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Abstract: The balance of microbial communities in the gut is extremely important for normal physio-
logical function. Disruption of the balance is often associated with various disorders and diseases.
Both HIV infection and cocaine use are known to change the gut microbiota and the epithelial barrier
integrity, which contribute to inflammation and immune activation. Our recent study shows that
Tat expression and cocaine exposure result in changes of genome-wide DNA methylation and gene
expression and lead to worsen the learning and memory impairments. In the current study, we
extended the study to determine effects of Tat and cocaine on the gut microbiota composition. We
found that both Tat expression and cocaine exposure increased Alteromonadaceae in 6-month-old
female/male mice. In addition, we found that Tat, cocaine, or both increased Alteromonadaceae,
Bacteroidaceae, Cyanobiaceae, Erysipelotrichaceae, and Muribaculaceae but decreased Clostridi-
ales_vadinBB60_group, Desulfovibrionaceae, Helicobacteraceae, Lachnospiraceae, and Ruminococ-
caceae in 12-month-old female mice. Lastly, we analyzed changes of metabolic pathways and found
that Tat decreased energy metabolism and nucleotide metabolism, and increased lipid metabolism
and metabolism of other amino acids while cocaine increased lipid metabolism in 12-month-old
female mice. These results demonstrated that Tat expression and cocaine exposure resulted in signif-
icant changes of the gut microbiota in an age- and sex-dependent manner and provide additional
evidence to support the bidirectional gut–brain axis hypothesis.
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1. Introduction

Up to 100 trillion (1014) microbes colonize in human gut and are collectively called
gut microbiota [1,2]. There are about 2200 species and 12 phyla, which mostly fall into four
phyla: Protebacteria, Firmicutes, Actinobacteria, and Bacteroidetes [3,4]. They are believed
to originate at birth and evolve over the course of biological ageing [5–9]. Host genetics,
environment, and lifestyle contribute to the changes of their composition [4,10,11]. The
dynamic crosstalk between these microbes and the host also affects the host’s health [1,10].
The balance of various microbial communities in the gut plays a fundamental role in
normal physiological functions such as breakdown of food for absorption, protection
against pathogens, elicitation of immunity, and maintenance of the barrier integrity of the
gut and intestines [12–14]. Thus, disruption of the balance, also known as dysbiosis, is
often associated with various disorders and diseases such as cancer, viral infection, and
abnormal behaviors [2,15–19]. Microbes, their metabolites such as short-chain fatty acids,
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their structural components lipopolysaccharides (LPS), and hormones released by gut
epithelial enteroendocrine cells can all function to mediate the interactions between the
microbiota and the host [2,20].

Early HIV infection and replication in gut-associated lymphoid tissues result in mas-
sive CD4 T cell depletion and compromised epithelial barrier and gut immunity and as
a result, direct translocation of gut microbes and their products such as LPS into the cir-
culatory system and subsequent systemic inflammation and immune activation [21–25].
HIV infection is also associated with decreased abundance, composition, and diversity of
gut microbiota. These changes in turn contribute to persistent inflammation and microbial
translocation, dysfunctional metabolism of the host, and HIV disease progression and
reservoir size [26–30]. Importantly, antiretroviral therapy does not fully restore the integrity
of the gut epithelial barrier and the disrupted gut microbiota that result from HIV infection
despite its potent suppressive effects on HIV replication [27,31]. HIV infection, antiretro-
viral therapy, and changes in gut microbiota have all been linked to HIV comorbidities
including metabolic, cardiovascular, and neurocognitive disorders [32–37].

In the era of antiretroviral therapy, mild cognitive and motor disorder has become the
most common clinical manifestation of HIV-associated neurocognitive disorders (HAND),
characterized by persistent neuroinflammation [38–40]. HIV viral protein Tat is a major
pathogenic factor for HAND and neuroHIV, as its expression in the brain of doxycycline
(Dox)-inducible astrocyte-specific HIV Tat transgenic mice (iTat) in the absence of HIV
infection leads to locomotor, learning and memory deficits [41–52], and astrocyte/microglia
activation, chronic neuroinflammation and loss of neuronal integrity [43,48,50,51,53], the
consistent neurological and neuropathological hallmarks of HAND and neuroHIV in the era
of antiretroviral therapy. Tat is present in the brain of HIV-infected people who are under
active antiretroviral therapy [54–56]. Several studies suggest gut microbiota as a potential
source of the persistent neuroinflammation. Specific gut microbiota signatures, elevated
LPS, and systemic immune activation are associated with the severity of HAND [36,57,58],
while supplementation of gut microbiota with probiotics decreases neuroinflammation
and improves neurocognitive function in the context of HIV infection [59,60]. Use/abuse
of substances such as cocaine, methamphetamine, and opioids constitute a major risk
factor for HAND [61–63], while it alters the gut microbiota and permeability and increase
inflammation [64–67].

In this study, we took advantage of iTat mice, exposed them to cocaine, and deter-
mined the changes of the gut microbiota in response to Tat expression and chronic cocaine
exposure. Specifically, we harvested large intestines of the mice, extracted the DNA from
the tissues, constructed 16S rRNA gene libraries, performed the metagenomic sequencing,
and determined the abundance, composition, and diversity of the gut microbiota. Mice
of two different ages, 6- and 12 months old, were included in the study. All the data were
stratified by genotypes (WT/iTat), treatment (saline/cocaine, SA/CA), ages (6/12 months),
and sexes (male/female).

2. Materials and Methods

Experimental design and animals. Wild-type C57BL/6 mice (Jackson Laboratory, Bar
Harbor, ME, USA) and Dox-inducible astrocyte-specific HIV-1 Tat transgenic mice (iTat)
were derived from our previous study [43,63]. Animals were fed with Dox-containing diet
(0.625 g Dox/kg, Envigo, Indianapolis, IN, USA) for 5 or 11 months from day 21 when they
were weaned and continued on the same diet throughout the remaining studies. These
animals were given cocaine (CA, i.p. 30 mg/kg/day) or the solvent phosphate-buffered saline
(SA) for 14 days, kept drug-free for 10 days, assessed for various behaviors for 20 days, and
euthanized to harvest large intestinal tissues. There were a total of 16 experimental groups:
2 mouse strains (WT/iTat) × 2 mouse ages (6/12 months) × 2 sexes (M/F) × 2 treatments
(CA/SA) and a total of 192 mice (16 groups × 12 mice/group). All the animal procedures
were approved by the Institutional Animal Care and Use Committee.
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DNA extraction. Large intestine tissues (near anus) were harvested and used to extract
DNA using a DNeasy Blood & Tissue Kit (Qiagen, Germantown, MD, USA) according to
the manufacturer’s instructions. Briefly, large intestine tissues (about 15 mg) were cut into
small pieces, placed into a 1.5 mL microcentrifuge tube containing 180 µL ATL buffer, and
treated with 600 mAU/mL proteinase K at 56 ◦C for 2 hr. When the tissues were completely
lysed, DNA was precipitated with 200 µL buffer AL and 200 µL 100% ethanol, washed
twice (buffer AW1 and AW2, once each), eluted from the mini-spin column with 200 µL
buffer AE, diluted to 10 ng/µL, and stored at −20 ◦C for subsequent PCR amplification.
All DNA preps had the A260/A280 ratio of higher than 1.80.

16S rRNA gene metagenomic library construction, sequencing, and initial sequence
analysis. The purified DNA was used to construct 16S rRNA gene libraries as previously
described [68]. Briefly, the DNA was amplified for the V4 variable region of the bacterial
16S rRNA gene using fusion primers with partial Illumina adaptors. The universal bacterial
primers used were 515F: 5′-GTG CCA GCM GCC GCG GTA A-3′ and 806R: 5′-GGA CTA
CHV GGG TWT CTA AT-3′. The PCR reaction (25 µL) consisted of 10 ng the purified DNA, 1X
AccuStart II PCR Supermix containing Taq DNA polymerase (Quantabio, Beverly, MA), 10 µg
BSA, and 500 nM each primer, with a program of 1 cycle of 94 ◦C for 3 min, 30 cycles of 94 ◦C
for 30 s, 50 ◦C for 30 s, and 72 ◦C for 1 min, and a final cycle of 72 ◦C for 10 min. Amplicon
DNA were cleaned, indexed, normalized, and pooled using a MiSeq Reagent kit (Illumina, San
Diego, CA, USA) and sequenced on the Illumina MiSeq platform (Illumina, San Diego, CA).
The raw reads were processed and paired-end reads (forward and reverse reads) were merged
and denoised using the DADA2 algorithm (ver. 1.3.3) [69]. The processed reads datasets
from 123 samples (6–11 samples/group) were clustered to operational taxonomic units (OTU)
using a similarity threshold of 97% or higher (2,974,646 matched reads) and the taxonomy was
assigned using the SILVA reference database (ver. 1.3.2) [70]. The sequencing and the initial
sequence analysis were performed by the Center of Bioinformatics and Functional Genomics
of Miami University, Oxford, OH.

Subsequent sequence and statistical analysis. All OTU data were analyzed by an
online analysis tool MicrobiomeAnalyst (ver. 1.0) [71]. The relative abundance (%) was
calculated at the family level. The Shannon index was calculated to determine the α di-
versity and was compared using the Kruskal–Wallis test. The PCoA-Bray–Curtis index
was calculated to determine the β diversity and was compared using permutational mul-
tivariate analysis of variance (PERMANOVA). The univariate analysis was performed
using the Kruskal–Wallis test to compare the specific families among four experimental
groups (WT/iTat × SA/CA). The software STAMP (ver. 2.1.3) was used to perform post
hoc Games–Howell’s test to compare among multiple groups [72]. “*”, “#”, “&”, “+” and
“@” denote p < 0.05. The Tax4Fun was used to estimate microbial metabolic functions
based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [71,73], and the
functional metabolic pathways were compared using the Kruskal–Wallis test with a post
hoc Games–Howell’s test.

3. Results

We analyzed all the sequence reads and identified the 22 most reliable families of
gut microbiota as the core microbiota to determine the abundance, and α diversity using
the Shannon index which is a quantitative indicator of the number of different families,
and β diversity using the PCoA-Bray–Curtis index which quantifies the variability in
community composition among samples in mice of different ages and sexes in response to
Tat expression and cocaine exposure. Then, we further compared 12 families which were
found to be affected in either group for their abundance in mice of different ages and sexes
in response to Tat expression and cocaine exposure.

We first determined the effects of Tat and cocaine on the gut microbiota of 6-month-old
female mice. The most abundant 22 families identified in the gut microbiota of 6-month-old
female mice from the most abundance to the least abundance were Muribaculaceae, Lach-
nospiraceae, Bacteroidaceae, Ruminococcaceae, Desulfovibrionaceae, Erysipelotrochaceae, He-
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licobacteraceae, Tannerellaceae, Eggerthellaceae, Rickenellaceae, Prevotellaceae, Family_XIII,
Peptococcaceae, Clostridiales_vadinBB60_group, Lactobacillaceae, Cyannobiaceae, Akker-
mansiacceae, Alteromonadaceae, Deferribacteraceae, Lachnospiraceae_Ambiguous_taxa, un-
cultured_bacterium, and Staphylococcaceae (Figure 1A). Both α diversity (Figure 1B, p = 0.515)
and β diversity (Figure 1C, p = 0.112) did not show any significant changes. Kruskal–Wallis
test only showed significant changes on Alteromonadaceae, but not on any other families.
Post hoc Games–Howell’s test further showed that Alteromonadaceae was more abundant
in iTat-SA mice than WT-SA mice and iTat-CA mice (Figure 2). These results showed that in
6-month-old female mice Tat expression was associated with more Alteromonadaceae in gut,
which was reversed by cocaine exposure.
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Figure 1. Effects of Tat expression and cocaine exposure on microbial abundance and diversity in
the gut of 6-month female mice. (A). Relative abundance (%) of top 22 families of gut microbiota in
four experimental groups WT-SA, WT-CA. iTat-SA, and iTat-CA were presented as a stacked bar plot.
(B). Shannon index was calculated to determine α-diversity of the gut microbiota in four experimental
groups WT-SA, WT-CA. iTat-SA, and iTat-CA, presented as a box plot, and analyzed using the
Kruskal–Wallis test. The error bars were standard derivation (SD). (C). Bray–Curtis dissimilarity was
calculated to determine β-diversity, presented as a PCoA plot, and analyzed using PERMANOVA.
The percentage variation in the plotted principal component were indicated on the axes.
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Figure 2. Effects of Tat expression and cocaine exposure on microbial abundance by family in the gut
of 6-month female mice. Twelve families which were affected in either group were presented. The
data were analyzed using Kruskal–Wallis test, followed by post hoc Games–Howell’s test. The family
which was affected by Tat expression and/or cocaine exposure was marked in red. The error bars
were SD, and “*”, “&”, “@” or “+” denoted p < 0.05.

Then, we determined the effects of Tat and cocaine on the gut microbiota of 6-month-
old male mice. The most abundant 22 families identified in the gut microbiota of 6-month-
old male mice were the same as these in 6-month-old female mice, but in a different
order from the most abundance to the least abundance: Muribaculaceae, Lachnospiraceae,
Ruminococcaceae, Bacteroidaceae, Erysipelotrochaceae, Desulfovibrionaceae, Rickenel-
laceae, Helicobacteraceae, Eggerthellaceae, Prevotellaceae, Peptococcaceae, Tannerellaceae,
Family_XIII, Lactobacillaceae, Clostridiales_vadinBB60_group, Akkermansiacceae, Defer-
ribacteraceae, Lachnospiraceae_Ambiguous_taxa, uncultured_bacterium, Cyannobiaceae,
Alteromonadaceae, and Staphylococcaceae (Figure 3A). α diversity had no significant dif-
ferences (Figure 3B, p = 0.276), while β diversity showed significant differences (Figure 3C,
p = 0.032). Kruskal–Wallis test showed significant changes on Alteromonadaceae, Heli-
cobacteraceae and Tannerellaceae. Post hoc Games–Howell’s test showed that Alteromon-
adaceae was more abundant in iTat-CA mice than iTat-SA, WT-CA, and WT-SA mice
although Helicobacteraceae was less abundant in iTat-CA and iTat-SA mice than WT-SA
mice (Figure 4). In addition, Post hoc Games–Howell’s test also showed that Tannerellaceae
was more abundant in iTat-CA, iTat-SA, and WT-CA mice than WT-SA mice. These results
showed that in 6-month male mice Tat expression alone, or cocaine exposure alone did not
alter the abundance of Alteromonadaceae, but simultaneous Tat expression and cocaine
exposure led to significant increases of the abundance of Alteromonadaceae. These results
also showed that Tat expression alone significantly decreased abundance of Helicobacter-
aceae, and that Tat expression alone or cocaine alone had more abundant Tannerellaceae
but simultaneous Tat expression and cocaine exposure significantly increased abundance
of Tannerellaceae.
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Figure 3. Effects of Tat expression and cocaine exposure on microbial abundance and diversity in the
gut of 6-month-old male mice. (A). Relative abundance (%) of top 22 families of gut microbiota in
four experimental groups WT-SA, WT-CA. iTat-SA, and iTat-CA were presented as a stacked bar plot.
(B). Shannon index was calculated to determine α-diversity of the gut microbiota in four experimental
groups: WT-SA, WT-CA. iTat-SA, and iTat-CA, presented as a box plot, and analyzed using the
Kruskal–Wallis test. The error bars were standard derivation (SD). (C). Bray–Curtis dissimilarity was
calculated to determine β-diversity, presented as a PCoA plot, and analyzed using PERMANOVA.
The percentage variations in the plotted principal component were indicated on the axes.
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Figure 4. Effects of Tat expression and cocaine exposure on microbial abundance by family in the gut
of 6-month male mice. Twelve families which were affected in either group were presented. The data
were analyzed using Kruskal–Wallis test, followed by post hoc Games–Howell’s test. The families
which were affected by Tat expression and/or cocaine exposure were marked in red. The error bars
were SD, and “*”, “#”, “&”, “@” or “+” denoted p < 0.05.

We next determined the effects of Tat and cocaine on the gut microbiota of 12-month-old
female mice. The most abundant 22 families identified in the gut microbiota of 12-month-old
female mice remained the same, but in a different order from the most abundance to the least
abundance: Muribaculaceae, Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, Helicobacter-
aceae, Rickenellaceae, Prevotellaceae, Erysipelotrichaceae, Desulfovibrionaceae, Tannerellaceae,
Peptococcaceae, Eggerthellaceae, Family_XIII, Clostridiales_vadinBB60_group, Akkerman-
siacceae, Staphylococcaceae, Lachnospiraceae_Ambiguous_taxa, Cyanobiaceae, Lactobacil-
laceae, Alteromonadaceae, uncultured_bacterium, and Deferribacteraceae (Figure 5A). Both
α diversity (Figure 5B, p = 0.032) and β diversity (Figure 5C, p = 0.001) showed significant
changes. Kruskal–Wallis test showed significant changes on Alteromonadaceae, Bacteroidaceae,
Clostridiales_vadinBB60_group, Cyanobiaceae, Desulfovibrionaceae, Erysipelotrichaceae, Heli-
cobacteraceae, Lachnospiraceae, Muribaculaceae, Ruminococcaceae, and Staphylococcaceae.
Post hoc Games–Howell’s test showed that Alteromonadaceae was more abundant in iTat-CA
and iTat-SA mice than WT-SA mice, that Bacteroidaceae was more abundant in iTat-CA, iTat-SA,
and WT-CA mice than WT-SA mice, that Clostridiales_vadinBB60_group was less abundant in
iTat-CA and WT-CA than WT-SA mice, that Cyanobiaceae was more abundant in iTat-CA and
iTat-SA mice than WT-SA mice, that Desulfovibrionaceae was less abundant in iTat-CA, iTat-SA,
and WT-CA mice than WT-SA mice, that Erysipelotrichaceae was more abundant in iTat-CA
and iTat-SA mice than WT-SA mice, that Helicobacteraceae was less abundant in iTat-CA and
iTat-SA mice than WT-SA mice, that Lachnospiraceae was less abundant in iTat-CA and iTat-SA
mice than WT-SA mice, that Muribaculaceae was more abundant in iTat-CA, iTat-SA, and
WT-CA mice than WT-SA mice, that Ruminococcaceae was less abundant in iTat-CA, iTat-SA,
and WT-CA mice than WT-SA mice, and that Staphylococcaceae was less abundant in iTat-CA
mice than WT-CA mice (Figure 6). These results showed that in 12-month-old female mice
Tat expression increased the abundance of Alteromonadaceae, Bacteroidaceae, Cyanobiaceae,
Erysipelotrichaceae, and Muribaculaceae and decreased the abundance of Desulfovibrionaceae,
Helicobacteraceae, Lachnospiraceae, and Ruminococcaceae. These results showed that co-
caine exposure alone increased the abundance of both Bacteroidaceae and Muribaculaceae
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and decreased the abundance of Clostridiales_vadinBB60_group, Desulfovibrionaceae’s and
Ruminococcaceae.
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Figure 5. Effects of Tat expression and cocaine exposure on microbial abundance and diversity in
the gut of 12-month female mice. (A). Relative abundance (%) of top 22 families of gut microbiota in
four experimental groups WT-SA, WT-CA. iTat-SA, and iTat-CA were presented as a stacked bar plot.
(B). Shannon index was calculated to determine α-diversity of the gut microbiota in four experimental
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Kruskal–Wallis test. The error bars were standard derivation (SD). (C). Bray–Curtis dissimilarity was
calculated to determine β-diversity, presented as a PCoA plot, and analyzed using PERMANOVA.
The percentage variations in the plotted principal component were indicated on the axes.
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We next determined the effects of Tat and cocaine on the gut microbiota of
12-month-old male mice. The most abundant 22 families identified in the gut micro-
biota of 12-month-old male mice remained the same, but in a different order from the
most abundance to the least abundance: Muribaculaceae, Lachnospiraceae, Ruminococ-
caceae, Bacteroidaceae, Erysipelotrochaceae, Desulfovibrionaceae, Helicobacteraceae, Rick-
enellaceae, Tannerellaceae, Prevotellaceae, Eggerthellaceae, Peptococcaceae, Family_XIII,
Clostridiales_vadinBB60_group, Akkermansiacceae, Lactobacillaceae, Staphylococcaceae,
Cyannobiaceae, Lachnospiraceae_Ambiguous_taxa, Alteromonadaceae, Deferribacteraceae,
and uncultured_bacterium (Figure 7A). Both α diversity (Figure 7B, p = 0.379) and β di-
versity (Figure 7C, p = 0.231) showed no significant changes. Kruskal–Wallis test showed
no significant differences in all 12 abundant families (Figure 8). These results showed that
Tat expression alone, cocaine exposure alone, or simultaneous Tat expression and cocaine
exposure led to no significant changes of the gut microbiota in 12-month-old male mice.

Lastly, we analyzed all the sequence reads using the Tax4Fun to estimate the changes
of microbial metabolic functions in gut for all the 16 experimental groups. In 12-month-
old female mice, there was lower energy metabolism in iTat-SA mice than WT-SA mice,
higher lipid metabolism in iTat-CA, iTat-SA, and WT-CA mice than WT-SA mice, higher
metabolism of other amino acids in iTat-CA and iTat-SA mice than WT-SA mice, and higher
nucleotide metabolism in WT-SA mice than iTat-CA and iTat-SA mice (Figure 9). The
results showed that Tat expression alone decreased the energy metabolism and nucleotide
metabolism, and increased the lipid metabolism and metabolism of other amino acids. In
addition, cocaine exposure also increased the lipid metabolism.
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Figure 7. Effects of Tat expression and cocaine exposure on microbial abundance and diversity in the
gut of 12-month male mice. (A). Relative abundance (%) of top 22 families of gut microbiota in four
experimental groups, WT-SA, WT-CA, iTat-SA, and iTat-CA, were presented as a stacked bar plot.
(B). Shannon index was calculated to determine α-diversity of gut microbiota in four experimental
groups WT-SA, WT-CA. iTat-SA, and iTat-CA, presented as a box plot, and analyzed using the
Kruskal–Wallis test. The error bars were standard derivation (SD). (C). Bray–Curtis dissimilarity was
calculated to determine β-diversity, presented as a PCoA plot, and analyzed using PERMANOVA.
The percentage variations in the plotted principal component were indicated on the axes.



Microorganisms 2023, 11, 799 11 of 18Microorganisms 2023, 11, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 8. Effects of Tat expression and cocaine exposure on microbial abundance by family in the 
gut of 12-month male mice. Twelve families which were affected in either group were presented. 
The data were analyzed using Kruskal–Wallis test. The error bars were SD. 

Lastly, we analyzed all the sequence reads using the Tax4Fun to estimate the changes 
of microbial metabolic functions in gut for all the 16 experimental groups. In 12-month-
old female mice, there was lower energy metabolism in iTat-SA mice than WT-SA mice, 
higher lipid metabolism in iTat-CA, iTat-SA, and WT-CA mice than WT-SA mice, higher 
metabolism of other amino acids in iTat-CA and iTat-SA mice than WT-SA mice, and 
higher nucleotide metabolism in WT-SA mice than iTat-CA and iTat-SA mice (Figure 9). 
The results showed that Tat expression alone decreased the energy metabolism and nu-
cleotide metabolism, and increased the lipid metabolism and metabolism of other amino 
acids. In addition, cocaine exposure also increased the lipid metabolism. 

 
Figure 9. Effects of Tat expression and cocaine exposure on the metabolism in the gut of 12-month 
female mice. The Tax4Fun were used to estimate the changes of metabolic functions of the gut mi-
crobiota. Only significant changes of the metabolism pathways were detected in the gut of 12-month 
female mice and presented using Kruskal–Wallis test, followed by post hoc Games–Howell’s test. 

Figure 8. Effects of Tat expression and cocaine exposure on microbial abundance by family in the gut
of 12-month male mice. Twelve families which were affected in either group were presented. The
data were analyzed using Kruskal–Wallis test. The error bars were SD.

Microorganisms 2023, 11, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 8. Effects of Tat expression and cocaine exposure on microbial abundance by family in the 
gut of 12-month male mice. Twelve families which were affected in either group were presented. 
The data were analyzed using Kruskal–Wallis test. The error bars were SD. 

Lastly, we analyzed all the sequence reads using the Tax4Fun to estimate the changes 
of microbial metabolic functions in gut for all the 16 experimental groups. In 12-month-
old female mice, there was lower energy metabolism in iTat-SA mice than WT-SA mice, 
higher lipid metabolism in iTat-CA, iTat-SA, and WT-CA mice than WT-SA mice, higher 
metabolism of other amino acids in iTat-CA and iTat-SA mice than WT-SA mice, and 
higher nucleotide metabolism in WT-SA mice than iTat-CA and iTat-SA mice (Figure 9). 
The results showed that Tat expression alone decreased the energy metabolism and nu-
cleotide metabolism, and increased the lipid metabolism and metabolism of other amino 
acids. In addition, cocaine exposure also increased the lipid metabolism. 

 
Figure 9. Effects of Tat expression and cocaine exposure on the metabolism in the gut of 12-month 
female mice. The Tax4Fun were used to estimate the changes of metabolic functions of the gut mi-
crobiota. Only significant changes of the metabolism pathways were detected in the gut of 12-month 
female mice and presented using Kruskal–Wallis test, followed by post hoc Games–Howell’s test. 

Figure 9. Effects of Tat expression and cocaine exposure on the metabolism in the gut of 12-month
female mice. The Tax4Fun were used to estimate the changes of metabolic functions of the gut microbiota.
Only significant changes of the metabolism pathways were detected in the gut of 12-month female mice
and presented using Kruskal–Wallis test, followed by post hoc Games–Howell’s test.
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4. Discussion

Our recent study shows that HIV Tat and cocaine interactively alter genome-wide
DNA methylation and gene expression and cause neuropathological and neurocognitive
impairments [63]. As an extension, we continued to characterize effects of Tat expression
and cocaine exposure on the abundance, composition, and diversity of the gut microbiota
from these same groups of animals in the current study. To ensure the comparability, WT
mice were fed with the same Dox-containing diet as iTat mice throughout the studies.
Cocaine exposure alone decreased Clostridiales_vadinBB60_group, Desulfovibrionaceae
and Ruminococcaceae in the gut of 12-month-old female mice. However, Tat expression
alone increased Alteromonadaceae in 6-month-old female mice and Alteromonadaceae,
Bacteroidaceae, Cyanobiaceae, Erysipelotrichaceae, and Muribaculaceae in 12-month-old
female mice, but decreased Desulfovibrionaceae, Helicobacteraceae, Lachnospiraceae, and
Ruminococcaceae in 12-month-old female mice. These results indicate that Tat expres-
sion causes more severe dysbiosis than cocaine exposure. In contrast, cocaine exposure is
associated with more diverse bacterial communities at different taxonomy levels [74–76].
This apparent discrepancy may be due to several factors including different sources of
samples, sequencing reads processing, and use of Dox to induce Tat expression in our
study. Our further analysis showed that simultaneous Tat expression and cocaine ex-
posure increased Alteromonadaceae and Tannerellaceae in 6-month-old male mice and
Bacteroidaceae in 12-month-old female mice, while Tat expression alone or cocaine expo-
sure alone only had slight increases these families. These results suggest that Tat expression
and cocaine exposure have synergistic effects in increasing this family, which is consistent
with their synergistic effects on neurobehaviors and neuropathologies [63]. Interestingly,
cocaine exposure appeared to attenuate Alteromonadaceae increased by Tat expression
in 6-month-old female mice. Furthermore, only Tat expression but not cocaine exposure
changed Alteromonadaceae, Cyanobiaceae, Erysipelotrichaceae, Helicobacteraceae, and
Lachnospiraceae in 12-month female mice. Taken together, these results indicate that
Tat expression and cocaine exposure exhibit different effects on different families of gut
microbiota.

Aging is known to be associated with changes of the gut microbiota [77,78]. Thus,
we determined the changes of bacterial communities in both 6-month-old and 12-month-
old mice. Our results showed that only 1~3 families were affected by Tat expression or
cocaine exposure in 6-month-old mice while 11 families were changed in 12-month-old
female mice, supporting the notion that aging plays an important role in gut microbiota
symbiosis. Lifestyle-induced changes of hormone or immune function may also contribute
to alterations in gut microbiota, the underlying mechanism of microbiota alterations with
aging is not completely clear. Our results, together with other studies, suggest that the
changes of hormone or immune function induced by aging itself may play more important
role in these changes [77]. At the same time, we also determined the effects of sex on gut
microbiota. In 6-month-old mice, only Alteromonadaceae was affected in both female
and male mice, and Helicobacteraceae and Tannerellaceae were also changed in male
mice. Interestingly, completely different from 6-month-old mice, six families were altered in
12-month-old female mice, but no changes were found in 12-month-old male animals. These
results indicate that sex plays an important role in gut microbiota dysbiosis. Consistent
with our findings is another study in which gut microbiota shows significant differences
between female and male [79]. Although male hormone can also change gut microbiota
composition, most of studies focus on female hormone and the estrogen–gut microbiome
axis; the concept was proposed that crosstalk exists between gut microbiota and estrogen
and, in other words, gut microbiota also influence estrogen level [80]. Female is found
to be more sensitive to addictive substance, including cocaine, and alterations of host
microbiota affect cocaine-induced behavioral activities [81]. Therefore, the changes in
gut microbiota between female and male may eventually contribute to the differences of
behavioral activities between female and male through the gut–brain axis. Taken together,
both age and sex are important factors in determining the gut microbiota composition.
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The normal gut microbiota primarily consists of four phyla Bacillota (also known as
Firmicutes), Bacteroidota, Actinomycetota, and Verrucomicrobiota and mainly functions to
provide nutrients, protection against pathogens, and immune response [82–84]. The families
that were altered by Tat expression, cocaine exposure, or simultaneous Tat expression and
cocaine exposure from the current study were Alteromonadaceae in 6-month-old female/male
mice and Bacteroidaceae, Desulfovibrionaceae, Erysipelotrichaceae, Lachnospiraceae, Murib-
aculaceae, and Ruminococcaceae in 12-month-old female mice. These families belong to the
phyla Bacillota (Ruminococcaceae, Lachnospiraceae, and Erysipelotrichaceae), Bacteroidota
(Muribaculaceae and Bacteroidaceae), and Thermodesulfobacteriota (Desulfovibrionaceae),
and Pseudomonadota (Alteromonadaceae). Lack of the phyla Actinomycetota, and Verru-
comicrobiota in the gut microbiota from this study is likely due to use of doxycycline in all
the mice [82]. In this study, we also found Tat expression or cocaine exposure resulted in
metabolic abnormalities which are common in HIV-infected patients. Consistent with our
findings, Tat expression results in a decrease in cellular energy metabolism by deregulating
intracellular calcium homeostasis and disrupting mitochondrial function [85], and cocaine
exposure increases lipid metabolism [86]. However, the relationship between changes of these
families and changes of metabolic pathways in the gut of 12-month-old female mice remains
to be determined.

An increasing number of recent studies support the bidirectional gut–brain axis hy-
pothesis that the brain can alter microbial composition in gut by autonomic nervous system,
and that gut microbiota, in turn, can regulate the brain function by endocrine and neu-
rocrine pathways [87]. In this study, we chose iTat mice as a surrogate HAND model to
explore possible bidirectional interactions between HAND and gut microbiota. Tat protein
is expressed in astrocytes, secreted from these cells, and taken up by other cells such as
neurons [88–93]. Tat may be transported from the brain to the peripheral tissues/organs
such as gut and lead to change of the gut microbiota, which in turn contributes to HAND.
There is another possibility that Tat is induced in the glial fibrillary acid protein-positive
glial cells, which directly regulate proinflammatory response, microbiota composition, and
epithelial barrier integrity in gut and then contribute to neuroinflammation and changes
of neurobehaviors [94,95]. On the other hand, cocaine was given to mice through the i.p.
route in this study. Thus, cocaine’s effects on the gut microbiota could be direct or indirect.
Nevertheless, further studies are needed to understand the underlying mechanisms of how
Tat and cocaine affect the gut microbiota and whether these mechanisms can be explored
for development of HAND therapeutics. In conclusion, the findings from the current study
show that Tat expression and cocaine exposure lead to most changes of microbiota in adult
female mice.
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