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Abstract: Tuberculosis (TB) is characterised by chronic non-resolving inflammation. The effects of
the host immune and inflammatory response to reduce iron acquisition by the bacteria, together
with other contributing factors, predispose TB patients to anaemia of infection and iron deficiency
anaemia (IDA). The presence of anaemia in TB patients has been linked to poor clinical outcomes.
However, due to the reliance of the bacteria on iron, the management of anaemia in TB is complicated,
and anaemia of infection is likely to resolve with correct TB drug treatment. On the other hand, IDA
may require iron supplementation. This review aims to describe iron metabolism in TB and how
this contributes to the development of iron deficiency and anaemia. Additionally, we summarise
the evidence on the association between iron status and clinical outcomes as well as the available
preclinical and clinical trials on iron supplementation in TB.
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1. Introduction

Tuberculosis (TB) is still a leading cause of morbidity and mortality in the world, with
increasing drug-resistant cases. The prevalence of bacteriologically confirmed pulmonary
TB cases ranges from 24 to 62% in African countries and 33 to 68% in Asian countries
according to a National WHO survey in 24 countries during 2007–2016 [1–3].

Tuberculosis patients are burdened with excessive non-resolving inflammation with
resultant debilitating consequences, including lung tissue necrosis and cavitation [4,5].
Furthermore, anaemia, also resulting from inflammation, is a common complication in
TB patients. Normocytic normochromic anaemia has been reported to be present in up to
71.7% of TB patients [6–13]. Additionally, depending on the population and the relevant
contributing factors, 1-53% of TB patients suffer from iron deficiency anaemia (IDA) [8,9,14].
Populations at risk for TB are frequently from a low-socio-economic background, where
undernutrition may lead to micronutrient deficiencies, including iron deficiency (ID) [15,16].
Furthermore, intestinal helminth infection before TB infection and co-infection of TB
patients with helminths may cause IDA [17,18]. Due to the importance of iron in immunity,
ID and anaemia in TB patients have been associated with slower sputum conversion
rates, higher mortality rates and the reoccurrence of TB [3,7–9]. However, the relationship
between iron availability, the TB bacterium and the host immune response is complex;
therefore, it is difficult to identify the need and benefit of iron supplementation [19,20].
This review aimed to summarise the literature available on ID and anaemia in TB and the
possible role of iron supplementation in addressing these complications.

2. Iron Acquisition and Host Immune Response in Tuberculosis

Iron serves as a co-factor for the metabolic enzymes of mycobacteria such as aconitase
and succinate dehydrogenase and is therefore essential for their subsistence and repli-
cation [21–23]. Numerous microbes depend on iron obtained from the host, which is
also true for Mycobacterium tuberculosis (Mtb), which uses the host’s iron for growth and
virulence [20]. For this reason, the role of the innate immune response is to lower iron
accessibility for Mtb, as illustrated in Figure 1 [19,24,25].
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Figure 1. The pathophysiology of the development of iron deficiency and anaemia in tuberculosis. 
IL: interleukin, Fe: iron, GIT: gastrointestinal, TB: tuberculosis. 

3. Iron Status in Tuberculosis 
The mechanisms which are meant to lower the availability of iron for pathogens [46] 

also impact erythropoiesis by resulting in reduced iron absorption and serum iron avail-
ability (hypoferraemia) [21,22,47]. Three pathways have been suggested to contribute to 
anaemia of infection. These include hepcidin-mediated iron sequestration, the inflamma-
tory inhibition of erythropoiesis and a shorter life cycle of erythrocytes [41]. The low 
amounts of iron transported by transferrin in the circulation result from the large portion 
of bodily iron constricted to the macrophages of the reticuloendothelial system. Iron pro-
duction for other tissues, such as, the central nervous system and bone marrow precursors 
for leukocyte production, is preserved by inhibiting erythropoiesis [40,48]. In TB, ongoing 
inflammation causes hepcidin to be upregulated, which restricts iron availability for 
erythropoiesis and, in combination with reduced dietary and supplemental iron absorp-
tion, finally results in normocytic normochromic anaemia [33,40]. The availability of 
erythroid precursors is lowered by hypoferraemia, and the higher production of leuko-
cytes further decreases the body’s oxygen-carrying capacity [22,33]. This anaemia is 
known as anaemia of infection, inflammation or chronic disease and, except for during 
critical illness, may take several weeks to develop. This is due to the long life cycle of 
erythrocytes in adults (100 to 120 days) [40].  

Over a prolonged serious illness, patients could develop the more detrimental con-
dition of microcytic hypochromic RBCs [33]. Anaemia of infection and IDA additionally 
regularly co-exist, particularly in developing countries [49]. Other factors may contribute 
to the development of IDA in TB. These may include the following [10,19,50–52]: 
 Malnutrition because of insufficient dietary intake and a deterioration in appetite; 
 Malabsorption because of hookworm infection, inflammation or other secondary in-

fections;  
 Haemoptysis resulting in blood loss via sputum. 

Supporting this, Chhabra et al. reported that the degree of malnutrition is associated 
with the presence of anaemia in TB patients [47].  

Figure 1. The pathophysiology of the development of iron deficiency and anaemia in tuberculosis.
IL: interleukin, Fe: iron, GIT: gastrointestinal, TB: tuberculosis.

The first way in which iron is restricted for the bacteria is through iron-sequestering
proteins present in mucosal fluids. Lactoferrin is such an example and, like transferrin,
binds with two ferric atoms. Iron is not released from lactoferrin even if the environment is
very acidic, and consequently, it provides part of the initial barrier against iron availability
for bacteria [26]. An additional iron-sequestering protein is lipocalin-2, which acts by
isolating iron-binding bacterial siderophores and using catechol metabolites as iron chela-
tors [27,28]. In TB, it has been established that extracellular iron-sequestering molecules,
for example, transferrin, which transports ferric ions; haptoglobin, which is responsible
for binding haemoglobin; and hemopexin, which sequesters free haem iron, gather in the
necrotic centres of caseous granuloma. This is accompanied by iron-restricting antimicrobic
proteins, for example, lactoferrin and lipocalin, which isolate siderophores and impede
Mtb growth in granulomas [29]. All these iron-restricting proteins that are in granulomas
reduce the availability of iron for Mtb. Additionally, at infection sites, phagocytes are also
recruited to compete with bacteria for iron [24] (Figure 1).

Furthermore, during the acute-phase response, there are changes in plasma con-
centrations of proteins implicated in iron metabolism, such as transferrin, hepcidin and
ferritin [24,30]. Following host Mtb recognition, a proinflammatory response is stimulated,
which triggers liver hepcidin to be upregulated by the production of proinflammatory
cytokines, predominantly interleukin (IL)-6, and additionally IL-1, IL-22 and interferon-
gamma (IFN-α) [22,31–36]. Other factors related to infection, for example, the hydrogen
peroxide that is produced by neutrophils, also influence the expression of hepcidin [37].
Elevated concentrations of hepcidin cause the sequestration of iron in macrophages, im-
paired gastrointestinal iron absorption and decreased release of stored iron. Hepcidin
causes the endocytosis and proteolysis of ferroportin, together with reduced expression
of divalent metal transporter-1, thereby reducing iron gastrointestinal absorption and en-
hancing iron sequestration intracellularly in macrophages, hepatocytes and enterocytes as
cytoplasmic ferritin [33,38]. This is acknowledged as the primary cause of hypoferraemia
during inflammation and infection (Figure 1) [39,40].
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Additionally, there are other ways than the upregulation of hepcidin in which inflam-
matory cytokines play a role in the development of hypoferraemia (Figure 1). For example,
IFN-γ mediates myeloid cell production at the expense of erythropoiesis and activates
macrophages, leading to a shorter erythroid life cycle due to phagocytosis, whilst tumour
necrosis factor-alpha (TNF-α) impedes erythroid proliferation. Cytokines such as TNF-α,
which acts on duodenal cells to lower iron absorption independently of hepcidin, can fur-
ther directly reduce iron absorption. IL-1, IL-6, IL-10 and TNF-α also act on macrophages
by transferrin-receptor-mediated endocytosis, divalent metal transporter-1 and lactoferrin
and lipocalin-2, thereby facilitating iron restriction [39–42].

In essence, in TB there is a change from iron that is available (transferrin bound)
to iron that is stored (ferritin) [19,25,33]. This, however, avails the iron for intracellular
microbes, such as Mtb. Mtb has restricted access to the host iron stores in the phagosome of
host macrophages, but evidence shows that Mtb secretes siderophores that mediate iron
diffusion through phagosomal membranes, thereby offering contact with the abundantly
available iron in the macrophage cytosol [43]. Siderophores are molecules that can bind
iron better than iron storage proteins and acquire iron from transferrin, lactoferrin and
ferritin [43]. In TB, lipophilic, cell-bound mycobactins and soluble carboxymycobactins that
are secreted into the extracellular space are such siderophores [43–45]. Additionally, extra-
cellular Mtb attains iron from circulating transferrin, ferritin and lactoferrin. There are also
ways in which host haem iron is obtained by Mtb as it expresses and secretes haemolytic
enzymes that induce haemolysis of red blood cells (RBCs) to release haemoglobin and,
therefore, in advanced stages of TB infection, high lung haem iron levels have been de-
tected [43,46].

3. Iron Status in Tuberculosis

The mechanisms which are meant to lower the availability of iron for pathogens [46]
also impact erythropoiesis by resulting in reduced iron absorption and serum iron avail-
ability (hypoferraemia) [21,22,47]. Three pathways have been suggested to contribute to
anaemia of infection. These include hepcidin-mediated iron sequestration, the inflam-
matory inhibition of erythropoiesis and a shorter life cycle of erythrocytes [41]. The low
amounts of iron transported by transferrin in the circulation result from the large portion
of bodily iron constricted to the macrophages of the reticuloendothelial system. Iron pro-
duction for other tissues, such as, the central nervous system and bone marrow precursors
for leukocyte production, is preserved by inhibiting erythropoiesis [40,48]. In TB, ongoing
inflammation causes hepcidin to be upregulated, which restricts iron availability for ery-
thropoiesis and, in combination with reduced dietary and supplemental iron absorption,
finally results in normocytic normochromic anaemia [33,40]. The availability of erythroid
precursors is lowered by hypoferraemia, and the higher production of leukocytes further
decreases the body’s oxygen-carrying capacity [22,33]. This anaemia is known as anaemia
of infection, inflammation or chronic disease and, except for during critical illness, may
take several weeks to develop. This is due to the long life cycle of erythrocytes in adults
(100 to 120 days) [40].

Over a prolonged serious illness, patients could develop the more detrimental con-
dition of microcytic hypochromic RBCs [33]. Anaemia of infection and IDA additionally
regularly co-exist, particularly in developing countries [49]. Other factors may contribute
to the development of IDA in TB. These may include the following [10,19,50–52]:

• Malnutrition because of insufficient dietary intake and a deterioration in appetite;
• Malabsorption because of hookworm infection, inflammation or other secondary

infections;
• Haemoptysis resulting in blood loss via sputum.

Supporting this, Chhabra et al. reported that the degree of malnutrition is associated
with the presence of anaemia in TB patients [47].

Anaemia of infection and IDA are common complications in TB, being reported to
be present in 30 to 94% of TB patients [6,8,10,13,14,19,51–54]. These anaemias can either
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be TB-related or from alternative causes. Normocytic normochromic anaemia (anaemia
of infection) is the main anaemia present in TB patients [6–13,53]. However, Isanaka et al.
found a high IDA burden of 53% in the TB patients included in their study in Dar es Salaam,
Tanzania [14]. Another study reported that of 198 Iranian smear-positive pulmonary TB
patients, 45.9% were anaemic at the end of the second month of TB drug treatment, and of
these patients, 79.1% suffered from IDA [55]. Anaemia of infection improves with lowered
hepcidin concentrations and iron availability in the circulation when there is effective
TB treatment and infection resolution [56]. However, IDA may persist, and iron-based
interventions for these patients may be needed [8,11,14].

4. Biomarkers to Identify Anaemia of Infection and Iron Deficiency Anaemia in
Tuberculosis patients

The fact that anaemia of infection and IDA are both characterised by low iron levels
(hypoferraemia) makes distinguishing between the two challenging. However, there are
differences in that in IDA, lower ferritin concentrations are observed in comparison with
higher hepcidin and ferritin concentrations in anaemia of infection [40].

When investigating the relationship of TB with iron status biomarkers, Mishra et al.
found that compared with healthy individuals, pulmonary TB patients had higher ferritin,
total iron-binding capacity and C-reactive protein (CRP) concentrations [19]. This has
been confirmed by past and more current research that reported elevated ferritin levels
in TB patients [8,12]. Kurthkoti et al. measured ferritin concentrations on a cellular level
and reported high concentrations in cavitary granulomas’ cellular regions [29]. Ferritin
concentrations were also found to shift with TB drug treatment. Therefore, ferritin is
instead defined as an acute-phase protein in TB patients and is not an accurate indicator of
iron stores under these circumstances as it is influenced by the resolution of infection and
inflammation [19]. Ferritin levels are thought to increase in TB due to two mechanisms:
firstly, the fact that monocytes and macrophages produce ferritin and monocytosis is a
consequence of TB infection, and secondly, ferritin acts as an acute-phase reactant that is
therefore closely associated with CRP (inflammation) [19].

Low iron, transferrin, transferrin saturation (TSAT) and haemoglobin levels have been
found in TB patients [8,19]. Due to the fact that transferrin is considered a negative acute-
phase protein, the reduction in transferrin concentrations concurs with what is anticipated
in infections [19]. Moreover, as discussed above, the shift of circulating iron to being stored
(i.e., as ferritin) is also why reduced transferrin levels are evident in TB patients. Lastly,
transferrin is influenced by inflammation as well as being a nutritional status marker
affected by the intake of protein and iron [19]. Conversely, as an indication of higher
iron demand and erythropoietic stimulus, elevated transferrin receptor (TfR) levels can
be expected in inflammatory situations [57]. TfR levels are, therefore, a poor marker of
IDA also affected by inflammation. Kurthkoti et al. found elevated TfR in solid cellular
granulomas [29], which was supported by a study in Tanzanian TB patients that found
higher circulatory TfR levels [8]. Furthermore, when comparing TB patients with and
without anaemia, no significant difference could be found in their TfR levels [58].

The fact that lower hepcidin concentrations are anticipated in IDA and higher con-
centrations in anaemia of infection means that hepcidin’s upregulation is a potentially
helpful way to differentiate amongst these two types of anaemia in TB patients [59]. Higher
hepcidin levels have repeatedly been reported in TB patients [8,60,61]. Table 1 shows the
differences in the shifts in biomarkers seen in patients with anaemia of infection compared
with IDA.
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Table 1. Biomarker changes anticipated in anaemia of infection and iron deficiency anaemia.

Biomarker Levels in Iron
Deficiency Anaemia Levels in Anaemia of Infection

Red blood cells Low Low
White blood cells Low to normal Normal to high
Serum iron Decreased Decreased
Serum transferrin High Low
Transferrin saturation Low Low
Serum transferrin receptor High Normal to high
Hepcidin Decreased Increased
Haemoglobin Decreased Decreased to normal
Ferritin Low High
Mean corpuscular volume Low Normal
Mean corpuscular
haemoglobin Low Normal

5. Clinical Outcomes Associated with Iron Biomarkers in Tuberculosis

Hypoferraemia and anaemia have consequences for TB patients [19,24,44,48,49]. Firstly, the
sequestration of iron upon TB infection benefits Mtb pathogens that inhabit macrophages [20].
In addition, iron plays a vital role in both innate and adaptive immune function [21,50,51].
The unavailability of iron inhibits cell defence systems and macrophage activity by causing
a change from Th1 towards Th2 responses elicited by reduced IL-1 and IL-6 concentrations.
This results in an inhibited ability of macrophages to kill the mycobacteria and block
nitrogen-oxide-dependent activity [14,52–55]. ID further compromises immune function
and response by reducing T-cell numbers and the inaccessibility of iron to be part of the
structure or to activate enzymes required for the immune response [50,56–59]. Apart from
affecting the immune response, ID also has other unfavourable consequences because
iron is required for physiological processes such as erythropoiesis [19]. Therefore, ID
and anaemia can precipitate various symptoms, including weakness and impaired motor
activity [19].

Due to the effects of ID on immune function and other physiological functions and the
intracellular shift of iron favouring bacterial growth, ID and anaemia are also risk factors
for poor TB outcomes [24]. The relationship between iron status and TB is complex because
both ID and overload may increase an individual’s susceptibility to and progression of TB
infection [19,24,51,60,61]. Chu et al. showed that individuals with IDA have a significantly
higher TB incidence compared with non-IDA controls [62]. A Tanzanian trial in TB patients
by Isanaka et al. first demonstrated significant associations between ID and anaemia
and negative clinical outcomes and recurrence of disease [14]. Here, anaemia with and
without ID was related to a two- to threefold independent rise in the risk for mortality [14].
Additionally, anaemia with no ID was also related to TB recurrence [14]. These findings
are supported by other studies in TB patients, indicating an association between anaemia
and delayed sputum conversion and higher mortality rates [61,63]. However, Metanat et al.
could not identify a significant difference in sputum conversion rates between IDA and
non-IDA pulmonary TB patients after the intensive TB drug treatment phase [64].

Several markers of iron status have been shown to be associated with the advancement
of TB disease and clinical outcomes. Plasma or serum ferritin levels correlate positively
with disease severity, sputum positivity and higher mortality rates during active TB [19,65].
However, reduced levels of plasma ferritin at infection, before active TB, predicted a greater
risk of failed treatment and TB recurrence in HIV-positive patients [65]. In addition, a
trial in South Africa reported a strong correlation between hepcidin concentrations and
mycobacterial burden and that hepcidin predicted mortality in TB patients [66]. Similarly,
a study in Tanzania found a positive correlation between hepcidin and the severity of TB
symptoms [8].

Apart from ferritin and hepcidin, low transferrin and haemoglobin and elevated
ferritin were consistent with a higher TB incidence and susceptibility in HIV patients [67].
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Similarly, other studies have also shown a strong correlation between low transferrin levels
and TB disease severity [19,68,69]. Finally, an older study found a positive correlation
between haemoglobin levels and faster rates of sputum conversion [12]. Evidently, in TB
patients, ID and anaemia may lead to unfavourable consequences that can be attenuated
by improving the individual’s iron status, thus improving outcomes [65].

6. Preclinical Studies of Iron Supplementation and Absorption in Tuberculosis

Treating ID in TB is not straightforward, as providing iron to guarantee competent
immune functioning results in iron that is available for pathogens [20,70,71]. Currently,
no clear guidelines exist for treating ID during infection [24,51]. In addition, due to the
upregulated inflammatory response in TB patients, iron supplementation may fail to correct
anaemia of infection. Treatment strategies aimed either at the infection or inflammation
that may resolve anaemia of infection and TB symptoms, e.g., anti-TNF therapy, have been
suggested [10,72]. However, some studies have also emphasised that iron supplementation
may be beneficial to improve iron status in some TB patients [8,14]. Intravenous iron
therapy has been suggested for patients suffering from both anaemia of inflammation
and IDA [39]. Nevertheless, research on iron supplementation in TB patients and animal
models is limited. Table 2 summarizes the available preclinical trials investigating iron
availability and administration in TB.

Serafin-Lopez et al. found that in TB-infected murine J774 macrophages, iron favoured
Mtb intracellular growth due to the reduced production of TNF-α, which is necessary for
Mtb restriction [54]. Similarly, a study using human mononuclear phagocytes showed that
iron repressed the release of TNF-α while attenuating the reaction of monocytes to TNF-α.
The researchers reasoned that this is a requirement for the differentiation of monocytes,
and a necessary step in limiting the cell-to-cell spread of Mtb [73].

Iron supplementation outcomes in animal experiments have been inconsistent (Table 2).
When Mtb-infected BALB/C mice were intraperitoneally injected with 50 mg/kg polymal-
tose ferric hydroxide thrice daily for two weeks before infection, this resulted in mice with
a high iron load having greater bacterial loads in their lungs and spleens [74]. Similarly,
Schaible et al. found that in β-2-microglobulin knockout mice, iron overload worsened
TB [75]. Conversely, recent animal trials found otherwise. In one study, rabbits with latent
TB infection were injected with 25 mg of iron thrice every week for 2 months. This study
found no effects on haemoglobin or haematocrit. However, in the iron-supplemented
groups, total plasma iron-binding capacity and percentage TSAT were reduced and iron
concentrations in the lungs were elevated [76]. Supplementation with iron did not affect
either the pathology of the disease or the bacterial loads but downregulated systemic
immune response gene expression such as IL1B, IL10, TNFA and IFNG while upregulating
lung and plasma IL6 expression [76]. Additionally, Agoro and colleagues fed M.Bovis
BCG-infected C57BL/6 mice with a diet consisting of either 2500 (supplemented) or 280 mg
of iron carbonyl per kg diet [77]. This study found that the lungs of iron-supplemented
mice had lower levels of proinflammatory cytokines including IFN-γ, IL-1β, IL-12p40
and TNF-α. Additionally, supplementation enhanced the recruitment of immune cells,
resulting in higher CD8+ T cell counts [77]. In another study, oral iron supplementation in
Mtb-infected C3HeB/FeJ mice commencing one week post-infection for three weeks had a
lowering effect on soluble TfR, ferritin and hepcidin levels. Iron also lowered concentra-
tions of IL-1α and IL-1β in the lungs and IL-1β, TNF-α and IL-6 in plasma [78]. The reason
for the discrepancies between the results found in preclinical studies are possibly due to
differences in the TB models used or methods and dosages of TB infection, as well as the
timing, dosage and route of iron administration.
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Table 2. Preclinical studies investigating the relationship between iron and TB.

Reference TB Model Iron intervention Outcome

Byrd et al. [73]

Human monocytes infected with Mtb
Erdman strain (ATCC 35801) and
cultured in medium containing
TNF-α, IFN-γ and calcitriol.

Ferric ammonium citrate,
Fe-saturated transferrin,
Fe-saturated lactoferrin.

Dose-dependent Fe restriction of
growth of Mtb in monocytes that had
been primed with TNF-α.
Production of TNF-α by infected
monocytes was inhibited by Fe.

Lounis et al. [74] Balb/C mice infected intravenously
with 7.2 × 103 H37Rv Mtb strain.

50 mg/kg polymaltose ferric
hydroxyde
intraperitoneally, 3 times a week for
2 weeks before infection.

No significant differences in body
weights between the Fe-loaded and
control mice on day 42 after infection.
Spleen weights were significantly
higher in Fe-loaded mice at day
42 post-infection.
Mtb CFU counts significantly higher
in spleens and lungs of the Fe-loaded
mice compared to controls.

Schaible et al. [75]

In vivo wild-type B6,
β-2-microglobulin knockout and
MHC-I knockout mice infected with
3–5 or 15–200 Mtb per lung. Some
mice received 25 mg/mL ferric citrate
in drinking water for duration of
experiment to overload them with Fe.

Treated twice every week with
intranasal 1 mg/mouse bovine
lactoferrin or recombinant
lactoferrin or intraperitoneally with
deferoxamine in PBS or PBS alone.
25 mg/mL Fe3+Ci

Treatment with Fe3+Ci resulted in Fe
overload and 10 times higher burden
of lung Mtb. Treatment with
lactoferrin ↓ bacterial load in β2m
knockout but not B6 mice. Treatment
with deferoxamine depleted Fe and ↓
bacterial load in both β2m knockout
and B6 mice.

In vitro Mtb (Erdman) and M.bovis
cultured in medium.

1 mg/mL Fe3+Ci; or 1 mg/mL
bovine lactoferrin; or 0.5 mg/mL
deferroxamine; or deferroxamine
and Fe3+Ci.

Excess Fe ↑ bacterial growth;
deferoxamine chelated free Fe,
resulting in ↓ growth of Mtb.

Macrophages derived from bone
marrow cells of B6 or β2m knockout
mice were infected with Mtb and
cultured with or without
0.5 mg/mL lactoferrin.

0.5 mg/mL lactoferrin or
0.1 mg/mL rat anti-TfR antibody for
3 days.

Lactoferrin bound extracellular Fe,
whereas anti-TfR antibody inhibited
cellular Fe import, thus inhibiting
growth of Mtb in infected macrophages.

Serafin-Lopez et al. [54]

Murine macrophage-like cell line
J774A.1 infected with Mtb H37Rv
bacilli. Intracellular and extracellular
growth of Mtb assessed.

Incubation of cell cultures with 5, 25
and 50 µM of ferric chloride for 0, 48
and 72 h.

Dose-dependent extracellular
bacterial growth was observed after
48 h and 72 h but intracellular growth
only at 72 h with Fe. Production of
TNF-α was lower at 72 h compared
with 48 h post-infection in
macrophages with Fe.

Agoro et al. [77]
Male C57BL/6 mice infected
intravenously with 2 × 106 M.
Bovis BCG.

Mice on (1) Fe-rich diet (2500 mg Fe
carbonyl/ kg food or (2) standard
diet (280 mg Fe carbonyl/ kg food)
for 4 weeks before infection plus
duration of infection.

In vivo analysis
Moderate Fe: ↓ proinflammatory
cytokine levels, ↓ neutrophil
recruitment, ↑ T-cell recruitment in
granulomas and ↓ bacterial load.
↑ Bacterial clearance in liver
correlated with upregulation of the
gene encoding hepcidin and
sequestration of Fe in tissues.
In cultured macrophages
Fe ↑ ROS and ↓ uptake and
intracellular growth of M.Bovis BCG.

Kolloli et al. [76]
Pathogen-free white rabbits
(Oryctolagus cuniculus) infected with
Mtb CDC1551 via the aerosol route.

25 mg Fe-dextran III or placebo
(0.5 mL sterile dextran in water)
intra-muscularly, 3 days a week.
(1) For acute-phase results starting
day 1 post-infection to 8 weeks and
(2) for pre-established infection
starting at 8 until 16 weeks.

No causal role for Fe in bacterial
burden and tissue pathology, i.e., the
reactivation of latent TB.
Association between Fe
supplementation and changes in host
gene expression of Fe homeostasis
and host immunity.
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Table 2. Cont.

Reference TB Model Iron intervention Outcome

Nienaber et al. [78]
Male C3HeB/FeJ mice infected with
2.4 × 107 Mtb H37Rv via
aerosol route.

AIN-93G control or AIN-93G diet
supplemented with Fe (130 ppm Fe)
from one-week post-infection for
three weeks.

Fe lowered soluble transferrin
receptor, ferritin and hepcidin, lung
IL-1α, IL-1β, plasma IL-1, IL-6
and TNF-α.
Fe did not affect lung bacterial loads.
Fe ↑ T-cell, CD4+ T-cell, CD8+ T-cell,
interstitial macrophage, alveolar
macrophage, CD103 DC and CD11b
DC counts in lungs and percentages of
total lung cells in neutrophils,
interstitial macrophages,
monocyte-derived DCs, T cells, CD4+
T cells, CD8+ T cells, natural killer
cells and CD11b DCs.

AGP: α -1-acid glycoprotein, M.bovis BCG: M.bovis bacillus Calmette–Guérin, CRP: C-reactive protein, DCs: den-
dritic cells, Fe: iron, Fe3+Ci: iron citrate Hb: haemoglobin, IL: interleukin, Mtb: mycobacterium tuberculosis,
ROS: reactive oxygen species, sTfR: soluble transferrin receptor, TSAT: transferrin saturation, TNF-α: tumour
necrosis factor-alpha, PBS: phosphate-buffered saline, IFN-γ: interferon-gamma, ↑: higher, ↓: lower.

7. Clinical Trials on Iron Supplementation and Absorption in Tuberculosis

Currently, there are few clinical trials investigating iron supplementation in TB patients.
Murray et al. examined iron supplementation in two iron-deficient TB patients. The authors
concluded that disease activity was increased with iron supplementation and that infection
was most probable with repleted iron stores [70]. This was supported by another study
that showed that dietary iron intake together with elevated macrophage iron stores was
positively correlated with active TB and mortality risk (1.3-fold increased hazard ratio of
death) [19,53,60]. Similarly, intravenous iron administration favoured the activation of TB
in a published case study [79].

Countering the above, Devi et al. found that supplementation of pulmonary TB
patients with 75 mg of ferrous fumarate twice daily elevated circulating haemoglobin,
total mean cell volume, erythrocyte count and packed cell count a month after therapy
commencement, but this did not continue after the second month of treatment, irrespective
of whether supplementation was sustained [6] (Table 3). It was argued that the initial
quicker improvement in biochemical markers decelerated as additional improvements
were affected to a greater extent by stabilising inflammation and not by the supplementation
of iron per se. Supporting this notion, total iron-binding capacity was found not to be
dependent on supplementation and more reliant on the resolution of inflammation [6]. The
authors also reported that neither body mass index nor radiological improvement (chest
lesion severity) was influenced by supplementation with iron. They hypothesised that
there is a regulatory mechanism involved in TB infection to acquire host iron, regardless of
the iron status of the host [6].

Cercamondi et al. recently investigated iron metabolism in TB patients undergoing
treatment [80] (Table 3). Their study found that iron absorption from 6 mg of labelled iron
as ferrous sulphate was negligible before treatment (0.8%) but increased 10- and 20-fold to
8% and 15.2% after intensive TB drug treatment (2 months) and completion of treatment (a
further 4 months), respectively [80]. Furthermore, the high burden of anaemia observed at
baseline, possibly due to inflammation, resolved and haemoglobin steadily increased until
the end of treatment [80]. Similarly, serum iron concentrations and transferrin saturation
increased significantly with treatment administration compared to baseline, consistent with
the initially sharp and then gradual decline in hepcidin and IL-6 concentrations that was
observed during the treatment period [80]. The study also showed that erythroferrone, the
hormone that usually stimulates the formation of erythrocytes by suppressing hepcidin,
was only able to do so once the inflammation started resolving [80]. Based on their findings,
the authors concluded that iron supplementation in TB patients should be initiated only
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upon completion of TB drug treatment when absorption will be most efficient, and only for
patients that remain anaemic [80].

Table 3. Clinical studies investigating iron supplementation in TB patients.

Reference Participants Iron intervention Outcome

Devi et al. [6]

n = 117 male PTB patients
15–60 years old and Hb of
80–110 g/L
n = 50 healthy male controls
matched for age and
socio-economic status.

1 capsule twice/ day of
(1) placebo containing 75 mg
of sucrose; (2) ferrous
fumarate containing 75 mg of
elemental Fe; (3) ferrous
fumarate containing 75 mg of
elemental Fe with other
haematinics for
2 months while hospitalised.

↑ Hb, MCV and PCV at 1 month in
both Fe-supplemented groups. This
difference disappeared at 2 and
6 months. Serum Fe and Fe saturation
of transferrin was ↑ in both
Fe-supplemented groups for up to
2 months. Radiological and clinical
improvements similar in all
three groups.

Cercamondi et al. [80]

n = 18 mostly anaemic men
and women aged 16–45 years
old with a positive sputum
smear confirmed by
gene expert.

Test meal with 6mg of 57Fe
iron as ferrous sulphate
administered at baseline then
8 and 24 weeks post-treatment.
At baseline intravenous
infusion with 54Fe or 58Fe as
Fe3+Ci, after a meal.

Significant ↓ in inflammation
markers: AGP, CRP and IL-6, and
70% ↓ in hepcidin at 2 weeks.
Haemoglobin ↑ and anaemia
prevalence ↓ from 89% to 22%. TSAT
↑ and ferritin ↓ significantly but sTfR
did not change from baseline until
treatment completion.
Negative correlation between
hepcidin and serum iron, indicating
Fe sequestration during infection,
weakened upon treatment.
At baseline, inflammation resulted in
Fe sequestration and inhibited
absorption and erythropoiesis. With
treatment, hepcidin was suppressed
and erythropoiesis upregulated for
recovery of Hb. Fractional Fe
absorption increased 10- and 20-fold
as infection resolved.

Fe: iron, Fe3+Ci: iron citrate, Hb: haemoglobin, IL: interleukin, MCV: mean cell volume, PCV: packed cell volume,
PTB: pulmonary TB, sTfR: soluble transferrin receptor, TB: tuberculosis, TSAT: transferrin saturation, ↑: higher,
↓: lower.

Taken together, the results of preclinical and clinical studies suggest that restricting
the host’s persistent inflammation induced by TB may make a significant contribution to
repleting iron stores and addressing anaemia. However, iron supplementation may not
worsen disease progression and may have anti-inflammatory effects. In addition, in a
review, Agoro and Mura proposed that the effect of iron supplementation in mycobacterial
infections is biphasic [20]. Moderate iron supplementation within the “iron benefit window”
may be beneficial for the host response to reduce the bacterial load and inflammation.
However, iron supplementation exceeding the limit of the “iron benefit window” can have
unfavourable effects, promoting bacterial growth and virulence, with poor outcomes [20].

8. Conclusions

Mtb bacilli require iron for growth and virulence. For this reason, there are various
mechanisms by which the host response aims to reduce iron availability. The heightened in-
flammatory response with hepcidin, iron-sequestering proteins and phagocytes competing
for iron at infection sites and lower erythropoiesis all contribute to lower iron availability
for Mtb. However, this also causes hypoferraemia in the host, which eventually precipitates
in anaemia of infection. Other contributing factors, such as secondary infections and poor
nutrition, may further predispose a TB patient to IDA. It is difficult to distinguish between
anaemia of infection and IDA, which may present with similar iron status marker derange-
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ments, as many of these biomarkers are influenced by inflammation. Nevertheless, proper
diagnosis of a true IDA is required for the effective treatment of patients.

Anaemia of infection and IDA have been linked to poor clinical outcomes. However,
there are no clear guidelines on whether TB patients presenting with ID and anaemia
require iron supplementation. It is generally accepted that anaemia of infection will resolve
with standard TB drug treatment. IDA, especially when persisting after TB treatment and
cure, may require some further consideration of iron supplementation.

Preclinical studies on iron supplementation in TB have yielded mixed results, and
only two clinical trials could be identified. Most recent studies have shown that moderate,
timely iron supplementation during TB infection does not worsen bacterial load and disease
progression and may have an inflammation-lowering effect. However, more clinical trials
are required to determine the exact dosage and timing of iron administration as well as the
conditions under which supplementation is warranted.
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