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Abstract: Antibody-dependent enhancement (ADE) is a phenomenon in which antibodies produced
in the body after infection or vaccination may enhance subsequent viral infections in vitro and
in vivo. Although rare, symptoms of viral diseases are also enhanced by ADE following infection or
vaccination in vivo. This is thought to be due to the production of antibodies with low neutralizing
activity that bind to the virus and facilitate viral entry, or antigen–antibody complexes that cause
airway inflammation, or a predominance of T-helper 2 cells among the immune system cells which
leads to excessive eosinophilic tissue infiltration. Notably, ADE of infection and ADE of disease are
different phenomena that overlap. In this article, we will describe the three types of ADE: (1) Fc
receptor (FcR)-dependent ADE of infection in macrophages, (2) FcR-independent ADE of infection in
other cells, and (3) FcR-dependent ADE of cytokine production in macrophages. We will describe
their relationship to vaccination and natural infection, and discuss the possible involvement of ADE
phenomena in COVID-19 pathogenesis.

Keywords: ADE; enhanced respiratory disease; nucleocapsid; spike; SARS-CoV-2; COVID-19; anti-S;
anti-N; cytokine; antibody

1. Fc Receptor (FcR)-Dependent Antibody-Dependent Enhancement (ADE) of Dengue
Virus Infection

Historically, ADE has been an issue with dengue fever. There are four dengue virus
serotypes, and it is known that about 1–5% of infected patients become severely ill when
they are infected with a serotype that is different from that of their initial infection [1]. The
emergence of critical dengue shock syndrome (DSS) and severe dengue hemorrhagic fever
(DHF) was investigated in Thailand during the 1960s [2–4], and studies have shown that
individuals with pre-existing immunity against dengue virus are more likely to develop
severe DSS and DHF [5,6]. This is attributed to the presence of antibodies with low
neutralizing activity, i.e., they have the ability to bind to the virus but do not inhibit
infection and facilitate the entry of the virus into macrophages [7]. Macrophages express
the Fc gamma receptor (FcγR) on the cell surface, which recognizes the Fc portion of
immunoglobulin G [8]. Macrophages actively take up (phagocytose) and digest foreign
substances coated by antibodies (called opsonization) through the binding between FcR
and Fc [8]. Once weakly bound antibodies dissociate from the virion after entry into the
cells, the macrophage becomes more susceptible to infection than in the absence of the
antibody. If the amount of strongly binding neutralizing antibody is insufficient to cover the
entire virion surface, Fc and FcR-mediated enhancement of virion uptake into macrophages
causes augmentation of viral infection.

ADE of infection is a term used for in vitro experiments, while ADE of disease is used
for in vivo experiments involving animals. Since dengue virus multiplies in macrophages,
ADE of infection leads to an increase in the amount of virus in the body [9] and represents
a clinical problem as ADE of disease (Figure 1 left). Multiple statistical analyses of a
long-term pediatric cohort in Nicaragua showed that risk of severe dengue disease is the
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highest within a narrow range of preexisting suboptimal anti-dengue virus antibody titers
levels, 1:21 to 1:80 [7]. In contrast, they observed protection from all symptomatic dengue
infections at higher antibody titers. It was revealed that Sanofi’s dengue vaccine did not
induce sufficient amounts of neutralizing antibodies against dengue virus type 2 among the
four serotypes of dengue virus [10]. Moreover, in the Philippines, where the type 2 virus
became prevalent, there was an increase in hospitalization cases among children vaccinated
with the vaccine known as Dengvaxia [11]. As a consequence, the potential for ADE was
one of the concerns in developing the SARS-CoV-2 vaccine.
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[17]. Although there is a possibility of infection of macrophages [18] and vascular endo-
thelial cells [19], virus titers in blood are low [20,21], so certain immunological mecha-
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Zhou et al. cloned human antibodies against the SARS-CoV-2 S protein from COVID-
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Among the 11 enhancing antibodies, 9 were receptor binding domain (RBD)-binding an-
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Figure 1. Schematic representation of antibody-dependent enhancement (ADE) of infection and
disease in dengue and COVID-19. (Left) In the case of dengue, enhanced viral infection to peripheral
blood monocytes and macrophages via the Fc receptor (FcR) is a direct consequence of an increase
in viral load in the blood. The infected macrophages produce cytokines such as IL-6 and IL-8, and
subsequent plasma discharge, hemo-concentration, and loss of platelets trigger severe dengue disease,
hemorrhagic fever, and shock syndrome. (Right) In the case of COVID-19, SARS-CoV-2 replication in
macrophages is not observed, while the entry of N protein released from infected cells proximal to
macrophages is assisted by anti-N antibodies in an FcR-dependent manner, resulting in increased
secretion of cytokines from macrophages, cytokine storm, and severe disease.

2. Fc Receptor-Dependent ADE of SARS-CoV-2 Infection

An outbreak of pneumonia caused by severe acute respiratory syndrome coronavirus-2,
SARS-CoV-2 emerged in 2019 [12]. The disease was named Coronavirus disease 2019,
COVID-19, and includes microthrombi [13] of the lungs, lower limbs, hands, brain [14],
heart, liver and kidneys [15]. Viruses of the family Coronaviridae (Coronaviruses) are clas-
sified into four coronavirus genera: alpha, beta, gamma, and delta. Severe acute respiratory
syndrome virus (SARS), Middle East respiratory syndrome virus (MERS) and SARS-CoV-2
are beta coronaviruses. The coronavirus particle is an enveloped virus with a circular lipid
bilayer of 100–160 nm in diameter. The surface of the particle is covered with S (spike)
proteins. The internal genetic information is a single-stranded (+) RNA, which is the longest
viral RNA at 30 kb and associates with the N protein to constitute a nucleocapsid [16]. The
receptor of SARS-CoV-2 is angiotensin converting enzyme2 (ACE2) [17]. Although there
is a possibility of infection of macrophages [18] and vascular endothelial cells [19], virus
titers in blood are low [20,21], so certain immunological mechanisms instead of the direct
effects of the virus are the probable cause of vasculitis and cytokine storm.

Zhou et al. cloned human antibodies against the SARS-CoV-2 S protein from COVID-
19 patients and found 11 out of 48 (23%) significantly enhanced viral infection of Raji
cells. Among the 11 enhancing antibodies, 9 were receptor binding domain (RBD)-binding
antibodies, and 2 antibodies bound to the S1 region, but not RBD. Antibody-dependent viral
entry was fully abrogated by mutations in the antibody FcR binding site, demonstrating
the requirement of FcR binding for ADE of infection in B cells expressing FcγRII [22]. ADE
of viral entry was not observed in a human erythroleukemic cell line, K562, which also
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expresses FcγRII and is commonly used for dengue virus ADE assays [23], suggesting that
FcγRII expression in K562 cells is not sufficient for replication of SARS-CoV-2. Wang et al.
also found an antibody, MW05, which enhanced SARS-CoV-2 pseudo-virus infection of
Raji cells, but not of THP-1 or K562 cells [24]. Flow cytometry data revealed that Raji cells
express relatively high levels of FcγRIIB, that THP-1 cells express high levels of FcγRIA
and FcγRIIA, and that K562 cells express high levels of FcγRIIA, suggesting that high levels
of FcγRIIB but not FcγRIIA are required for ADE of infection [25]. Although the detection
of reporter gene expression was increased by ADE-inducing antibodies, no significant viral
replication was observed in Raji cells [22].

Maemula et al. also showed the importance of FcγRIIA, but not FcγRIA or FcγRIII, in
the presence of ACE2, while the expression of FcγRIIA alone did not mediate SARS-CoV-2
infection using a pseudo-typed virus and patient plasma. In the case of a combination of live
virus, convalescent-phase plasma and macrophages, the virus genome levels were higher
compared with those with control plasma. However, the expression levels of inflammatory
cytokines were not changed by the ADE-inducing plasma relative to the controls. These
results indicated that ADE-inducing antibodies may not contribute to abnormal cytokine
production in macrophages [26].

Shimizu et al. attempted to infect macrophage-like cells differentiated from iPS cells
used for ADE assays of dengue virus [27,28] with SARS-CoV-2; however, live virus replica-
tion was not achieved. On the other hand, the introduction of the ACE2 and transmembrane
protease serine 2 (TMPRSS2) genes [17] resulted in cells becoming susceptible to viral infec-
tion and replication as well as IL-6 production [29,30], suggesting that ACE2 is essential
for viral entry to the cytoplasm, the site of viral replication, by way of phagocytic vesicles
or endosomes.

Taken together, probably due to the low expression of ACE2 or other unknown
reasons, SARS-CoV-2 is not capable of productive infection in macrophages (Figure 1 right),
in contrast to dengue virus (Figure 1 left). There are no reports indicating that the SARS or
MERS viruses, which are closely related to SARS-CoV-2, replicate in macrophages [31,32].
Moreover, there are other reports of SARS-CoV-2 leading to non-productive infection in
macrophages, halting in the middle of its replication cycle and resulting in an abortive
infection [33–35]. Macrophages are highly phagocytic, so even if a staining signal for the
viral proteins, including the N protein, is detected in the cells, it may only indicate that a
phagocytosed virus has been detected. Therefore, if artificially FcR/ACE2 expressing cells
or Raji cells are used to detect FcR-dependent ADE of infection in vitro, the results may not
provide direct evidence that ADE of disease is occurring in vivo.

3. FcR-Independent ADE of SARS-CoV-2 Infection

The detailed protein structure of the SARS-CoV-2 S protein and enhancing antibody
is a topic of great interest. Liu et al. reported that antibodies that recognize the specific
“binding domain”, which is formed by the four amino acids W64, H66, V213, and R214 in
the N terminal domain (NTD) of the SARS-CoV-2 S protein, can cross-link two S proteins,
thereby changing the S position from “down” to “up” to facilitate the interaction between
the S protein and ACE2 [36]. The existence of enhancing antibodies that induce structural
changes in viral surface proteins and facilitate binding to receptors has been demonstrated
for HIV [37]. In a one-step infection experiment using pseudo-virus infection, the number
of indicator-positive cells increased five-fold when enhancing antibodies were present.
However, in a multiple replication experiment using live virus, the titer was increased by
two-fold at best in the presence of an enhancing antibody, while there was no difference in
cells with higher susceptibility to infection, such as TMPRSS2-expressing VeroE6 cells [38]
which are commonly used for virus isolation and propagation (unpublished data). One
explanation for the difference between the two experiments using the pseudo-reporter virus
and live virus is that an increase in the number of viruses entering one cell is not reflected
in the number of progeny viruses emerging from that cell. Furthermore, when progeny
viruses emerging from one cell spread to neighboring cells rather than infecting distant cells
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(cell-to-cell transmission), there is no room for antibody involvement. Similarly, Li et al.
also isolated several monoclonal antibodies binding to NTD or RBD [39]. Selected RBD
neutralizing antibodies also demonstrated enhancement of virus infection in vitro in an FcR-
dependent manner, while five non-neutralizing NTD antibodies mediated FcR-independent
enhancement of virus infection in vitro. Infection-enhancing antibodies show activity only
in a limited number of antibody clones obtained from infected individuals. When there
are sufficient amounts of neutralizing antibodies, the neutralizing antibodies can prevent S
protein from interacting with the ACE2 receptor; thus, no infection enhancement is observed
despite the enhancing antibodies changing the steric structure of the S protein [36].

The reason why Fc-independent ADE became a major public health concern was
the expectation that vaccinated individuals would be more susceptible to infection than
non-vaccinated individuals when a future mutant variant emerges that escapes from
neutralizing antibodies by mutation of the RBD but not the NTD, thereby retaining only
the binding of enhancing antibodies [40]. Fortunately, the delta variant (B.1.617.2), which
was the major variant in the summer of 2021 [41–43], retained antigenicity similar to
that of the alpha variant (B.1.1.7) [44], and the neutralizing antibodies produced by the
vaccine provided good protection [45]. Omicron BA.1, which has been prevalent since
the beginning of 2022 [46,47], has no mutations in the NTD four amino acids themselves;
however, mutations of the surrounding amino acids, especially the mutation at 212 and
deletion at 211, possibly affected the structure of the antibody binding site, and infection-
enhancing antibodies might have reduced binding activity. In the case of BA.5, one of
the four amino acids at position 213 was mutated from valine to glycine, and the V213
mutation has already been shown experimentally to reduce the binding of an enhancing
antibody [36].

To assess the frequency of enhancing antibodies in the general population, Ismanto
et al. compared over 64 million heavy chain antibody sequences from healthy unvaccinated
subjects, healthy subjects vaccinated with an mRNA vaccine and COVID-19 patient reper-
toires with the 11 previously reported enhancing antibodies. They found that 17 out of 94
from COVID-19 patients and 9 out of 59 from healthy vaccinated, and only 2 out of 96 from
healthy unvaccinated subjects bound to the enhancing epitope. It should be noted that
some antibodies possessed higher binding affinity to the S protein from the delta variant,
but most lost their ability to bind to the Omicron BA.1 variant [48].

4. ADE of Infection In Vivo

In vitro ADE of infection does not necessarily predict enhanced infection in vivo. Pre-
vious studies with vaccine-induced antibodies against SARS virus have shown in vitro
enhancement of infection with no in vivo infection enhancement in hamsters [49]. In-
creased lung inflammation was reported to only rarely occur in macaques infused with
SARS-CoV-2 enhancing antibody [39]. Three of 46 monkeys injected with enhancing mono-
clonal antibodies had higher lung inflammation scores compared with controls. Among
the three, only one monkey had alveolar edema and elevated bronchoalveolar lavage
inflammatory cytokines. One explanation for this discrepancy is that in vitro enhancing
antibodies have the ability to suppress SARS-CoV-2 replication in vivo through certain
FcR-mediated effector functions [50,51].

In vivo, non-neutralizing NTD antibodies not only mediate ADE, but may also mediate
antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell mediated
phagocytosis (ADCP), and complement dependent cytotoxicity (CDC). The immune system
is activated after the virus enters the body. Opsonization itself can inactivate infectious
virions. Enveloped viruses are also susceptible to lysis by the membrane-attack complex
(MAC) of complements, so-called virolysis [52].

Indeed, studies on breakthrough infections among individuals who received a COVID-
19 vaccine showed that most cases are asymptomatic or present as mild disease with few
persistent infections [53,54], while case control studies showed that disease severity and
hospitalization is lower in vaccinated versus unvaccinated individuals [55]. It was also
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pointed out that the low levels of virus-specific post vaccination neutralizing antibodies in
patients with primary antibody deficiencies [56] may not protect from infection. However,
humoral immunodeficiency itself may not be a risk of ADE of SARS-CoV-2 infection, since
the ADE of infection is not observed in macrophages.

5. FcR-Dependent ADE of Cytokine Production

As described above, macrophages are not involved in the amplification of viral repro-
duction. At the beginning of the Wuhan strain outbreak, severe illness due to pneumonia
was discussed as a sudden decrease in oxygen saturation about 5–7 days after disease on-
set [20,57,58]. Predictive markers of severe disease were investigated [21,59–64], and it was
announced that high levels of TNF-α, IL-8 and IL-6 correlated with severe disease [63,65,66],
leading to extensive clinical research on the usage of anti-IL-6R antibodies [67], JAK in-
hibitors [68] as well as steroids [69]. The severe pneumonia in COVID-19 is considered
to be a form of macrophage activation syndrome [70]. This raises a question: how do
macrophages produce cytokines without infection? To mimic the infected cells in the
alveolar epithelium destroyed by SARS-CoV-2 and cellular immunity against it, researchers
added crushed infected cells to macrophages and observed large amounts of IL-6 secretion,
even though no productive infection was established [71]. Out of 24 open reading frame
proteins, only the N protein, and S protein [72] induced IL-6. The N protein had a much
higher ability to induce IL-6 secretion in macrophages than the S protein did. An antibody
against the N protein was added to neutralize the IL-6 production; contrary to expecta-
tions, the antibody induced macrophages to produce more IL-6, and sera from patients
with severe disease induced more IL-6 production compared with patients with milder
disease [71]. It is known from earlier studies that severely infected patients have higher
anti-N antibodies [73–76]. It was not clear at first whether this was a cause or a conse-
quence; however, there is an explanation if we consider that N antibodies exacerbate the
cytokine storm. It is known that older individuals are at higher risk of severe disease [77];
thus, it is reasonable that elderly people repeatedly exposed to closely related common
cold coronaviruses might have memory B cells that can cross-react with the N protein of
SARS-CoV-2 due to somatic hypermutation (see below). Indeed, existence of memory T
cells that can cross-react with SARS-CoV-2 was shown in samples collected before 2019 [78].
The unclear therapeutic consequence of convalescent plasma therapy [79–81] also makes
sense if we consider that the anti-N antibodies of recovered patients had a detrimental
effect, i.e., they caused the hyperinflammation counteracting the protective effect of the
neutralizing activity of anti-S antibodies.

The N protein promotes maturation of proinflammatory cytokines and induces proin-
flammatory responses in cultured cells and mice [82]. Mechanistically, the N protein
interacts directly with the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3),
and promotes assembly of inflammasomes [82]. More importantly, the N protein aggravates
lung injury and promotes IL-1β and IL-6 activation in acute inflammation mouse mod-
els [82]. Moreover, tissue-resident macrophages, but not infected epithelial and endothelial
cells, from lung autopsies of COVID-19 patients have activated inflammasomes [83,84].
Pyroptosis aborts viral infection before infectious virions are fully assembled [85], but the
inflammatory mediators released from pyroptotic monocytes and macrophages can cause a
cytokine storm (Figure 2).

When the N protein of the delta variant (which differs from wild-type Wuhan at
D63G, R203M, and D377Y) and the N protein of omicron BA.1 (which differs at P13L,
31-33 ERS deletion and RG203-204KR) were expressed, IL-6 induction from iPS-derived
myeloid cells was markedly reduced (Figure 3A), although the S protein itself mutated to
be more and less fusogenic in the delta and omicron cultured cells, respectively. This is
in good agreement with the fact that omicron BA.1 was less pathogenic compared with
ancestral SARS-CoV-2 in a hamster model [86]. Most recently, Chen et al. introduced the
S gene of omicron BA.1 into the ancestral virus and found that this chimeric virus still
killed the hACE2 overexpressing mice (K18-hACE2), while the mice infected with omicron
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survived [87]. Furthermore, the additional introduction of the nsp6 protein from omicron
resulted in very slow replication and low viral load in the mice, and good but not complete
survival (20% mortality). Chen et al. concluded that the contribution of other proteins
could not be completely ruled out since the mice died despite the low viral load and there
being few antigen-positive cells among the epithelial cells of infected mice [87]. Nsp6
inhibits the lysosomal autophagy system by direct interaction with a lysosomal proton
pump component and stimulates NLRP3-dependent cytokine production and pyroptosis in
the lungs [88]; thus, it might be possible that mutations in the N protein may also contribute
to the attenuated phenotype of the omicron variant.
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Figure 2. Potential pathways contributing to hyperactivation of macrophages and hyperinflammation
in the alveolar cavity of COVID-19 patients. The right side shows the anti-S antibody-mediated,
FcR-dependent, and FcR-independent enhancement of infection. The N-terminal domain (NTD) of
the S protein is the main target of FcR-independent ADE antibody. Types I and II alveolar epithelial
cells are infected through the ACE2 receptor, while alveolar macrophages do not support productive
infection. The progeny virus and soluble N protein are released from infected epithelial cells. The N
protein is recognized by the anti-N antibody. The left side shows FcR-dependent ADE of cytokine
production. The C-terminal region of the N protein stimulates the inflammasome via NOD-, LRR-,
and pyrin domain-containing protein 3 (NLRP3), and IL-6, IL-8 and TNF-α are secreted. IL-8 attracts
neutrophils, which form neutrophil extracellular traps, damaging tissues. In addition, plasma leakage
in the lung also reduces oxygenation.
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Figure 3. SARS-CoV-2 N protein induced IL-6 production. IL-6 levels were measured by ELISA
2 days after treatment. (A) iPS-derived myeloid-like K-ML2 cells were stimulated with the lysate
of 293T cells transfected with plasmids encoding each of the SARS-CoV-2 N proteins. (B) K-ML2
cells were incubated with a patient’s serum in the presence or absence of serially diluted anti-N
monoclonal antibody lacking binding activity to human FcR together with 156 ng/mL of N protein.
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6. Enhanced Respiratory Disease (ERD)

Formalin-inactivated vaccine against measles virus caused atypical measles in chil-
dren [89]. Formalin-inactivated respiratory syncytial virus (FI-RSV) vaccination resulted
in higher incidence of hospitalizations due to severe illness in children (80%) compared
with non-immunized children (5%) [90]. The formation of virus–antibody complexes that
activate immune cascades was thought to produce noticeable lung pathology [91]. Immu-
nization of mice with FI-RSV elicited a T-helper cell type 2 (Th2) dominant response [92].
In mice challenged with RSV, enhanced disease along with lung inflammation and in-
jury were found to be associated with pulmonary eosinophilia [93]. Priming with RSV
G protein induced IL-4/IL-13 cytokines after RSV infection [94]. A similar Th2 response
and enhanced infiltration of eosinophils in the lungs were observed in animals vaccinated
with virus replicon particles expressing the N protein of SARS [95], inactivated whole
virion of SARS [96], and a vaccinia virus vector expressing the SARS N protein [97] after
virus challenge. Our proposed mechanism for ADE of cytokine production could explain
why most of the previously developed vaccines against SARS failed to show protective
immunity against the challenged virus. Furthermore, it is consistent with the fact that the
efficacy of inactivated vaccines against severe disease is lower than that of mRNA-based
vaccines [98–103].

In contrast, the effectiveness of the therapeutic monoclonal antibody treatment
REGN-COV-02, a combination of imdevimab and casirivimab [104], against the delta
variant (B.1.617.2) [105,106], and sotrovimab [107] against the omicron BA.1 variant infec-
tion [108] suggests that the antigen–antibody complex may not harm humans in SARS-
CoV-2 infection.

7. Putative Involvement of ADE of Cytokine Production in COVID-19 Pathogenesis

The accumulated evidence during the COVID-19 pandemic indicates that SARS-CoV-2
infection causes micro-thrombosis that affects multiple organs, such as the heart, brain and
kidneys, increasing the mortality burden in COVID-19 patients [109,110]. Figure 4 shows
a schematic image of the involvement of ADE phenomena in COVID-19 pathogenesis.
Macrophages in the lung and peripheral blood vessels, and microglia in the brain could
play an important role in ADE of cytokine production when the co-existence of the N protein
and anti-N antibody could amplify inflammation. Multiple organ failure is a downstream
consequence of the cytokine storm. The resultant vasculitis can be thought of as micro-
infarctions in the vascular beds of these organs. Hyperactivation of the complement system
and tissue factor-enriched neutrophil extracellular traps (NETs) are key drivers in COVID-
19 immunothrombosis [111]. Patients showed a higher number of polymorphonuclear
neutrophils (PMN) forming NETs relative to healthy controls. The absolute number of
PMNs forming NETs was inversely correlated with oxygen status and positively correlated
with inflammatory markers such as C-reactive protein (CRP) and ferritin, and vascular
cell adhesion molecule 1 [112]. Many more secondary pathological changes such as the
formation of microclots and platelet activation have been observed in people with long
COVID [113].

Complement activation is a critical event for COVID-19 disease [114]. A prospective
study of 25 intensive care unit-hospitalized patients for up to 21 days revealed that severely
ill COVID-19 patients had increased and persistent complement activation, mediated
strongly via the alternative pathway [115]. Satyam et al. also found increased deposition of
MAC (C5b-9) and a reduced deposition of complement factor H, a key inhibitor of the acti-
vation of the alternative pathway [116]. In addition, it is noteworthy that the complement
cascade is hyperactivated via the lectin pathway by N protein in the lungs of COVID-19 pa-
tients [117,118]. The N protein bound to mannan-binding lectin-associated serine protease
2 and caused complement hyperactivation and inflammatory lung injury [119].
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Figure 4. Putative involvement of ADE phenomena in COVID-19 pathogenesis. The bold indicates
the anti-N antibody-dependent enhancement of cytokine production shown by Nakayama et al. [71].
When the macrophage lineage cells (marked in yellow) in tissues or blood come into contact with anti-
N antibody and N protein (marked in green), there is ADE of cytokine production from macrophage
lineage cells in the lungs, peripheral blood vessels, and the brain. The blue color indicates the
protective effect of anti-S antibody including antibody dependent cell-mediated cytotoxicity (ADCC)
related to natural killer cells and antibody dependent cell-mediated phagocytosis (ADCP). Cytotoxic
T lymphocytes, which are a main contributor to the elimination of infected cells, are not mentioned
in the figure. The red boxes indicate the contributing factors in the microenvironments of the lungs,
blood vessels and brain, whereas the black boxes show the clinical symptoms. NETosis denotes the
death of neutrophils with neutrophil extracellular traps (NETs) formation.

Local inflammatory responses to SARS-CoV-2 in one organ can cause lasting alterations
in distant tissues and organs. SARS-CoV-2 infection of transgenic mice expressing human
ACE2 exhibited a trend toward developing encephalitis rather than pneumonia, and
Albornoz et al. observed the presence of the virus in the brain together with microglial
activation and NLRP3 inflammasome upregulation in contrast to uninfected mice [120].
In a respiratory infection mouse model, there was a prolonged change in the central
nervous system (CNS), including microglial activation, oligodendrocyte loss, and reduced
myelination, despite the lack of evident symptoms/signs of illness. In this model, although
no virus was detected in the brain, elevated cytokines, including IFN-γ, IL-6, TNF-α, and
CXC/CC chemokines, were detected in the cerebrospinal fluid (CSF) [121].

Among Swedish adult COVID-19 patients exhibiting neurologic symptoms, viral
antigen was detected in the CSF and correlated with CNS immune activation compared
with control participants [122]. All the CSF samples were negative for SARS-CoV-2 RNA.
In contrast, the SARS- CoV-2 N protein was detected in the CSF in 31 out of 35 patients,
while only one patient was positive for the S protein. Furthermore, the CSF N protein levels
were correlated with the CSF immune activation biomarkers IFN-γ and neopterin. Patients
with signs of neuroaxonal injury had more elevated inflammatory cytokines that were
not attributable to differences in pneumonia severity. These results suggest that the viral
component N protein can contribute to CNS immune responses without direct invasion of
the virus into the CNS [122]. It should be noted that S protein is membrane anchored due
to the endoplasmic reticulum retention signal located in its cytoplasmic tail [123], while
the N protein is expressed in the cytoplasm and is released from infected cells following
apoptosis or cytotoxic T lymphocyte-induced cell death. While the existence of anti-N
antibodies in the brain has not been confirmed yet, severely ill patients who died during the
acute phase exhibited multifocal vascular damage, as determined by leakage of the serum
proteins IgG and IgM into the brain parenchyma [124] with endothelial cell activation.
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Platelet aggregates and microthrombi adhered to endothelial cells along the vascular
lumina. Immune complexes with activation of the classical complement pathways C1q and
C4d were found on endothelial cells and platelets. Perivascular infiltrates predominantly
consisted of macrophages and some CD8+ T cells. Although the target protein of IgG and
IgM is unclear, antibody-mediated cytotoxicity directed against endothelial cells seems to
trigger platelet aggregation, vascular leakage, neuroinflammation and, hence, neuronal
injury [124]. Moreover, IL-6 over-stimulation is likely to be involved in mediating blood–
brain barrier leakage [125].

8. ADE of Disease as a Concern of Re-Infection

In Manaus, the capital of the Brazilian state Amazonas, SARS-CoV-2 spread rapidly
and nearly 70% of the population possessed anti-N antibody by October 2020 [126]. The
evolution of a new lineage P.1, which was named the gamma variant, later emerged in
Manaus [127], indicating that herd immunity may not have been achieved despite the high
attack rate. The lineage B.1.351, first reported in South Africa and later renamed as the beta
variant [128], and the omicron variant, originally B.1.1.529, which were reclassified into BA
lineages, emerged in South Africa [129], where the prevalence of immunocompromised
hosts due to HIV infection can be high. More recently, cases of individuals previously
infected with BA.1 and subsequently infected with omicron BA.2 were reported, despite the
nearly 70 to 90% protective efficiency [130,131], which were attributed to the rapid antibody
titer decay. The effectiveness of infection with pre-omicron strains against symptomatic
BA.4 or BA.5 reinfection was 35.5% [132] and BA.5 re-infection after BA.1 infection is
common. Re-infection will be a problem since new emerging variants often gain mutations
to escape neutralizing antibodies.

Why do antibodies against SARS-CoV-2 decay so quickly? Kaneko et al. showed
that there is a marked loss of germinal centers in lymph nodes and the spleen, depletion
of Bcl-6+ B cells but preservation of Tbet+ B cells, and aberrant extra-follicular TNF-
α accumulation in acute COVID-19 patients. These results might explain the limited
durability of antibody responses and suggest the difficulty of herd immunity achievement
through natural infection [133].

It is worth noting that children have higher antiviral sensing ability and a stronger
antiviral interferon response in the upper airways since they have higher levels of basal
expression of the viral pattern recognition receptors MDA5 and RIG-I and gene expression
signatures associated with IFN-α signaling in nasal epithelial cells, macrophages and den-
dritic cells (DC) [134,135]. This pre-activated innate immune system may more efficiently
eliminate SARS-CoV-2 infection in children. Indeed, analysis of the three children and their
parents with PCR-confirmed symptomatic SARS-CoV-2 infection suggested that children
may establish an effective early antiviral immune response to clear the virus without any
detected PCR evidence of SARS-CoV-2 infection [136]. This strong innate immunological
response affects the acquisition of memory T cells. A longitudinal multimodal analysis
showed that SARS-CoV-2 produces only small changes in the circulating T cell population
in children with mild/asymptomatic SARS-CoV-2 infection compared with their parents
with the same disease severity who had more evidence of systemic T cell activation. The
children possessed diverse polyclonal SARS-CoV-2-specific naïve T cells, whereas the
adults showed clonally expanded SARS-CoV-2-specific memory T cells [136]. This was
associated with the development of robust CD4+ memory T cell responses in adults but
not in children [137]. These data suggest that rapid clearance of SARS-CoV-2 by innate
immune responses in children may weaken their acquired immunity and ability to resist
re-infection. Furthermore, it demonstrated that COVID-19 patients showed a deficit in
some DC subsets and alterations in homing and activation markers of DC, which are not
recovered more than 7 months after infection, regardless of previous hospitalization [138].
These findings suggest the possibility that children, who depend more on innate immunity
with plasmacytoid DC function than adults, will acquire more damage to their resistance



Microorganisms 2023, 11, 1015 10 of 19

against subsequent infection, not only for secondary infection of SARS-CoV-2 but also for
bacterial and other viral infections after COVID-19.

9. Is Vaccination Required for Vaccine Naïve but Infected Individuals to Establish
Hybrid Immunity?

There has been some disagreement on whether vaccination is necessary for SARS-CoV-2
infected and recovered individuals [139]. The symptoms and problems are not limited to
pneumonia but extend to dysfunction of other organs such as the heart and brain, and the
impacts of long-COVID should be considered.

The US Department of Veterans Affairs national healthcare database was used to
build a cohort of 443,588 individuals with a single SARS-CoV-2 infection, 40,947 with
re-infection (two or more times) and 5,334,729 uninfected controls [140]. Compared with
single infection, re-infection contributed additional risks of death (hazard ratio (HR) = 2.17)
and hospitalization (HR = 3.32). The risks were evident in the acute phase but persisted in
the post-acute phase at 6 months, with symptoms including pulmonary, cardiovascular,
hematological, diabetes, gastrointestinal, kidney, mental health, musculoskeletal and neu-
rological disorders [140]. It is not clear whether the secondary infection was more severe
than the primary infection; however, if only 1% of re-infected cases become severe, this
may result in a large burden on health services since the target population size is extremely
large. Thus, continued vigilance to reduce the risk of re-infection may be important for
people who have been previously infected.

The level of N protein is the benchmark factor that is considered when predicting
disease severity [141]. Plasma N protein levels of 1000 ng/L or greater are associated with
markedly higher risks of worsened pulmonary status at the acute phase (odds ratio = 5.06)
and longer time required for hospital discharge (median, 7 vs. 4 days). Moreover, plasma
N protein levels were higher in those who lacked anti-S antibodies [141]. Therefore, the
neutralizing titer of anti-S antibody is critical for reducing levels of the N protein in vivo
as well as the virus itself and the S protein, which are all involved in the pathogenesis of
COVID-19.

There is an argument for vaccination with the disappeared wild Wuhan strain or the
disappearing omicron BA.1 or BA.5 variants being sufficient to induce protective immunity
against newly emerging omicron variants and future mutated viruses. However, vaccines
composed of inactivated whole virion including the N protein are not recommended, as
discussed in this review. It should be noted here that the antibody titers induced by in-
activated whole virion were lower than for other vaccines [101], especially in the levels of
IgA in the nasal epithelial lining fluid [142].

The four human IgG subclasses, IgG1 to IgG4, have distinct effector properties due to
differences in FcR binding and complement activation. The human IgG4 normally exists in
the serum at lower concentrations than IgG1, IgG2, or IgG3. A longitudinal analysis of the
level of anti-S antibodies from each IgG subclass in recipients of the SARS-CoV-2 mRNA
vaccine [143] revealed that IgG4 antibodies among all S-specific IgG antibodies increased
from 0.04% shortly after the second vaccination to 19.27% after the third vaccination. Serum
antibody effector activity, as assessed by antibody-dependent phagocytosis or complement
deposition, was reduced after the third dose compared with after the second dose [143].
It should be noted that a third vaccination elicited superior neutralizing immunity to all
the variants of concern [144]. Furthermore, the avidity was significantly increased after the
third vaccination and superior neutralization of pseudo-typed virus was observed. In this
study, antibody-mediated phagocytic activity and complement deposition related to ADE
of disease were reduced in sera after the third vaccination. Because Fc-mediated effector
function could be important for viral clearance, an increase in IgG4 subclasses might re-
sult in longer viral persistence in patients. However, it is also true that noninflammatory
Fc-mediated effector functions reduce immunopathology, whereas viruses are efficiently
neutralized via high-avidity antibody variable regions of IgG4 antibodies. In a cohort of
vaccinees with breakthrough infections, no evidence of alteration in disease severity was
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found [143]. In addition, adverse effects related to antigen–antibody immune complex
formation have not been observed in recipients of AstraZeneca’s Evusheld (AZD7442; tix-
agevimab and cilgavimab), in which the L234F/L235E/P331S modification reduces binding
to FcγR and the C1q-like IgG4 isotype [145], indicating that the immunoglobulin class
switch of IgG4 may control the balance between binding maturation and over-stimulation
of inflammation without severe negative effect. Regardless of the immunoglobulin class
switch, the somatic hypermutation and affinity maturation of the epitope binding region of
antibody genes in memory B lymphocytes is important [146–151]. A broadly neutralizing
antibody that has potent cross-reactivity against a wide variety of variants was reported
in HIV infected individuals [152]. A long exposure interval is required to generate cross-
neutralizing potency against different variants antigenically distant from the ancestral
strain [153]. The ratio between protective anti-S antibody and detrimental anti-N anti-
body in each individual [154] may affect the clinical relevance with breakthrough infection
or re-infection.

10. Management of ADE Caused by the N Protein and Antibody

Kang et al. found that nCoV396 antibody recognizes the N protein of SARS-CoV-2
as well as those of the SARS and MERS viruses. The 162–170 region of the SARS-CoV-2
N protein is an epitope since three amino acids (Q163, L167, and K169) are conserved
among these three viruses. Structural analysis revealed that nCoV396 antibody binding
of the SARS-CoV-2 N-terminal domain of the N protein (N-NTD) undergoes several con-
formational changes, resulting in an enlargement of the N-NTD RNA binding pocket and
partial unfolding of the basic palm region [155]. This conformational change occurs in the
C-terminal portion of N-NTD, which may alter the positioning of individual domains in the
full-length protein, leading to a potential allosteric suppressive effect on N protein-induced
complement hyperactivation [155]. On the other hand, Sen et al. reported the levels of
antibody against a specific epitope of the N protein can effectively predict severe disease
(specificity = 83.6%). The presence of this antibody was correlated with high levels of
IL-6 [156]. Surprisingly, this Ep9 peptide consists of residues 152 to 172, which overlaps
with nCoV396 recognition. In another report from Singapore, there were correlations be-
tween antibody responses against the N4P5 epitope and pneumonia and the tissue damage
markers CRP and lactate dehydrogenase [157]. The N4P5 epitope, residues 153 to 170, is
very similar to Ep9. These reports prompted us to mask the epitope in the NTD of the
N protein with a monoclonal antibody lacking binding activity to FcR to block the IL-6
enhancing effect in patient serum. As shown in Figure 3B, IL-6 levels produced from cells
in the presence of N protein in patients’ sera were decreased in a dose-dependent manner
by the addition of a monoclonal antibody.

While C5 inhibition has been discussed from a therapeutic perspective [158], significant
improvements have not been observed to date and must be interpreted in light of concerns
about bacterial infection. NLRP3 signal inhibitors have also been proposed [82]. Small
molecule compounds that specifically target the interaction between the N protein and the
NLRP3 cascade would be safe drugs for abrogating the cytokine storm.

11. Why Focus on ADE?

Over 18,000 cases of measles were reported in the Philippines in 2018, compared with
about 2400 in the previous year. The measles vaccination rate fell from 88% in 2014 to 73%
in 2017, and then to about 55% in 2018. The sharp drop came in the wake of a political
battle over Sanofi’s dengue vaccine, Dengvaxia, which was discontinued in the Philippines
over safety concerns regarding ADE [159]. This situation should be avoided when the next
pandemic arrives, which is expected soon after the COVID-19 pandemic ends.

Vaccination is an essential tool in the control of infectious diseases, and any detri-
mental effects on vaccine recipients are carefully monitored. Since vaccination targets the
predominantly healthy population, ADE phenomenon must always be evaluated in the
development of new types of vaccines. In addition, the emergence of further SARS-CoV-2
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variants capable of escaping neutralization is also a public health concern. The devel-
opment of cutting-edge protease inhibitors to control the COVID-19 pandemic and long
COVID [160,161] is highly anticipated.
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