, Chuviridae
Copepoda—Cosmocalanus darwinii,

Pleuromamma sp., Platychelipus littoralis
Amphipoda—Hyatellopsis sp., Gammarus sp.

No ND [49]
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Table 1. Cont.

Virus Name Virus Order, Family Associated Organism Order—Family, Genus
or Species

Evidence of
Replication Disease Caused References

Unnamed ghabri-botybri-like
viruses Ghabrivirales, Totiviridae

Copepoda—C. darwinii, Lepeophtheiris spp.,
Caligus spp., Tigriopus californicus, Labidocera

madurae, Tracheliastes polycolpus
Amphipoda—Gammarus sp., Eogammarus sp.,

Echinogammarus sp.

No ND [49]

Unnamed tymo-like viruses Tymovirales, Tymoviridae Copepoda—C. darwinii No ND [49]

Unnamed bunya-like viruses Bunyavirales, unnamed
families

Copepoda—Lepeophtheirus sp., C. darwinii
Amphipoda—Talitrus sp., Gammarus sp.,

Eogammarus sp., Hyatellopsis sp.
No ND [49]

Unnamed orthomyxo-like
viruses

Orthomyxsovirales, unnamed
families

Copepoda—T. californicus
Amphipoda—Gammaroporeia sp., Platychelipus
sp., Echinogammarus sp., Marinogammarus sp.

No ND [49]

Unnamed qin-like viruses Muvirales, Qinviridae Copepoda—Apocyclops royi
Amphipoda—Gammarus sp. No ND [49]

Unnamed partiti-like viruses Durnavirales, Partitiviridae

Copepoda—C. darwinii, Caligus spp., T.
californicus, Euchaeta spp., Eucalanus bungii

Amphipoda—Eugammarus sp., Echinogammarus
sp.

No ND [49]

Unammed picobirna-like viruses Durnavirales, Partitiviridae Copepoda—Eurytemora affinis
Amphipoda—Talitrus saltator No ND [49]

Unnamed durna-like viruses Durnavirles, unnamed family Amphipoda—Gammarus sp. No ND [49]

Unnamed martelli-like viruses Martellivirales, Endornaviridae Copepoda—Caligus sp. No ND [49]

Unnamed picorna-like
viruses

Picornavirales, unnamed
family

Copepoda—Caligus spp., Lepeophtheirus sp., E.
bungii, Eucyclops serrulatus, Calanus finmarchicus
Amphipoda—Gammarus sp., Echinogammarus

sp., Ommatogammarus sp., Macropereiopus parvus

No ND [49]

Taura syndrome virus Picornavirales, Dicistroviridae Copepoda—E. manicatus Yes Taura syndrome [35]

Unnamed flavi-like viruses Amarillovirales, Flaviviridae Amphipoda—Gammarus sp. No ND [49]
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Table 1. Cont.

Virus Name Virus Order, Family Associated Organism Order—Family, Genus
or Species

Evidence of
Replication Disease Caused References

Unnamed noda-barna-like
viruses Nodamuvirales, Nodaviridae

Copepoda—T. californicus, Pleuromamma
abdominalis, E. affinis

Amphipoda—Gammarus spp.
No ND [49]

Unnamed noda-barna-like
viruses Sobelivirales, Solemoviridae Copepoda—Caligus spp. No ND [49]

Unnamed nido-like viruses Nidovirales, unnamed family Copepoda—E. affinis No ND [49]

Unnamed
birna-permutotetra-like viruses Durnavirales, Birnaviridae Copepoda—E. affinis No ND [49]

ND = Not documented. For viruses for which evidence of replication differs among hosts, evidence of replication is marked as variable.
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These data suggest that LaCopCV and AtCopCV may represent two different strategies
of infection, in which LaCopCV is widespread, but mild or latent in its host, and does not
generally cause severe disease or widespread mortality, while AtCopCV appears to be
associated with periods of rapid growth or decay of host populations, possibly contributing
to host mortality. Successful strategies for viruses exist on a continuum from mutualistic
symbiont to latent disease to deadly pathogen [65–67], and crustacean viruses are expected
to span this range as well.

Disease caused by viruses in the family Iridoviridae has also been documented across
several different crustacean species in freshwater and marine environments. Iridoviruses
are nucleocytoplasmic large DNA viruses (NCLDVs), which form paracrystalline arrays
in infected tissue, giving afflicted individuals an iridescent or opalescent sheen. As such,
iridovirus infection can be identified visually under the correct lighting. The Iridoviridae
contains viruses that infect vertebrates and invertebrates, including fish (e.g., lymphocystis
disease virus 1 and infectious spleen and kidney necrosis virus (ISKNV)), decapods (e.g.,
decapod iridescent virus 1 (DIV)) and cladocerans, in which Daphnia iridescent virus (DIV-1)
causes white fat disease [44,45,47,68]. Suspected iridoviruses have also been imaged in the
cells of ivory barnacle larvae [69]. Additionally, it is unclear whether a novel iridovirus recently
identified in a deep-sea carnivorous sponge might infect its crustacean prey, which is plausible
given the close relation of the virus to other invertebrate iridoviruses [70]. Iridovirus infection
has been documented in copepods on the eastern coast of Australia, where symptomology
was investigated extensively and prevalence of viral infection in estuarine copepods was
recorded across time [46].

Several freshwater and estuarine copepods are persistently infected by iridoviruses
in Victoria, Australia [46], suggesting that iridovirus infection may be widespread in
copepods. The copepods displaying iridescence or opalescence were mainly Gladioferens
pectinatus, but also Boeckella triarticulata and Gippslandia estuarina. Symptoms were reported
to progress from weak opalescence or iridescence to strong blue phases, oedema and death.
Paracrystalline arrays of virus particles were imaged by electron microscopy, indicating
viral replication. Observationally, individuals also had reduced swimming and escape
performance. Mortality was also observed, though isolation of the virus and reinfection
of healthy, iridovirus-free individuals was not performed. High prevalence of iridovirus
infection was correlated with increased water temperature and copepod density. Virus
isolates from diseased copepods were either closely related to an invertebrate iridovirus of
Acetes shrimp or to iridoviruses of vertebrates, specifically the lymphocysti- and ranaviruses
which infect finfish. The latter case could be an example of past host switching, or of a
virus with a wide host range. Host switching has been recorded when organisms are in
prolonged close association [49,71,72]; switching of iridoviruses between fish and copepod
parasites has been suggested [35], but no definitive evidence has been provided to date.
Planktonic crustaceans are well situated to undergo host switching due to their ubiquity
and ancient ecological associations with vertebrates and other organisms. Iridovirus
infection of copepods may be a good model for exploring viral infection and dynamics
in zooplankton, since advanced infection often makes hosts visible to the naked eye,
expediting the screening of individuals for infection.

Diverse RNA viruses are also associated with planktonic and parasitic copepods [49]
(Table 1). For example, sea lice, which have planktonic and parasitic stages, carry viral
pathogens of fish; their role as vectors is discussed in the following section. Many RNA
viruses have been discovered in copepods, but only a few species and samples have
been examined and no symptomology or links to disease have been clearly established.
Additionally, the prevalence of zooplankton-associated RNA viruses in host populations
has not been reported. As copepods are globally abundant and integral to coastal and
pelagic food webs, further attention should be given to RNA viral infection and disease in
a broader range of copepod species.



Microorganisms 2023, 11, 1054 8 of 21

2.2. Viral Disease Likely Accounts for a Portion of Non-Consumptive Mortality in
Crustacean Zooplankton

Viral disease has largely been overlooked as a potential factor in zooplankton mortality.
Estimates of zooplankton non-consumptive mortality are difficult to obtain, ranging widely
with study method and conditions from less than 1 to over 80% [73–75]. Below, we review
non-consumptive mortality in crustacean zooplankton and suggest that viral infection
constitutes a portion of that mortality.

Myriad studies have estimated mortality rates of zooplankton, but difficulty in deter-
mining non-consumptive mortality has limited our ability to understand the regulation of
zooplankton populations. The degree of non-predatory mortality and the fate of zooplank-
ton carcasses is complex to measure; carcasses may be neutrally buoyant, be resuspended,
be consumed after death or sink. Interspecies variation in tolerance to environmental
stressors, changes over time in the causes of mortality, interannual variability in community
composition, ocean conditions and disease pressure further complicate the estimation of
mortality and its causes. Most studies have been conducted on copepods, and estimates
vary widely with species, location and season [73,76]. For instance, some studies report
high mortality of copepods in summer [77] and/or winter [74] in the Arctic [76] and at
mid-latitudes [75,78], while another observed little difference between seasons at mid-
latitudes in an abundant copepod species [79]. Suggested causes of zooplankton mortality
include pH, oxygen and salinity stress, starvation, exposure to toxins, senescence and
disease. Many of these causes also interact. For example, increased temperatures can lower
tolerance to starvation [80] and hypoxia [81] due to increased metabolic demand. Higher
temperatures and other environmental stressors are also usually associated with increased
disease pressure [82,83].

Environmental stress caused by temperature, ocean acidification (OA), hypoxia and
low salinity has been identified as a potential factor in copepod mortality and been given
more attention in light of climate change. The impacts of these factors are species- and often
stage-specific. For example, temperature stress and its effects on zooplankton mortality are
expected to increase and result in future range shifts with ocean warming [73,84]. Similarly,
although some zooplankton may not be substantially affected in the short term by present-
day levels of OA [85,86], detrimental effects have been reported for pteropods [87], crab
larvae [87] and krill [88]. These effects are made worse when pH stress is combined with
low oxygen [89]. Ultimately, the complexity of conditions that plankton are exposed to
in the wild makes it difficult to extrapolate laboratory-measured mortality and stress due
to OA to natural communities [90]. Hypoxia is detrimental to zooplankton survival and
reproduction as well [91–93], and is associated with changes in community structure [94].
Finally, salinity stress may affect mortality in fjords and estuaries with high freshwater
input [95], though estuarine copepods are adapted to brackish water or can withstand
short-term exposure to low salinities [96] despite paying an energetic cost to do so [97].
Thus, a variety of environmental stressors may contribute to non-consumptive mortality,
whether directly or in synergy with disease or other stressors.

Massive die-offs of zooplankton in the winter have been attributed to either starva-
tion or natural senescence post-reproduction, though disease is another potential cause.
Insufficient lipid reserves has been proposed as an explanation for mass mortality of Arctic
copepods, for example [74]. Copepods have vastly different starvation tolerances and
metabolic needs [98]; insufficient lipid storage for overwintering may explain the high
mortality and carcass flux observed in the winter when starvation stress is highest [99].
Senescence, on the other hand, is not likely to solely explain mortality, but may be a fac-
tor in deteriorating body condition that leads to other causes of mortality. Mortality of
copepods increases with age and reproductive success, especially in males, suggesting a
natural ageing process post-reproduction [100]. In some insects and copepods, immune
function [101], disease resistance [102] and toxin resistance [103] are weaker in males and
decline with age [104]. Senescence may make zooplankton vulnerable to mortality, but
there is no evidence that it is the sole cause of mortality, and it does not account for the
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death of juveniles. It is plausible, however, that starvation leads to mass mortality in some
species that overwinter, especially in the Arctic.

Finally, toxins produced by phytoplankton and death due to parasites kill zooplankton
in some cases. Some diatoms can produce an aldehyde that inhibits hatching success and
larval survival in co-existing planktonic copepods [105], and toxin production by harmful
algal blooms (HABs) can deter or kill zooplankton; grazing can also increase toxin production
by HABs [106]. Some zooplankton are resistant to algal toxins, while others avoid them by
chemotaxis [107] or succumb to them [106]. For example, some dinoflagellates in the genus
Gyrodinium produce a toxin that kills Acartia sp. [108]. Zooplankton also contain a wide range
of endosymbionts and parasites [109], including dinoflagellates [109–111], ciliates [112,113],
fungi [114], oomycetes and viruses [109,112,115,116]. Due to the conspicuous nature of ciliate
and flagellate infection, some of these pathogens have been implicated in mortality. In one
study, a parasitic Paradinium sp. killed up to a third of Paracalanus females [110], and ciliates
have been documented causing mass mortality of euphausiids [112]. Pathogens causing
severe disease might be hard to detect as diseased or dead zooplankton sink or are consumed.

Many different causes of non-consumptive mortality have been suggested to explain
die-offs of crustacean zooplankton, but few clear links between a cause and death have
been established. While environmental stressors, dietary shortfalls and cellular parasites
might explain a portion of this mortality, viral infection is also likely important since viruses
cause mortality in crustaceans and are found in zooplankton. Though definitive links to
mortality have yet to be established, limited evidence of infection and observations of
disease have been documented; thus, viruses likely account for some of the unexplained
mortality in crustacean zooplankton. Documenting the significance of viral infection to
non-consumptive mortality in zooplankton is a first step in understanding the role of
viruses in regulating zooplankton populations and community structure, and ultimately its
impact on trophic transfer efficiency and biogeochemical cycling.

2.3. Implications of Viral Disease for Food Webs and Biogeochemical Cycling

Viral infection is typically taxon-specific and density-dependent and therefore likely
affects the composition of zooplankton communities by removing susceptible organisms.
Conversely, resistance to infection would confer an advantage and may allow some taxa to
persist or even colonise new areas. In turn, as functional roles differ among zooplankton
species, changes in the taxonomic composition of the zooplankton community will poten-
tially have cascading effects on the food web, pathways of trophic transfer and nutrient
cycling. Though infection and disease will be influenced by environmental conditions,
year-to-year variability and stochastic effects, viral infection that leads to zooplankton
mortality will have predictable effects.

Widespread viral disease in crustacean zooplankton would alter their availability to
higher-level consumers as well as the grazing pressure they exert on phytoplankton and
other prey, thus affecting the transfer of primary production to higher trophic levels. Total
mesozooplankton production in epipelagic food webs is estimated at about 4.6 Gt C y−1, which
supports the production of fish, seabirds and mammals [23]. Viral disease in zooplankton will
affect the pathways of nutrient and energy flow in aquatic food webs (Figure 1). Infection
can make hosts more vulnerable to predation if individuals become more conspicuous or
have reduced predator escape ability, as has been inferred for infection by chytrids [117] and
iridoviruses [46]. Increased predation could either reduce the spread of infection by removing
infected individuals from the population or increase infection by enhancing the spread of free
virus particles or infected tissue, as occurs in some animal systems [118]. As the nutritional
value of zooplankton varies depending on their lipid content and composition [28,119],
changes in the zooplankton community could affect the amount and quality of nutrients
available to consumers [22,28,120]. Hence, disease outbreaks in zooplankton would affect
higher trophic levels. Alterations in the abundance of particular zooplankton due to virus-
caused mortality would also affect the primary producers, bacteria and zooplankton on which
they prey [121]. Zooplankton grazing can prevent domination by specific phytoplankton
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and help maintain a diverse community of primary producers and microzooplankton [22,25].
In the same sense, viruses may also prevent dominance by specific taxa of zooplankton by
suppressing abundant taxa, and differential susceptibility to abundant viruses in a particular
region may confer an advantage to resistant taxa in dominating the community or colonising
new regions. Changes in zooplankton community composition due to viral infection are likely
to have cascading effects on food webs.
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Figure 1. The effects of viral disease and transmission in crustacean zooplankton on pelagic food webs.
Solid arrows represent trophic transfer, while dashed arrows represent the regeneration of organic
material through mortality or excretion, e.g., cell lysis for primary producers or bacteria and carcasses
or faecal pellets for zooplankton. Arrows coloured red represent relationships directly affected as a
result of disease. Virus-caused mortality in crustacean zooplankton would result in reduced grazing
pressure on primary producers and lower food availability to zooplankton predators. Reduced
grazing would lower DOM generation from sloppy feeding but increase export of phytoplankton
cells as POM. Mortality would increase POM flux from sinking carcasses but decrease the generation
of faecal pellets which liberate DOM and contribute to POM generation.

Zooplankton mortality influences the generation of different types of particulate organic
carbon (POC) by zooplankton and the fate of that carbon. This includes increased POC
generated by sinking carcasses and decreased POC generated by excretion of faecal pellets
(Figure 1). Estimates of zooplankton mortality and the contribution of zooplankton carcasses
to sinking POC range widely based on location, population bloom status, time of year and
method of estimation; however, zooplankton mortality contributes significantly to carbon
export [23,74,99,122–124]. For instance, estimates of copepod turnover and associated con-
tribution to POC flux vary widely from 0–0.5 day−1 and 0–80%, respectively [74,99,122,123].
Carcasses produced due to viral disease could also spur microbial production [25]. High
zooplankton densities are also likely to increase disease transmission and potentially disease
severity [125–127]. While viral mortality might increase POC flux from carcasses, reduced
populations of zooplankton would result in lower export of microzooplankton, bacteria and
primary producer biomass through excretion as faecal pellets [23], a significant component
of the biological carbon pump [26]. DOM generation from sloppy feeding and faecal pellets
would also be reduced if infection led to less grazing, potentially lowering primary and
bacterial production due to decreased nutrient regeneration.
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The impact of zooplankton viruses on food webs and marine communities also in-
cludes the viruses that they carry that do not cause severe disease. Some crustacean
viruses and pathogens are lethal, while others are sublethal and chronic or are resisted
and eventually overcome [29,128]. Many viruses cause latent or mild infections which
only cause severe disease under specific conditions, such as high host density or stress.
Such viruses may be relatively benign in one host, but cause severe disease in another, as
discussed below.

3. The Passengers: Viruses Spread by Crustacean Zooplankton

In addition to their own viruses, crustacean zooplankton carry and transmit viruses
of other organisms. Examples include crustacean zooplankton spreading viruses between
phytoplankton [129,130], in aquaculture [36,38–40,69], between wild fish [34,37,131] and
to their predators [132]. Of all the marine invertebrate viruses described, those with
direct economic impacts on aquaculture have been studied most extensively regarding
their disease impacts and modes of transmission [30,50,51,133]. Pathogens in industrial
aquaculture are a persistent and expensive problem, and viruses are responsible for yield
losses, especially in shrimp farming [30,134,135]. Pathogens that proliferate in cultured
fish and crustaceans can be reintroduced to wild communities through effluent or escaped
organisms [136,137] with detrimental effects on the ecosystem [136–141]. Zooplankton can
act as vectors between aquaculture and wild communities, as well as within or between
wild communities, potentially facilitated by shipping (Figure 2). Although this process
remains understudied overall, the best-known case of viral transmission and disease in
crustaceans is that of white spot syndrome virus (WSSV), a double-stranded DNA virus of
the Nimaviridae within the unassigned class Naldaviricetes.
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Figure 2. Crustacean zooplankton can vector viruses horizontally and vertically in the ocean. Viruses
are transmitted among wild crustaceans or move between aquaculture pens and the local crustacean
community through escapees, effluent or vectors. Viruses harboured in the wild are also transported
into open net pens by zooplankton, where host density and environmental conditions are conducive
to disease development. Diel or seasonal vertical migration of zooplankton transports organic matter
between deep water and the mixed layer, with the potential to transmit pathogens including viruses.
Long-distance transport of viruses carried by zooplankton in ship ballast should also examined as a
mechanism of viral spread.
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White spot syndrome virus (WSSV) devastates crustacean aquaculture [30,142,143] and
infects wild crustaceans, especially in proximity to aquaculture operations, where over 50%
of wild organisms test positive for WSSV in some cases [64]. Higher water temperatures can
trigger or exacerbate disease development of WSSV [144] and virus particles are remarkably
stable in seawater [145], making it of particular concern for aquaculture operations as the
ocean warms. The virus is widespread in copepods and other zooplankton in proximity
to farms, which are established reservoir hosts for WSSV [39,63]. Many crustaceans can
transmit WSSV to aquaculture from the local environment, or facilitate its spread within
aquaculture, including barnacles [40], copepods [38] and mysid shrimp [62], amongst
other crustaceans [29,31,50,60,146]. The virus is also able to ‘piggyback’ on phytoplankton,
resulting in subsequent transmission to grazers [62]. Virulence and a wide host range
make WSSV a devastating and persistent disease that is exacerbated by its crustacean
vectors and reservoir species. There is a constant exchange of virus between aquaculture
and local communities, facilitated in part by planktonic crustaceans [29,64,134]. While
WSSV is the best documented, it is not the only economically important pathogen with a
zooplankton reservoir.

Other crustacean and vertebrate viruses are vectored by zooplankton such as am-
phipods, but also sea lice, which have planktonic and parasitic stages. For example, the
amphipod Diporeia carries viral haemorrhagic septicaemia virus (VHSV) in the Great
Lakes [32,48,58]. Viral haemorrhagic septicaemia affects both marine and freshwater fish. It
has been implicated in large fish kills in the Great Lakes [147] as well as in the mortality of
herring and salmon in British Columbia, where it is thought to have been passed between
wild and farmed fish [148]. Many fish and shrimp viruses are carried by sea lice or replicate
within them, including taura syndrome virus (TSV) in Ergasilus manicatus [35], infectious
haematopoietic necrosis virus (IHNV) in Lepeophtheirus salmonis [37] and infectious salmon
anaemia virus (ISAv) in Caligus rogercresseyi [149]. Sea lice parasitise fish tissue, where
blood feeding makes them ideal mechanical vectors. Crustacean zooplankton are globally
distributed, some have been identified as vectors or reservoirs of devastating diseases of
finfish and other crustaceans in aquaculture and the wild. As a result, the complement of
viruses carried by these organisms should be identified and the mechanisms of their spread
require further study.

Zooplankton, which are prolific vectors, are spread globally in ship ballast water.
Ballast water is a source of non-indigenous zooplankton (NIZ) and viruses introduced
to freshwater and marine environments [150–155], both of which can disrupt ecosystems
if they establish successfully [150,156,157]. While there are regulations on ballast water
exchange prior to port entry for international arrivals, some NIZ are still introduced, and do-
mestic vessels can spread NIZ from previously invaded areas to uninvaded ones [158–160].
Further, though non-indigenous zooplankton are monitored for their potential ecological
effects, their viruses and the viruses of zooplankton generally are mostly uncharacterised
and not given adequate attention in risk assessments. Since zooplankton carry pathogenic
viruses of other organisms and can be transported across oceans in ship ballast, their
potential role in long-distance disease transmission should be examined.

In addition to long-distance horizontal transport, many zooplankton perform daily
and seasonal vertical migrations through the water column, which may spread pathogens
between communities at different depths. Up to 50% of zooplankton above 500 m perform
diel vertical migration (DVM), rising to the surface to feed at night [161]. The diel and
seasonal vertical movements of zooplankton transfer organic material between layers with
high energetic barriers to mixing, connecting epi- and mesopelagic plankton communities
and sequestering carbon [162–164]. Zooplankton are infected by and carry viruses, and
infected individuals could release virus particles when they are migrating, consumed or
dying. Copepod carcasses can be suspended and drift in the epipelagic layer with long
residence times [79], sometimes reaching neutral buoyancy and remaining connected to
the food web. These carcasses are food for scavenging organisms and are a potential source
of pathogens if their contents are released [165]. For instance, drifting Neocalanus cristatus
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carcasses can make up 30–40% of the adult diet of Euphausia pacifica in the Sea of Japan [166].
The consumption and subsequent excretion of dead N. cristatus by E. pacifica redistributes
the organic matter contained within carcasses; therefore, suspended zooplankton carcasses
infected with viruses or other pathogens represent a potential inoculum that could initiate or
prolong disease outbreaks. Zooplankton consumption of infected individuals or carcasses
and the subsequent release of viral particles at varying depths during migration could
spread viruses vertically in the water column. Faecal pellets may also act as vectors
given that some viruses remain infectious after passing through the zooplankton digestive
system [130]. Overall, vertical migration by zooplankton connects different water masses
and ultimately epi- and mesopelagic communities. This regular movement of organic
material may be a mechanism of pathogen dispersal for zooplankton as well as photo- and
heterotrophic microbes that has yet to be investigated.

Crustacean zooplankton can be reservoirs and vectors of economically damaging
viruses. Identifying the viruses associated with and infecting crustacean zooplankton is
necessary to monitor the impacts of these viruses on aquaculture and wild communities
and understand how they spread on local and global scales. The full complement of
viruses carried by these organisms warrants further attention in order to better understand
zooplankton life cycles and ecology, the mechanisms of disease transmission in the ocean
and the disease transmission risks associated with shipping.

4. Lifting the Veil on the Identity and Impacts of Zooplankton Viruses

Our understanding of viral diversity and evolution in the ocean has massively in-
creased over the past decade, leading to the establishment of entirely new phyla [17] and
major taxonomic adjustments by the International Committee on the Taxonomy of Viruses
(ICTV) [167]. This has been spurred by metagenomic sequencing of environmental samples
and in select hosts of interest, leaving the viruses of large swaths of ocean organisms
neglected, including crustacean zooplankton, a functional lynchpin in ocean production.
While there are some documented examples of viruses infecting zooplankton, much of the
diversity of viruses in this group remains unexplored. Characterising these viruses and
their impacts will allow viral infection of zooplankton to be integrated into our understand-
ing of biogeochemical cycling, energy flow through food webs and disease transmission
within and external to crustacean zooplankton. Moving forward, we propose that the
following approaches are warranted to investigate the diversity and impacts of crustacean
zooplankton viruses:

I. Virus discovery in crustacean zooplankton with a focus on the establishment of host–virus
relationships as well as a link between infection, disease and mortality.

Virus discovery efforts may include primer-based interrogations of plankton samples
for specific viral groups, or meta-omic approaches to capture a larger snapshot of viral
diversity. There is no known host association for most viruses identified in environmental
samples or those found in meta-omic reads from tissues. Giving evidence of viral replication
in a host is challenging, but it can be accomplished using strand ratios from transcriptome
reads, host–virus co-divergence analysis [49], through proximity ligation methods [20] or
by examining immune markers of active infection. Correlational evidence for mortality
can be obtained by linking viral prevalence or concentrations in host populations with
death, and molecular probes can be used to interrogate dead zooplankton for evidence of
viral infection. Ideally, disease transmission can be shown by infecting healthy animals
with viruses from infected individuals, and then recovering the same virus after disease
induction. This process could be challenging due to the difficulty in culturing many
zooplankton, which have complex lifecycles, as well as the fact that crustaceans can be
infected by and carry multiple viruses which may not cause severe or detectable disease
unless presented with the right conditions within the host. Establishing host–virus systems
in culture will allow thorough investigations into symptomatology and virulence as well
as host immune response and resistance.
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II. An assessment of viral prevalence, distribution and seasonal dynamics in crustacean host populations.

The host ranges and prevalence of viruses in crustacean zooplankton are still unclear.
Once viral genomes and host–virus pairs are better known, the occurrence and impacts of
viruses on zooplankton populations can be investigated. Comparisons between the pres-
ence of viruses and mortality could shed light on viral infection strategies in zooplankton.
Molecular probes could be used to assess virus occurrence in host populations across space
and time. Spatial data would allow for investigations into distribution and transmission
across long distances. Temporal data will be essential in determining if viruses play a role in
zooplankton seasonal mortality and identifying which viruses are persistent or ephemeral.
The interrogation of temporal samples for viruses represents a possible role for virologists
in working with well-established zooplankton time series.

III. A comprehensive assessment of viral ‘passengers’, mechanisms of transmission and associated risks.

As described above, crustacean zooplankton can be vectors of lethal pathogens of
fish, crustaceans and phytoplankton. Further attention should be paid to the potential for
zooplankton to spread viruses vertically through the water column and horizontally across
large distances. The roles of DVM, seasonal migration and global shipping in spreading
crustacean viruses warrant investigation. The first step in assessing the role of vertical
movement by zooplankton in virus dissemination is to identify the viruses carried by
zooplankton and determine when and how they are shed. Once candidate viruses are
identified, assays for zooplankton-associated viruses in the water column can also be
performed. If pathogens of concern are identified in zooplankton, monitoring programs for
ships should be expanded to include these viruses.

5. Conclusions

Crustacean zooplankton are taxonomically diverse and abundant, yet their viruses
remain undiscovered and the impacts of those viruses are largely unknown. Viruses as-
sociated with zooplankton include representatives from deep branches of viral evolution
and employ a range of infection strategies including causing severe disease. Viruses are
expected to play a substantial role in zooplankton mortality, with disease influenced by
environmental factors, although evidence remains sparse. Zooplankton growth and mor-
tality models are poorly constrained as the fate of zooplankton biomass in the ocean is
not well-established, a missing component in our understanding of how populations are
regulated. This limits our ability to accurately assess the role of zooplankton in biogeo-
chemical cycling and how viruses impact the nutritional landscape available to fish and
larger animals. Zooplankton are also prolific viral vectors whose viruses must be identified
before their impacts on local and global disease transmission can be assessed. The viruses
associated with zooplankton and their impacts represent an unknown frontier of diversity
and ecological interactions in the ocean that has not been given adequate attention.
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