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Abstract: The composition of the gut microbiome stores the imprints of prior infections and other
impacts. COVID-19 can cause changes in inflammatory status that persist for a considerable time after
infection ends. As the gut microbiome is closely associated with immunity and inflammation, the
infection severity might be linked to its community structure dynamics. Using 16S rRNA sequencing
of stool samples, we investigated the microbiome three months after the end of the disease/infection
or SARS-CoV-2 contact in 178 post-COVID-19 patients and those who contacted SARS-CoV-2 but
were not infected. The cohort included 3 groups: asymptomatic subjects (n = 48), subjects who
contacted COVID-19 patients with no further infection (n = 46), and severe patients (n = 86). Using a
novel compositional statistical algorithm (nearest balance) and the concept of bacterial co-occurrence
clusters (coops), we compared microbiome compositions between the groups as well as with multiple
categories of clinical parameters including: immunity, cardiovascular parameters and markers of
endothelial dysfunction, and blood metabolites. Although a number of clinical indicators varied
drastically across the three groups, no differences in microbiome features were identified between
them at this follow-up point. However, there were multiple associations between the microbiome
features and clinical data. Among the immunity parameters, the relative lymphocyte number was
linked to a balance including 14 genera. Cardiovascular parameters were associated with up to
four bacterial cooperatives. Intercellular adhesion molecule 1 was linked to a balance including
ten genera and one cooperative. Among the blood biochemistry parameters, calcium was the only
parameter associated with the microbiome via a balance of 16 genera. Our results suggest comparable
recovery of the gut community structure in the post-COVID-19 period, independently of severity or
infection status. The multiple identified associations of clinical analysis data with the microbiome
provide hypotheses about the participation of specific taxa in regulating immunity and homeostasis of
cardiovascular and other body systems in health, as well as their disruption in SARS-CoV-2 infections
and other diseases.
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1. Introduction

The coronavirus infection (COVID-19) is spreading around the world. More than
6.82 million people worldwide have died from COVID-19 since its first detection in Decem-
ber 2019 (according to the World Health Organization, COVID-19 Weekly Epidemiological
Update Edition 133 published 8 March 2023). Against the background of a pandemic and a
large difference in the severity of the disease after infection, an important issue today is the
study of consequences of the infection.
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While SARS-CoV-2 primarily causes lung infection by binding to ACE2 receptors [1]
present on alveolar epithelial cells, it has recently been reported that SARS-CoV-2 RNA
had been found in the feces of infected patients [2]. Notably, intestinal epithelial cells,
in particular enterocytes of the small intestine, also express ACE2 receptors [3,4]. Some
patients with COVID-19 have experienced diarrhea, which indicates a clear possibility of
the involvement of the gut-lung axis in the disease process [5]. Moreover, observational
evidence suggests that SARS-CoV-2 can infect and be shed from the gastrointestinal tract [6].

The role of the gut microbiota in influencing various lung diseases is being studied not
only in the context of coronavirus infections. Results have already been obtained showing
a relationship between the microbiota composition and the influenza virus, respiratory
syncytial virus [7], and acute respiratory distress syndrome [8]. Respiratory viral infec-
tions themselves are also known to cause changes in the gut microbiota [9]. In addition
to these associations, the gut microbiome plays a critical role in the functioning of major
components of the host’s innate and adaptive immune systems [10]. Pronounced shifts in
the gut microbiota composition are associated with a wide range of pathologies, including
autoimmune, allergic, and chronic inflammatory diseases [11–13], such as inflammatory
bowel disease [14], colorectal and other cancer types [15], type 2 diabetes [16], cardiovascu-
lar disease [17], neurodegenerative diseases [18], and even depression [19]. The depletion
of the gut microbiota with age, namely a decrease in its diversity [8,20], is a well-known
phenomenon which can potentially can affect the severity of COVID-19 through changes in
the functioning of the immune system, as happens with other infections. For example, in
mouse models, the removal of certain intestinal bacteria with antibiotics leads to increased
susceptibility of the lungs to influenza virus infection [21]. However, according to the
recent data, antibiotics could have an opposite or even antiviral effect [22].

Recent study of blood biomarkers from COVID-19 patients have identified a set
of molecular predictors (blood proteomic biomarkers) that may characterize and predict
individual differences in disease severity [23]. One study found that a core of gut microbiota
can accurately predict the aforementioned proteomic biomarkers, and these features of the
gut microbiota are highly correlated with pro-inflammatory cytokines [24].

A recent small study in COVID-19 patients [25] showed that gut microbiome changes
during hospitalization were associated with fecal levels of SARS-CoV-2 and severity of
COVID-19. Among the most pronounced changes were enrichment in opportunistic mi-
croorganisms and depletion of beneficial bacteria. Moreover, this imbalance persisted even
after the elimination of SARS-CoV-2 and the disappearance of respiratory symptoms. This
suggests that SARS-CoV-2 infection could be associated with long-term adverse effects on
the gut microbiota [25]. Another recent study showed that fecal microbial composition dif-
fered significantly between SARS-CoV-2 patients and controls, independently of antibiotic
exposure [26]. Some opportunistic bacteria were enriched in COVID-19 patients compared
to controls. However, there were no differences in microbial community structure between
recovered patients and non-infected controls, nor a difference in alpha diversity between all
groups. No significant associations were found between microbiome composition and dis-
ease severity [26]. Chen et al. showed that microbiota diversity had not returned to initial
levels six months after recovery, and patients with lower gut microbiome diversity showed
higher inflammation level and illness severity during the acute phase [27]. Interestingly,
post-COVID syndrome was associated with an initial gut microbiome rich in opportunistic
pathogens [28].

It is important to explore whether there are persistent alterations in gut microbiome
after recovery and if the microbiome can contribute to the severity of post-COVID-19
symptoms. For this purpose, we conducted an observational study of three subgroups of
patients characterized by strict exclusion/inclusion criteria, clearly defined clinical status,
and a detailed panel of diverse laboratory tests.
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2. Methods
2.1. Trial Information

The study was conducted from January 2021 to May 2021 at the Russian Gerontolog-
ical Research and Clinical Center (ClinicalTrials.gov Identifier: NCT04871789), and was
approved by the local ethics committee under protocol No. 36 dated 2 November 2020.

Originally, a total of 200 subjects were enrolled into the study, consisting of 50 individ-
uals who had recovered from asymptomatic COVID-19, 50 individuals who had been in
close contact for at least three days with patient(s) with confirmed COVID-19 infections but
did not contract the virus and had no IgM (N-protein and RBD S-protein) and IgG (whole
S-protein) antibodies to SARS-CoV-2 in their serum (Vektor-Best, Novosibirsk, Russia),
and 100 individuals who had recovered from severe COVID-19. Blood analyses were
performed for all 200 subjects, while stool samples were collected from a slightly lower
number of subjects, including 48 asymptomatic subjects (Group A), 46 subjects with no
further infection (Group N), and 86 severe patients (Group S). These were the groups that
were analyzed in the present study.

2.2. General Recruitment Criteria

All participants were at least 18 years of age and provided signed informed consent
forms. The inclusion criteria were group specific, as follows.

Group A (asymptomatic):

• Confirmed COVID-19 diagnosis based on:

# A medical record of a positive RT-PCR test result for SARS-CoV-2; or
# IgM and IgG antibody titers against SARS-CoV-2 in the serum, indicating that

the participant has been previously infected with SARS-CoV-2.

• No history of clinical symptoms associated with COVID-19 in the past six months, in-
cluding fever (body temperature above 37.5 degrees Celsius/99.5 degrees Fahrenheit),
shortness of breath, smell and taste dysfunctions, diarrhea, and coughing.

Group N (non-infected):

• Previous close contact for at least three days without personal protective equipment
with individuals who exhibited COVID-19 symptoms (at home, in the workplace, etc.)

• No IgM and IgG antibody titers against SARS-CoV-2 in the serum, indicating that the
participant has not been previously infected with SARS-CoV-2

• No history of clinical symptoms associated with COVID-19 for the past six months, in-
cluding fever (body temperature above 37.5 degrees Celsius/99.5 degrees Fahrenheit),
shortness of breath, smell and taste dysfunctions, diarrhea, and coughing.

Group S (severe):

• Confirmed COVID-19 diagnosis based on:

# A medical record of a positive RT-PCR test result for SARS-CoV-2; or
# IgM and IgG antibody titers against SARS-CoV-2 in the serum, indicating that

the participant has been previously infected with SARS-CoV-2.

• Inpatient treatment of severe COVID-19

Patients with COVID-19 were considered to have severe illness if they exhibit one or
more of the following symptoms:

• Respiratory rate > 30 breaths/min
• Blood oxygen saturation (SpO2) ≤ 93%
• PaO2/FiO2 < 300
• Computed tomography (CT) findings of lung damage > 50%
• Septic shock
• Multiple organ failure
• Cytokine storm

The following exclusion criteria were identical across the groups:
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• Pregnancy
• Refusal to participate
• Prior COVID-19 vaccination

The following procedures were carried out over the course of two visits.
Visit 1 (screening), days 1–14:

• Signing of an informed consent form
• Express pregnancy test (for women of childbearing age)
• Measurement of IgM and IgG antibody titers against SARS-CoV-2
• Intake of medical and epidemiological histories

Visit 2, day 1 for 90 ± 15 patients since diagnosis or discharge from the hospital (for
severe COVID-19 patients):

All groups:

• An extensive survey and intake of detailed life and medical histories
• Physical examination, including measurement of arterial blood pressure (ABP), heart

rate (HR), respiratory rate (RR), and anthropometric status indicators including hip
and waist circumference and body mass index (BMI)

• Complete blood count with white blood cell differential
• Blood chemistry test, including homeostasis, immune status, level of sex hormones,

and hormonal markers of metabolic dysfunctions
• Bioelectrical impedance analysis
• Stool sampling for gut microbiota analysis by 16S rRNA gene sequencing (Group A,

45 samples; Group N, 50 samples; Group S, 88 samples)
• Express smell test

Group S:

• Chest CT
• Spirometry
• Speckle tracking echocardiography

2.3. Sample Collection and Processing

Stool samples were collected using DNA-stabilizing KnomX gut microbiome collection
kits (KnomX, Moscow, Russia) stored at −30 ◦C. DNA extraction from the stool samples
was carried out using the Qiagen Power Fecal PRO kit according to the manufacturer’s
instructions. Amplification of the V4 region of the 16S rRNA gene was performed using
modified 515F and 805R primers. The second round of amplification was performed
using standard Illumina indexes with adapters. Both rounds of PCR were performed
using the Eurogen PCR buffer and the Bio-Rad CFX-96 amplifier. PCR products were
purified using the Cleanup Mini kit for DNA extraction (Evrogen, Moscow, Russia). The
DNA concentration was determined using a Qubit fluorometer (Invitrogen, Waltham,
MA, USA) and the Quant-iT dsDNA High-Sensitivity Assay Kit. Purified amplicons were
mixed equimolarly according to the obtained concentrations. Further preparation of the
samples for sequencing and sequencing of the pooled library was performed using the
MiSeq Reagent Kit v2 (500 cycles) and the MiSeq sequencer (Illumina, San-Diego, CA,
USA) according to the manufacturer’s recommendations. Primary processing (barcode
extraction) was performed as previously described [29]. After quality trimming, reads were
merged using the SeqPrep package; the total length of the merged reads was 252 bp.

2.4. Data Analysis

The data were analyzed using the Knomics-Biota analytical system (https://biota.
knomx.com/, accessed on 1 March 2023) [30]. The reads were quality-trimmed and fil-
tered using the QIIME v2 software package [31]. Denoising of reads was conducted using
the DADA2 algorithm [32]. Taxonomic classification of the obtained amplicon sequence
variants (ASV) was performed using a classifier implemented in the QIIME2 software
package [33] preliminary trained with the SILVA v.138 database [34], which was prepro-

https://biota.knomx.com/
https://biota.knomx.com/
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cessed using RESCRIPt (https://github.com/bokulich-lab/RESCRIPt, accessed on 8 March
2023), Creative Commons Attribution 4.0 License (CC-BY 4.0)). The 16S rRNA sequences
in the database were trimmed according to the primers used (515F/806R) [35] and ag-
gregated with a similarity threshold of 99%. Microbial abundance tables at the levels of
species, genus, family, etc., were obtained by summing the relative abundance levels of
ASV belonging to the corresponding clade.

Alpha diversity was evaluated using Shannon [36] and Chao1 [37] metrics for ASV
abundance tables rarified to 10,459 reads per sample (the lowest number of reads per
sample across all samples). Beta diversity was evaluated using rarefied genera abundance
levels with the Aitchison distance metric [38]. During clr-transformation (centered log-
ratio transformation) of microbial abundances, zero taxa counts were replaced with a
pseudocount (0.5). Co-abundance networks of microbial genera were obtained using SPIEC-
EASI algorithm [39] with the Meinshausen-Bühlmann method for correlations detection
(other parameters: number of subsamples—10, number of lambda iterations—10, minimum
value of lambda—0.2). Only the genera with abundance > 20 reads in > 10 samples were
considered in this analysis [40,41]. Clusters of co-abundant genera (microbial cooperative;
shortly—coops) were derived from the resulting network using the Louvain method [42].

We used a similar statistical approach to compare the gut microbiome composition
across three groups of subjects, as well as with multiple clinical parameters. To reduce the
analysis dimensionality, we selected one parameter from each cluster of highly correlated
parameters (Spearman correlation coefficient > 0.8, see Supplementary Table S1). There
were four groups of parameters:

• Laboratory tests related to immune status (n = 18)
• Clinical cardiovascular markers (n = 21)
• Laboratory markers of endothelial dysfunction (n = 5)
• Blood metabolites (n = 21)

The comparison of microbiome composition with the study groups and clinical pa-
rameters included: analysis of alpha diversity using a linear model, beta diversity using
PERMANOVA for categorical factors, and distance-based redundancy analysis (dbRDA)
for continuous factors (using the adonis function from the package vegan [43]), as well as
analysis of microbial cooperatives using a compositionality-aware approach (see below).
For the clinical parameters, correction for multiple comparisons was performed using the
false discovery rate (FDR) calculation with the Benjamini-Hochberg method. The correction
was performed separately for each of the five parameter groups described above. For each
parameter significantly associated with beta diversity, a detailed analysis of the association
was performed using the nearest balance method [44] as follows. Balance is a normalized
ratio of ≥1 microbial taxa in the numerator to ≥1 taxa in the denominator used to rep-
resent microbial abundance data in a compositional manner. Half of the samples were
randomly selected from the data 100 times. Each time, the nearest balance associated with
the analyzed factor was identified as described in [44]. The genera assigned to numerator
in >90 iterations or to denominator in >90 iterations were included in the final balance.

Associations of microbiome composition represented as cooperatives of microbial
genera were also explored from the perspective of balances. For each coop, we composed
a balance including its genera in the numerator and all other genera in the denominator.
The associations of these balances with the clinical parameters were evaluated using a
linear model. A correction for multiple comparisons was performed using the Benjamini-
Hochberg algorithm.

3. Results
3.1. Gut Microbiome Composition Is Not Associated with the Severity of Disease after Three
Months

The overall microbiome composition of the analyzed cohorts was similar to those
previously described for stool profiles of a geographically similar population [45]. The top

https://github.com/bokulich-lab/RESCRIPt
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three dominant genera were Bacteroides (mean relative abundance: 22%), Prevotella (10%),
and Faecalibacterium (9%).

The community structure was not different three months after infection in asymp-
tomatic COVID-19 group, after contact with the SARS-CoV-2 virus in the resistant group, or
three months after the end of the disease for the severe group. Specifically, the microbiome
composition was not different between subjects who had contact with COVID-19 patients
but did not get infected (“resistant”) (N, n = 46), had asymptomatic COVID-19 (A, n = 48),
and had severe COVID-19 (S, n = 86). The microbiome composition was not associated
with IgM antibodies levels to the SARS-CoV-2 N protein or IgG antibodies to the S1 and
S2 proteins. This analysis included testing for differences in alpha diversity (linear model,
for groups—p > 0.5, for antibodies—p > 0.4), beta diversity (for groups—PERMANOVA
p > 0.4, for antibodies—dbRDA p > 0.7; Figure 1), and differential abundance analysis for
balances of genera cooperatives (linear model, for groups—FDR > 0.4, for antibodies—FDR
> 0.8), as well as clr-transformed abundance of taxa aggregated to ranks from species to
phylum (FDR > 0.4 and 0.9, respectively).
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Figure 1. Overall comparison of post-COVID gut microbiomes across the three groups of patients
with different courses of infection. The samples are visualized using Principal Coordinates Analysis
(PCoA) based on the Aitchison distance. Arrows show the top taxa in terms of the explained variance
in given axes, with the length proportional to the variance explained by the taxon. The arrows’ angle
reflects the distribution of variance between the axes. N—non-infected group, A—asymptomatic
group, S—severe group.

While no microbiome differences were found between the groups, the analysed cohort
had been deeply phenotyped three months after the infection, and many non-microbiome-
related clinical factors were found to be significantly different between the three groups.
For many of these factors, their values were notably outside the reference ranges. This
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excessive variability provided an opportunity to investigate the links between microbiome
composition and a greater statistical power. Specifically, three groups of clinical factors
were analyzed: immune status, cardiovascular system parameters, and blood biochemistry
parameters.

3.2. Balance of Specific Bacterial Taxa Is Linked to Immunity via Relative Level of Lymphocytes

Among the immune status parameters (n = 18), only the relative number of the lym-
phocytes was significantly associated with general microbiome composition (dbRDA, FDR
= 0.0643, R2 = 0.0116). The parameter values exceeded the reference range for approxi-
mately one third of the patients (Figure 2B). The revealed association was investigated in
detail using the nearest balance method [44] at the genus level. In one of its scenarios, this
novel compositional-aware method allows identifying the balance (normalized ratio of
two groups of microbial taxa—numerator and denominator) that is optimally associated
with an external factor of choice. During the cross-validation procedure, we identified
seven reproducible genera (reproducibility > 90%) in the nearest balance numerator and
seven in the denominator. Among them, the highest positive link was observed for the
unclassified members of the RF39 order, Clostridia UCG014, Oscillospirales UCG010, as
well as the Akkermansia genus from the numerator. The strongest negative associations
were found in the Parasutterella, Flavonifractor genera and the [Ruminococcus] gnavus group
located in the denominator (Figure 2A). Neither alpha diversity nor genera cooperatives
were significantly associated with the parameters from this group.
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Figure 2. Links between immunity and gut microbiome post-COVID-19: reproducible taxa revealed
by the nearest balance cross-validation associated with lymphocytes relative levels (%). (A) Bacterial
genera—reproducible members of the nearest balances revealed in cross-validation. The upper
green bars show the taxa in the numerator in decreasing order of the linear regression coefficient
between the clr-transformed microbial abundance and factor (x axis). The lower red bars show the
denominator taxa. The color tint is proportional to the reproducibility of the taxa in cross-validation
analysis. (B) Relation between the balance composed of reproducible taxa and lymphocyte count
(n = 177). Red dots indicate values that exceeded the normal range.

3.3. Links between Microbiome and Clinical Cardiovascular and Endothelial Dysfunction Markers

Because COVID-19 is known to have a significant impact on the cardiovascular sys-
tem, we compared the gut microbiome profiles with the parameters from the following
groups of clinical cardiovascular markers (n = 21, Table 1): pulse pressure and heart rate
measured in sitting position, as well as the results of carotid Doppler ultrasonography
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(CDU, 2 parameters), cardiac ultrasound (CU, 13 parameters) and applanation tonometry
(AT, 4 parameters).

Table 1. Group-wise statistics for the cardiovascular parameters.

Parameter Units Group A (Med, Q1; Q3) Group N (Med, Q1; Q3) Group S (Med, Q1; Q3)

Ultrasound dopplerography of the carotid arteries

Intima media thickness right cm 0.73; 0.64, 0.84 (n = 46) 0.73; 0.64, 0.88 (n = 48) 0.88; 0.74, 0.98 (n = 86)

Maximal stenosis 0; 0, 30 (n = 46) 0; 0, 25 (n = 48) 25; 0, 35 (n = 86)

ECHO-CG

Myocardial mass index g/m2 62.5; 55, 73.83 (n = 42) 64.5; 54.25, 74 (n = 46) 75; 62.25, 88.75 (n = 74)

Anteroposterior dimension of the right
ventricle cm 2.9; 2.7, 3.1 (n = 46) 2.8; 2.6, 3.1 (n = 45) 3.1; 2.8, 3.4 (n = 85)

Left atrial volume mL 44.5; 38.25, 54.75 (n = 46) 48; 36.5, 57 (n = 47) 56; 45.5, 68.5 (n = 83)

Right atrial volume mL 33.5; 28, 39.5 (n = 46) 32; 27, 40 (n = 47) 36; 32.25, 43.75 (n = 82)

Systolic pressure in the pulmonary artery mmHg 25; 24, 27 (n = 46) 25; 24, 30 (n = 47) 27; 25, 30 (n = 85)

E/A ratio 1.27; 0.85, 1.6 (n = 46) 1.3; 0.97, 1.5 (n = 47) 0.8; 0.7, 1 (n = 81)

E/e’ ratio 6.5; 5, 7 (n = 46) 7; 6, 8 (n = 47) 8; 7, 10 (n = 80)

Left ventricular diastolic dysfunction 2; 1, 2 (n = 46) 2; 1, 2 (n = 47) 2; 2, 2 (n = 82)

End diastolic volume mL 92; 82.75, 107.5 (n = 46) 88; 71.25, 109.5 (n = 46) 108; 92, 118 (n = 85)

Ejection fraction 60.5; 60, 64 (n = 46) 63; 60, 64.5 (n = 47) 60; 58, 62 (n = 85)

Applanation tonometry

Pulse Wave Velocity m/s 9.7; 7.9, 10.67 (n = 46) 8.6; 6.8, 10.3 (n = 44) 10.5; 9.1, 12.1 (n = 85)

Central systolic blood pressure mmHg 117; 108.25, 124.75 (n = 46) 113.5; 106.25, 123.5 (n = 46) 125; 115.25, 134 (n = 86)

Central diastolic blood pressure mmHg 79.5; 71.25, 84.75 (n = 46) 76; 71, 81.75 (n = 46) 86; 79.25, 91 (n = 86)

Augmentation Index 25; 14, 29 (n = 46) 21; 13.25, 30.25 (n = 46) 24.5; 17.25, 30 (n = 86)

Sitting heart rate bpm 71; 64, 76 (n = 46) 68; 65, 77 (n = 48) 72; 66, 78 (n = 86)

Sitting pulse blood pressure mmHg 45.5; 41.25, 52.75 (n = 46) 45; 40, 50 (n = 48) 50; 44, 60 (n = 86)

Concentric remodeling Yes|No 10|36 (n = 46) 19|28 (n = 47) 32|53 (n = 85)

Degree of mitral regurgitation 1st|2nd 37|8 (n = 45) 41|6 (n = 47) 50|34 (n = 84)

No significant associations were observed in alpha or beta diversity. Out of the
44 explored clinical cardiovascular markers, six were significantly associated with genera
cooperatives (Figure 3, Table 2, FDR < 0.05). At the same time, no significant associations
between alpha diversity or microbiome composition in general were revealed (dbRDA) for
these parameters (FDR > 0.1).

Interestingly, all factors for which there were significant associations with detected
cooperatives were positively correlated between each other (Spearman rho—from 0.17 to
0.54, FDR < 0.04, Figure 3).

Separately, we investigated if the microbiome was related to the laboratory parameters
of the markers of endothelial dysfunction (n = 5; group statistics are listed in the Table 3),
including the following:

- Vascular endothelial soluble growth factor receptor 1 (VEGF-R1)
- Intercellular adhesion molecule 1 (ICAM-1)
- Vascular endothelial adhesion molecule type 1 (VCAM-1)
- E-selectin
- Von Willebrand factor
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Figure 3. Associations between clinical cardiovascular markers and genera cooperatives. Significant
correlations and associations are shown with solid and dashed lines, respectively. Red lines denote
positive associations and blue lines denote negative associations. The width of the solid lines is
proportional to the Spearman correlation coefficient between cardiovascular markers (ranging from
0.17 to 0.54). The size of nodes corresponding to markers is proportional to the minimal p value of
the associations between the marker and cooperatives. The size of the nodes corresponding to genera
is proportional to their mean abundance in the dataset.

Table 2. Cardiovascular markers significantly linked to gut microbiome composition at the level of
bacterial cooperatives. Samples are pooled across the groups.

Cooperative Used as a
Balance Numerator Factor Linear Model

Coefficient p FDR Number of
Subjects

Lactobacillus-coop Pulse pressure in sitting position (PP) 0.8576 0 0.0034 180

Lactobacillus-coop Central systolic blood pressure (CSBP) 0.6591 0.0009 0.0468 178

Prevotellaceae-coop Pulse Wave Velocity (PWV) 0.6488 0.0003 0.0357 175

Prevotellaceae-coop Pulse pressure in sitting position (PP) 0.5846 0.001 0.0468 180

Subdoligranulum-coop Pulse pressure in sitting position (PP) −0.4016 0.0018 0.0703 180

Subdoligranulum-coop Maximum percentage of stenosis (MPS) −0.427 0.0009 0.0468 180

Subdoligranulum-coop
Systolic pulmonary artery pressure

(sPAP) (highly correlated with: tricuspid
regurgitation gradient) *

−0.4658 0.0002 0.0351 178

Methanobrevibacter-coop End-diastolic volume (EDV) (highly
correlated with: end-diastolic size) * −0.6481 0.0004 0.0357 177

* for each pairwise highly correlated clusters of parameters (|rho| > 0.8, see Section 2), one parameter per cluster
was chosen for the analysis.
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Table 3. Group-wise statistics for the endothelial dysfunction parameters.

Parameter Group N (Med, Q1; Q3) Group A (Med, Q1; Q3) Group S (Med, Q1; Q3)

VEGF-R1 0.2; 0.14, 0.26 (n = 42) 0.18; 0.14, 0.25 (n = 47) 0.19; 0.13, 0.28 (n = 79)
ICAM-1 19.6; 17.8, 19.8 (n = 9) 18.2; 17.65, 19.75 (n = 14) 19.5; 18.5, 19.9 (n = 33)
VCAM-1 12.65; 8.54, 27.3 (n = 42) 11.4; 8.21, 31.8 (n = 47) 19.7; 10.15, 38.45 (n = 79)
E-selectin 7.32; 5.8, 11.38 (n = 42) 8.1; 5.08, 12.4 (n = 47) 8.38; 6.27, 12.6 (n = 79)

von Willebrand factor, % 103.5; 85.5, 122.5 (n = 46) 116; 93, 145 (n = 46) 143; 117, 177 (n = 85)

Among them, ICAM-1 was significantly associated with the general microbiome
composition (dbRDA, FDR = 0.0314, R2 = 0.0374) and was negatively associated with
the Faecalibacterium cooperative, including Faecalibacterium itself and the Lachnospiraceae
NK4A136 group. The association with the general microbiome composition was further
investigated by nearest balance cross-validation analysis (see Section 2). The analysis
revealed 10 reproducible taxa, among which the strongest positive associations were
observed for Romboustia and [Ruminococcus] gnavus, and strongest negative ones were
observed with Lachnospiraceae groups UCG-010 and NK4A136, Barnesiella, and Eubacterium
xylanophillum (Figure 4).
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3.4. Calcium Is the Blood Metabolite Most Strongly Associated with Gut Microbiome

Among the 21 analyzed blood metabolites, there were no significant associations
found within the microbiome. The highest significance (lowest p value) was observed for
the total blood calcium level in relation to the general microbiome composition (dbRDA,
FDR = 0.0914, R2 = 0.0116). We further explored this trend in a targeted manner using the
nearest balance approach. Nearest balance cross-validation revealed 16 reproducible genera
associated with the total calcium level (Figure 5). The topmost positively associated genera
included Erysipelatoclostridium and [Ruminococcus] gnavus, and the topmost negatively
associated genera were [Eubacterium] siraeum and Methanobrevibacter archaeon.



Microorganisms 2023, 11, 1036 11 of 15

Microorganisms 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

 

 
Figure 4. Link between endothelial dysfunction markers and gut microbiome in post-COVID-19. 
Reproducible taxa were revealed by nearest balance cross-validation associated with ICAM-1 
(ng/mL). Constructed similarly to Figure 2: (A) Reproducible members of the nearest balances. (B) 
Relation between the balance composed of reproducible taxa and ICAM-1 (n = 56). 

3.4. Calcium Is the Blood Metabolite Most Strongly Associated with Gut Microbiome 
Among the 21 analyzed blood metabolites, there were no significant associations 

found within the microbiome. The highest significance (lowest p value) was observed for 
the total blood calcium level in relation to the general microbiome composition (dbRDA, 
FDR = 0.0914, R2 = 0.0116). We further explored this trend in a targeted manner using the 
nearest balance approach. Nearest balance cross-validation revealed 16 reproducible gen-
era associated with the total calcium level (Figure 5). The topmost positively associated 
genera included Erysipelatoclostridium and [Ruminococcus] gnavus, and the topmost nega-
tively associated genera were [Eubacterium] siraeum and Methanobrevibacter archaeon. 

 

 

 Figure 5. Link between blood metabolites and gut microbiome in post-COVID-19. Reproducible taxa
were revealed by nearest balance cross-validation associated with total calcium blood level, mmol/L.
Constructed similarly to Figure 2: (A) Reproducible members of the nearest balances. (B) Relation
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4. Discussion

Despite the initial hypothesis, three months after encountering the SARS-CoV-2 virus,
no microbiome signature was found to distinguish between resistant and non-resistant
subjects or to be associated with the severity of the disease (at least for the sample of the
provided size). Although the gut microbiota appeared to be significantly disrupted during
the acute COVID-19 period and in the short term after the infection [46], it is likely that
after this period the gut community will essentially recover. A recent small study showed
some differences in the microbiome composition of healthcare workers three months after
COVID-19 recovery and a control group [47], but none of the results were replicated in our
sample. A study by Zhang, F. et al. revealed a lowered functional potential to produce short-
chain fatty acids in patients with severe COVID-19 30 days after recovery [48]. Nevertheless,
we observed considerable long-term clinical consequences of coronavirus infections, the
severity of which correlated with the composition of the intestinal microbiota.

In our study, we used a novel composition-aware method for microbiome analysis—
the nearest balance [44]. Although statistical methods that consider compositionality
are relatively novel in the field of microbiome and less widespread than component-
based ones (i.e., those operating with percentages and relative abundance), they are more
precise and, provide interpretable results in the form of microbial balances. Each balance
includes one or more taxa in the numerator and one or more taxa in the denominator,
highlighting two microbial groups that are positively and negatively linked to a certain
factor, respectively. We discovered interesting associations of balances for multiple groups
of clinical factors.

In terms of the immune status parameters, only one parameter was found to be linked
to the microbiome—the relative lymphocyte level. It is well-known that the ratio of lym-
phocytes to neutrophils is a key markers of prognosis in patients with viral infections and
other pathologies [49]. A higher relative abundance of lymphocytes could be a favorable
prognostic factor, reflecting a persistent immune balance. In this study, the numerator of
the balance linked to this parameter included the taxa linked to beneficial effects on human
metabolism: Akkermansia [50] and Christensenellaceae [51]. The denominator of the balance
included [Ruminococcus] gnavus, which has been previously related to inflammatory bowel
disease [52], as well as cardiovascular risks [53]. Parasutterella, which was included nearby,
is also considered to be associated with chronic intestinal inflammation [54]. Another
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interesting taxon in the denominator was Flavonifractor—known to be able to metabolize
catechins and suppress Th2 lymphocytes’ immune response [55].

Currently, there are many diverse observations indicating the role of microbiota in
the regulation of cardiovascular parameters. These observations include a reduced risk of
CVD associated with higher fiber intake in prospective studies, altered gut microbiome in
animal models of hypertension, as well as alterations in cardiovascular markers in germ-
free animals and animals after microbiome transplantation from the hypertension model
ones [56]. Furthermore, cross-sectional studies link the content of the gut microbiome to
cardiovascular markers in humans [57–59]. Possible mechanisms considered to underlie
these associations include the production of specific metabolites by the gut microbiome
(short-chain fatty acids, TMAO, H2S), endotoxemia, and microbiome-mediated links to
immunity [56,60].

Interestingly, one of the reproducible associations is a positive link between Pre-
votella abundance and impaired cardiovascular parameters (hypertension or high CVD
risk) [46,48]. In our study, we observed a positive association between Prevotellaceae-
dominated microbial cooperative and pulse pressure, as well as with the pulse wave
velocity measured via applanation tonometry. Our previous study showed a correlation
between Bacteroides and pulse wave velocity in healthy individuals [61], each previously
associated with low-grade inflammation and the development of chronic diseases [62–64].
Arterial wall stiffness is one of the basic components of aging and cardiovascular patholo-
gies, from increased blood pressure to chronic heart failure.

Notably, the butyrate-producing Subdoligranulum genus was less abundant in the
subjects with higher pulmonary artery pressure and greater arterial stenosis in our study.
These observations align very well with previous findings [65] regarding the protective
role of these bacteria against obesity and obesity-related features. The identified negative
association of Methanobrevibacter with end-diastolic volume is of certain interest. The data
concerning these archaea and their association with human health evidence are quite con-
tradictory [66–68]. A recent study showed their depletion in patients with high triglycerides
levels [69], while other studies revealed their strong association with cardiovascular risk
factors [70] and obesity [66].

Furthermore, our results showed that microbiota composition was associated with
ICAM-1, the expression of which contributes to the clinical manifestations of a variety of
diseases [71], predominantly by interfering with normal immune function in oncology,
cardiovascular, and autoimmune diseases. Not surprisingly, the level of the molecule was
inversely associated with the butyrate-producing and anti-inflammatory Faecalibacterium
cooperative.

One of the puzzling discoveries was the link between blood calcium level and a
microbial balance including 16 genera. The numerator of the balance included two genera
reportedly associated with disorders: [Ruminococcus] gnavus group (discussed above) and
Erysipelatoclostridium. A representative species of the latter is an opportunist microorganism,
E. ramosum (previously Clostridium ramosum) that has been reported as a frequent cause of
bacteremia and a contributor to high-fat diet-induced obesity [72]. It would be interesting
to confirm this suggested positive association of calcium levels with the opportunistic
microorganisms on a larger cohort, especially considering that not only hypocalcemia, but
also hypercalcemia was associated with a poor COVID-19 prognosis [73].

The results of our study suggest that the gut microbiota had the potential to recover
after SARS-CoV-2 infection, and ultimately, there were no significant differences in micro-
biota composition in patients with varying degrees of COVID-19 severity in the long-term.
However, the identified specific novel associations between microbiota features and health
state contribute to understanding the complex interactions within the holobiont system,
and will allow for the development of novel strategies for microbiome-tailored disease
prevention and treatment.
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