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Abstract: Major health issues, such as the rise in oxidative stress, incidences of Alzheimer’s disease,
and infections caused by antibiotic-resistant microbes, have prompted researchers to look for new
therapeutics. Microbial extracts are still a good source of novel compounds for biotechnological
use. The objective of the current work was to investigate marine fungal bioactive compounds
with potential antibacterial, antioxidant, and acetylcholinesterase inhibitory effects. Penicillium
chrysogenum strain MZ945518 was isolated from the Mediterranean Sea in Egypt. The fungus was
halotolerant with a salt tolerance index of 1.3. The mycelial extract showed antifungal properties
against Fusarium solani with an inhibitory percentage of 77.5 ± 0.3, followed by Rhizoctonia solani
and Fusarium oxysporum with percentages of 52 ± 0.0 and 40 ± 0.5, respectively. The extract also
showed antibacterial activity against both Gram-negative and Gram-positive bacterial strains using
the agar diffusion technique. The fungal extract was significantly more effective with Proteus mirabilis
ATCC 29906 and Micrococcus luteus ATCC 9341; inhibition zones recorded 20 and 12 mm, respectively,
compared with the antibiotic gentamycin, which recorded 12 and 10 mm, respectively. The antioxidant
activity of the fungus extract revealed that it successfully scavenged DPPH free radicals and recorded
an IC50 of 542.5 µg/mL. Additionally, it was capable of reducing Fe3+ to Fe2+ and exhibiting chelating
ability in the metal ion-chelating test. The fungal extract was identified as a crucial inhibitor of
acetylcholinesterase with an inhibition percentage of 63% and an IC50 value of 60.87 µg/mL. Using
gas chromatography–mass spectrometry (GC/MS), 20 metabolites were detected. The most prevalent
ones were (Z)-18-octadec-9-enolide and 1,2-Benzenedicarboxylic acid, with ratios of 36.28 and 26.73%,
respectively. An in silico study using molecular docking demonstrated interactions between the
major metabolites and the target proteins, including: DNA Gyrase, glutathione S-transferase, and
Acetylcholinesterase, confirming the extract’s antimicrobial and antioxidant activity. Penicillium
chrysogenum MZ945518, a halotolerant strain, has promising bioactive compounds with antibacterial,
antioxidant, and acetylcholinesterase inhibitory activities

Keywords: Acetylcholinesterase (ACh) inhibition; antimicrobial activity; 2, 2-diphenyl-1-picryl-
hydrazyl-hydrate (DPPH) assay; gas chromatography-mass spectrometry (GC/MS); in silico study;
Penicillium chrysogenum MZ945518; halotolerant

1. Introduction

Antibiotic resistance has become a problem for our society and public health because
it has made it possible for infectious diseases to come back and pose a threat to people’s
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health [1]. Many chronic conditions, including cancer, diabetes, arteriosclerosis, neurolog-
ical illnesses, and heart illnesses, are believed to result from the oxidative damage that
free radicals inflict [2]. Therefore, finding secondary metabolites having biological effects
against cancer, microbes, tropical diseases, and other conditions has been the focus of
extensive research [3].

Marine microorganisms are a possible sustainable source of novel physiologically
active compounds because the biodiversity of the oceans makes up 50% of the total biodi-
versity of the world [4]. Marine microbes are a source of intriguing secondary metabolites
because they thrive in challenging environments, including cold, dark, and high pressures,
or in conjunction with other species [5]. To survive in such diverse environments, they
have developed a variety of adaptation methods, including the development of specific
metabolites [4]. Furthermore, marine organisms are able to produce a broad variety of novel
molecules due to the sea’s harsh chemical and physical circumstances; these molecules are
unique in diversity, structural properties, and functional aspects compared to compounds
isolated from terrestrial plants [6]. These extra molecules are a source of possible new
pharmaceutically active drugs [7]. Cladosporium, Aspergillus, Chaetomium, Penicillium, and
Trichoderma species possess a combination of morphological and physiological adaptations
that make them well suited to life in the sea. This group of organisms is classified as
“facultative marine fungi” [8]. The most prevalent fungi found in both indoor and outdoor
habitats, including marine substrates, such as sponges, corals, algae, and sand, are Peni-
cillium species [9]. Penicillium species that are derived from marine habitats are possible
sources of distinctive substances with biological activity that are generated as a result of the
natural circumstances of marine environments [8]. There are numerous species within the
genus, some of which are commercially important in nutrition, biomedical, and pharmaceu-
tical production [10]. Due to the abundance of bioactive components, such as flavonoids,
alkaloids, minerals, proteins, phenols, tannins, vitamins, and antioxidant characteristics,
these organisms were able to biosynthesize a diverse array of primary and secondary
metabolites [11]. Anticancer, antibacterial, and antioxidant effects are demonstrated by
many species of this genus [12].

Penicillium chrysogenum is a well-known and excellent example of useful fungi. The
fungus piqued biologists’ interests, especially in the realm of drug development, because it
produces the antibiotic penicillin [13]. The genetic variations among and within the varieties of
the species have been studied. James Scott [14] categorized the indoor isolates from Penicillium
chrysogenum into four clades, and Bank et al. [15] investigated the genetic variance between
different types and isolates from P. chrysogenum. The metabolites isolated from different
varieties of the species showed antioxidant, antimicrobial, and anticancer activities [10,16].

The current study set out to investigate the gas chromatography–mass spectrome-
try (GC/MS) -based metabolic profiling, and the antimicrobial, antioxidant, and acetyl-
cholinesterase inhibition activities of the non-polar ethyl acetate extract of Penicillium
chrysogenum MZ945518 mycelia isolated from the Mediterranean Sea with a docking study
of the major bioactive metabolites.

2. Materials and Methods
2.1. The Fungal Culture Used

Penicillium chrysogenum MZ945518 was isolated from the Mediterranean coast of
Alexandria, Egypt and identified using molecular techniques, as we previously described [17].
After 7 days of cultivation on potato dextrose agar medium, morphological characteristics
were examined, and the developed colony was examined under light microscope.

2.2. Halotolerance Test

Frisvad’s modified procedure was used to conduct the halotolerance test [18]. Potato
dextrose agar (PDA) was employed as the growth medium in this study and supplemented
with 0, 2.5, 5, 10, 15, 20, 25, and 30% NaCl concentrations. The fungus was seeded in
the plate center and cultured at 28 ◦C for 10 days, after which the growth diameter was
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measured. The salt tolerance index (Ti) was determined by dividing the diameters of
colonies grown in PDA and colonies grown in PDA plus NaCl. Ti values were found to be
oppositely related to halophily. This means that the more halophily there is, the lower the
Ti value. Fungi with index values less than one were deemed halophilic, whereas those
with index values greater than one were deemed halotolerant.

2.3. Extraction of Fungal Metabolites

The P. chrysogenum discs (6 mm) were placed in flasks with potato dextrose broth and
cultured for 7 days at 25 ◦C in a static incubator. Thereafter, mycelia were harvested by
ultracentrifugation (Sigma, 3–16 PK, Osterode am Harz, Germany) for 10 min at 4 ◦C and
10,000 rpm, and the culture supernatant was discarded. The obtained mycelia were extracted
with ethyl acetate (Sigma-Aldrich, Burlington, MA, United States) solvent (EtOAc) (1:2). At
40 ◦C, the resulting extract was concentrated using a rotary evaporator (IKA, Germany).

2.4. The Antimicrobial Effect Evaluation
2.4.1. The Reference Pathogens

The antibacterial effect of the fungal ethyl acetate extract was evaluated in vitro against
six different reference bacterial strains belonging to both Gram-negative and Gram-positive
(Pseudomonas aeruginosa ATCC 7853, Proteus mirabilis ATCC 29906, Escherichia coli ATCC
25922, Staphylococcus aureus ATCC 25923, Streptococcus pneumoniae ATCC 49619, and Mi-
crococcus luteus ATCC 9341). Additionally, the extract’s anticandidal properties have been
evaluated against the pathogenic yeast Candida albicans ATCC 20231. The extract’s anti-
fungal activity was evaluated using three different phytopathogenic fungi (Rhizoctonia
solani, Fusarium oxysporum, and Fusarium solani). The tested fungus was maintained on
PDA medium at 25 ◦C for 3–5 days.

2.4.2. Agar–Diffusion Technique

According to Hamad et al. [19], the antibacterial and anticandidal activities of the crude
extract were evaluated as follows: 100 µL of the previously cultured bacterial and Candida
albicans suspensions, each containing 1 × 108 CFU/mL (OD600~0.1) were distributed onto
the surfaces of nutrient agar and PDA media, respectively. A 6-mm sterile cork borer was
used to produce wells in the agar plates. By using an independent sterile micropipette,
100 µL of the non-polar mycelium extract at a concentration of 20 mg/mL was placed
into each well. Then, the plates were kept in the refrigerator at 4 ◦C for 8 h, followed by
incubation at 37 ◦C for 24 h. Both antibacterial (gentamycin at 10 g/disc) and antifungal
(amphotericin B at 100 units/disc) drugs, as well as ethyl acetate were utilized as positive
and negative controls, respectively. A ruler was used to measure the diameter of the
inhibition zones formed around the wells to determine the antimicrobial efficacy.

2.4.3. Screening of Antifungal Effect

The antifungal activity was determined based on the inhibitory percentage effect
on radial mycelial growth (PIMG) of the fungi under investigation, according to Naglah
et al. [20], as follows: At first, before pouring the plates, the ethyl acetate extract at a
concentration of 20 mg/mL was added to the cooled potato dextrose agar medium (PDA).
Then, the media was poured into the plates and left to solidify, and the centers of the plates
were then inoculated with fungus discs measuring 5 mm in diameter. A negative control
was created by inoculating sterile PDA medium with agar plugs of the same diameter from
the investigated fungi. At 25 ◦C, all cultures were grown for 7 days. Radius of mycelium
growth on PDA medium supplemented with mycelium crude extract (R2) was compared to
that of mycelium growth on PDA medium (R1) to determine the efficacy of the antifungal
properties of the extract. The PIMG was calculated by the formula below:

PIMG = {(R1 − R2)/R1} × 100.
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2.5. Antioxidant Activity

Numerous procedures were employed in order to evaluate the extract’s
antioxidant capacity.

2.5.1. Measurement of Free Radical Scavenging Activity

The 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical test was performed
as follows by Boly et al. [21]: 100 µL of newly made DPPH reagent was combined with
100 µL of different concentrations of the fungal extract (800, 600, 400, 200, and 100 µg/mL
in ethanol); for each concentration, six replicates have been performed. For 30 min, the
experiment was conducted at room temperature in the dark. At 540 nm, we observed a
decrease in DPPH color intensity. As a positive standard, trolox was dissolved in methanol
and prepared at 50, 40, 30, 20, 15, 10, and 5 µM concentrations. According to the following
formula, data has been measured as means ± SD:

% o f inhibition =
(Average absorbance of blank − average absorbance of the sample)

Average absorbance of blank
× 100

The data was recorded using a FluoStar Omega microplate reader. Microsoft Excel®

was utilized in the process of data analysis. Half-maximal inhibitory concentration (IC50)
was calculated using GraphPad Prism 6® by first logarithmizing the concentrations and
then selecting the non-linear inhibitor regression equation (log (inhibitor) vs. normalized
response—variable slope equation).

2.5.2. Ferric Reducing Antioxidant Power (FRAP) Assay

With slight adjustments, the FRAP assay was performed in accordance with [22].
The 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ) reagent was initially freshly prepared using the
following ingredients: (300 mM acetate buffer (PH = 3.6), 10 mM TPTZ in 40 mM HCl, and
20 mM FeCl3, in a ratio of 10:1:1 v/v/v, respectively). Then, the reaction was performed in
96 wells plate by mixing 190 µL of the reagent with 10 µL of the sample (at a concentration
of 2 mg/mL in methanol), and the reaction was kept at room temperature for 30 min in
the dark. The obtained blue color was measured at 593 nm. The data are shown as means
± SD. A 1 mM stock solution of trolox in methanol was used as a positive control. Next,
seven serial dilutions were made, decreasing the initial concentration from 800 µM to
600 µM, then 400 µM, 200 µM, 100 µM, and finally 25 µM.

2.5.3. Metal Ion Chelating Activity

The metal ion chelating test of the fungal non-polar extract has been performed in
accordance with the procedure described by [23], with a few minor adjustments made. Briefly,
20 µL of the freshly made ferrous sulphate (0.3 mM) was combined with 50 µL of the fungal
extract (1 mg/mL in methanol) in a 96-well plate (with six replicates). Following that, 30 µL of
ferrozine at a concentration of 0.8 mM was supplemented to each well. The reaction mixture
was ready to measure the change in color intensity at a wavelength of 562 nm after 10 min of
room temperature incubation. Using a stock solution of 0.1 mM EDTA in water, five serial
dilutions were carried out, resulting in final concentrations of 5, 10, 20, 30, 40, and 50 µM.
According to the following equation, data are shown as means ± SD:

% o f inhibition =
(Average absorbance of blank − average absorbance of the sample)

Average absorbance of blank
× 100

2.6. Acetylcholine Esterase Inhibitory Effect

The acetylcholine esterase (AChE) inhibitory effect was performed with only a few
adjustments to the method described by [24] as the following steps: Following the addition of
10 µL of an indicator solution containing 0.4 mM in buffer (1): 100 mM tris buffer pH = 7.5,
20 µL of an enzyme solution containing acetylcholine esterase enzyme (Sigma Aldrich, Inc.
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St. Louis, MO, USA), 0.02 U/mL in buffer (2): 50 mM tris buffer pH = 7.5 with 0.1% bovine
serum albumin were added. The sample solution was then mixed with 140 µL of buffer (1),
yielding final concentrations of 0.1 mg/mL and 0.01 mg/mL, respectively. The mixture was
allowed to incubate for fifteen minutes at room temperature. After that, 10 µL of the substrate
(0.4 mM acetylcholine iodide in buffer 1) was immediately added. The mixture was kept at
room temperature in darkness for a period of 20 min. Once incubation was complete, the
color was measured at 412 nm. The sample attained an inhibition percentage greater than
fifty percent, was subjected to additional testing to establish an IC50 value and was prepared
with the following final concentrations: 100, 50, 25, 10, and 5 µg/mL. Donepezil was used as a
positive standard in methanol at concentrations ranging from 1.0 to 7.0 µg/mL. The data are
shown with a mean and a standard deviation.

2.7. Chemical Analysis
2.7.1. Determination of Total Phenolics and Flavinoids

The quantity of phenolic metabolites in the ethyl acetate extract of the fungus was
determined by using Folin reagent Ciocalteu’s method, described by [25]. Briefly, a mixture
of 2.5 mL of Ciocalteu’s Folin reagent, 2 mL of Na2CO3 (7.5%), and 0.5 mL of fungal extract
was prepared and incubated at 25 ◦C for fifteen minutes. The sample’s absorbance was
measured at 765 nm. The total phenolic content was evaluated in terms of milligrams of
gallic acid equivalent (GAE) per gram of dry extract using the gallic acid standard curve.
Total flavonoid amount was determined using a method described in [26]. Briefly, 0.1 mL of
a 10% aluminum chloride solution and 0.1 mL solution of 1 M potassium hydroxide were
added to 2 mL of methanol that contained 0.1 mg/mL of a fungal extract. The absorbance
of the mixture was measured at 415 nm after it had been incubated at 25 ◦C for 30 min.
Quercetin equivalents (QE) were used to quantify the flavonoids found; the results were
calculated in milligrams of quercetin per gram of dry extract.

2.7.2. Gas chromatography–Mass Spectrometry (GC–MS) Analysis

A TRACE GC Ultra Gas Chromatograph (Thermal Scientific Corp., USA) was em-
ployed for GC–MS analysis. It was connected to an ISQ Single Quadrupole Mass Spectrom-
eter and a TR-5 MS column (30 m × 0.32 mm i.d., 0.25 m film thick-ness). Helium was used
as the carrier gas with a flow rate of 1.0 mL/min and a split ratio of 1:10. The temperature
was set to 60 ◦C for 1 min, then to 240 ◦C at a rate of 4.0 ◦C/min per minute for 1 min.
The injector and the detector were held at 210 ◦C. In the injection, 1 µL of the mixtures
were diluted (1:10 hexane, v/v). Mass spectra with m/z ranges of 40–450 were determined
using electron ionization (EI) at 70 eV. Metabolites were identified using AMDIS software
(www.amdis.net, accessed on 20 December 2022), which relied on retention indices (relative
to n-alkanes C8-C22), mass spectra corresponding to authentic standards (when avail-
able), the Wiley spectral library collection, and the NSIT library database (accessed on
20 December 2022).

2.8. Molecular Modelling
2.8.1. Small Molecule Preparation

The 3D-structures of compounds were optimized using the PM3 (RHF spin state)
semi-empirical Hamiltonian molecular orbital computation MO-PAC16 software, which
was used in the MOE.2015 package [27].

2.8.2. Protein Structure Selection

In order to fix the active site problems brought on by the structure preparation procedure
in MOE, docking experiments were performed using MOE 2015. After the adjustment, hydro-
gens were added, and the partial charges (Amber12: EHT) were estimated. The energy was
minimized (AMBER12: EHT, root-mean-square gradient: 0.100) for targeting proteins includ-
ing: DNA Gyrase (PDB; 6M1J), glutathione S-transferase (13GS), and Acetylcholinesterase
(PDB ID: 1ACJ).

www.amdis.net
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2.8.3. Analysis of Binding Sites

The binding site for the receptor was found using the MOE Site Finder program, which
uses a geometric technique to determine potential binding sites in a protein based on its
tridimensional structure. Instead of using energy models, this method makes use of alpha
spheres, a generalization of convex hulls. The predictions of the MOE Site Finder module
were in agreement with the binding sites defined by the co-crystallized ligands in the holo
forms of the proteins under investigation.

2.8.4. The Stepwise Docking Method of MOE

The enzymes’ crystal structure was determined. They applied an MMFF94x force
field to the parameters and charges. The triangular matcher placement method, which
generates poses by aligning ligand triplets of atoms on triplets of alpha spheres represented
in the receptor site points, was applied to the optimized 3D structure of the molecule.
During each iteration, a random triplet of alpha sphere center was used to determine the
pose. The position created was once more assessed using the London dG. approach. Using
the MMFF94x force field, the poses were improved, and solvation effects were taken into
account. The Born solvation model (GB/VI) was used to calculate the final energy, and the
free energy in Kcal/mol was used to assign a grade to each final position.

2.8.5. ADMET Profile

Swiss ADME (http://www.swissadme.ch/, accessed on 6 January 2023) provided
the ADMET (absorption, distribution, metabolism, elimination, and toxicity) profile for
compounds. The Lipinski rule of five (Molecular weight, logarithms of partial coefficient,
hydrogen bond donor (HBD), and hydrogen bond acceptor (HBA)) was used to first screen
the profiled compounds for their physicochemical properties to find the Pharmaceutical
Active Ingredients (PAIs). From PubChem (https://pub-chem.ncbi.nlm.nih.gov, accessed
on 6 January 2023), the canonical SMILES for the molecular structures of each of the
metabolites were retrieved. Pharmacokinetic properties were further selected out of the
compounds with desirable physicochemical characteristics.

2.9. Statistical Analysis

Every test was conducted three times, with each run including three independent
replicates. The data were subjected to analysis of variance (ANOVA), and group averages
were compared using Fisher’s exact test (p ≤ 0.05). The software Minitab® was utilized to
carry out the statistical analysis.

3. Results
3.1. Morphological Macroscopic and Microscopic Characters of the Isolated Fungus

After seven days of colony development at 25 ◦C on PDA (potato dextrose agar) medium,
colonies were 30–45 mm in diameter, had heavy sporulation, were mostly deep green in the
middle and surrounded by a white border with an irregular edge, and the back was mostly
a pale yellowish color and clear exudate droplets were observed (Figure 1A,B). A branched
conidiophore with chains of conidia was observed under a light microscope (Figure 1C).

3.2. Halotolerance Test

Based on its salt tolerance levels, P. chrysogenum MZ945518 was classified as halotoler-
ant or halophilic using the salt tolerance index (Ti). P. chrysogenum was grown on PDA and
PDA supplemented with 2.5, 5, 10, 20, 25 and 30% NaCl plates. Ti value was 1.3 at NaCL
5%, which indicated the studied fungus was halotolerant. The fungal growth on the PDA
plates with 2.5% NaCl after two, four, and six days of incubation were similar to the fungal
growth of the control plates (Figure 2). Growth diameter was reduced by 5 and 10% NaCl
and completely inhibited by higher concentrations.

http://www.swissadme.ch/
https://pub-chem.ncbi.nlm.nih.gov
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Figure 2. The effect of different NaCl solution concentrations (0.0–30%) on the growth of P. chryso-
genum MZ945518 at different incubation times (2, 4, 6 and 8 days).

3.3. Antimicrobial Activity

P. chrysogenum MZ945518 ethyl acetate extract was studied for its antimicrobial effect
against six bacterial reference strains, including Gram-negative and Gram-positive bacteria,
as well as one yeast strain. The diameter of the fungal extract’s inhibitory zone (mm)
against the tested bacteria and yeast was compared to that of the commercial antibiotics,
gentamycin and amphotericin B, as shown in Table 1. The fungal extract presented signifi-
cantly higher activity against the two bacterial strains, Micrococcus luteus ATCC 9341 and
Proteus mirabilis ATCC 29,906, by producing zones with diameters of 20 and 12 mm, respec-
tively, compared with the antibiotic gentamycin. Moreover, the extract killed Streptococcus
pneumoniae ATCC49619 in a way that was almost the same as gentamycin. Additionally,
the extract demonstrated efficacy against the remaining investigated bacteria and the yeast;
however, its effects were moderate or negligible in comparison to those of gentamycin and
amphotericin B.

For fungi, PIMG was evaluated to test the antifungal activity of ethyl acetate extract
versus three plant pathogenic fungal species, and the results showed that the mycelial
growth of Fusarium solani was the most affected by the P. chrysogenum MZ945518 extract
with an inhibitory percentage of 77.5 ± 0.3. (Table 2).
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Table 1. The antibacterial and anticandidal effect of ethyl acetate extract of P. chrysogenum MZ945518
by well diffusion technique.

Microbial Pathogens
Inhibition Clear Zone Diameter (Mm)

P. Chrysogenum
Extract

Gentamycin
(10 µg/disc)

Amphotericin B
(100 units/disc)

G
ra

m
-p

os
it

iv
e

ba
ct

er
ia

Staphylococcus
aureus

ATCC25923
11 ± 0.2 21 ± 0.2 Nt

Micrococcus
luteus ATCC

9341
20 ± 0.6 * 18 ± 0.1 Nt

Streptococcus
pneumoniae
ATCC49619

14 ± 0.8 15 ± 0.5 Nt

G
ra

m
-n

eg
at

iv
e

ba
ct

er
ia

Escherichia coli
ATCC25922 20 ± 0.0 # 25 ± 0.8 Nt

Pseudomonas
aeruginosa ATCC

7853
13 ± 0.5 20 ± 0.6 Nt

Proteus mirabilis
ATCC29906 12 ± 0.2 * 10 ± 0.0 Nt

Pa
th

og
en

ic
ye

as
t

Candida albicans
ATCC 20231 15 ± 0.1 Nt 20 ± 0.5

The results were reported as the mean ±standard deviations of three independent replicates. *: Designates
significance in comparison to conventional antibiotics (p > 0.05); #: significant within the same group; and “Nt”
indicates not tested.

Table 2. P. chysogenum MZ945518 ethyl acetate extract’ antifungal effect.

Percent of Inhibition of Mycelial Growth (PIMG) %

Rhizoctonia solani Fusarium oxysporum Fusarium solani

52 ± 0.0 40 ± 0.5 77.5 ± 0.3
The data for the PIMG percents are means ± SD of three independent replicas.

3.4. Antioxidant Activity

The antioxidant capacity of the ethyl acetate extract of the studied fungus was mea-
sured with the DPPH-free radical scavenging method, the ferric reducing antioxidant
power (FRAP) assay, and metal ion chelating activity. The findings of DPPH scavenger
activity on fungal ethyl acetate extracts revealed that the IC50 value against DPPH radicals
was 542.5 ± 69.1 µg/mL (Table 3). Moreover, the results of the FRAP test demonstrated
that the fungal extract was converted from Fe3+ to Fe2+, although the values were less
impressive than those obtained with the Trolox compound. Moreover, the results of the
metal ion chelating activity revealed that the extract had a lower chelating ability when
compared to conventional EDTA solutions with 12.7 ± 0.9 µM EDTA eq/mg extract.

3.5. Acetylcholine Esterase Inhibitory Effect

The effectiveness of the fungus extract in inhibiting the acetylcholinesterase enzyme
(AChE) exhibited a clear suppression of enzyme activity (63% inhibition percentage) and a
recorded IC50 value of 60.87 3.8 µg/mL (Table 4).
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Table 3. Antioxidant activities of P. chysogenum MZ945518 ethyl acetate extract.

DPPH
IC50 (µg/mL)

FRAP
(µM Trolox eq/mg

Extract)

MIC
(µM EDTA eq/mg

Extract)

Fungus extract 542.5± 69.1 57.9 ± 4.6 12.7 ± 0.9

Trolox 24.4 ± 0.8

Table 4. Inhibitory effect of P. chysogenum MZ945518 extract on acetylcholine esterase activity.

% Inhibition 100 µg/mL IC50 (µg/mL)

fungus extract 63.32 ± 2.88 60.87 ± 3.81

Donepezil 3.4 ± 0.32

3.6. Chemical Analysis
3.6.1. Total Phenolics and Flavonoids

Using the Folin–Ciocalteau and aluminum chloride techniques, respectively, the
total phenolic and flavonoid content in the ethyl acetate extract of the P. chrysogenum
MZ945518 was determined. Flavonoids and phenolics were present in totals of 133.4 and
373.5 mg/g, respectively.

3.6.2. GC/MS Profiling

The chemical profiling of the P. chrysogenum MZ945518 extract was performed using a
GC/MS instrument (Figure 3). By matching the retention time and mass spectra to either
authentic data standards or data from the Wiley spectral library and the NSIT library
database, twenty metabolites were detected in the ethyl acetate extract (Table 5). With
a ratio of 36.28%, (Z)-18-octadec-9-enolide was the most abundant metabolite, followed
by 1, 2- Benzenedicarboxylic acid with a ratio of 26.73%. n- Hexadecanoic acid (7.8%),
2, 3-dihydroxypropyl acetate (5.3%), 9, 12-octadecadienoic acid (Z, Z)-, methyl ester (4.8%),
and butyl 9, 12, and 15-octadecatrienoate (3.2%) were also major metabolites.
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3.7. Molecular Docking Study

To investigate the in silico antimicrobial inhibition action of isolated compounds from
fungus ethyl acetate extract, the docking study was applied against DNA Gyrase proteins.
The different docking energies were listed in (Table 6). The metabolites two, six and eight
showed the highest binding energy in (Kcal/mol.), as they were −7.78, −7.33, and −7.76
against the DNA Gyrase (PDB; 6M1J; [28]). The isolated compounds 3–5, 7, and 9–20
showed moderate binding efficiency against 6M1J enzymes. All compounds stabilized
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in the active binding site (ASP75, ARG78 & ARG138) in a similar way to the reference
inhibitor (Figure 4).

Table 5. The metabolites identified in the P. chrysogenum MZ945518’s ethyl acetate extract.

Compound Name Chemical
Formula

Molecular
Weight
(g/mol)

Retention
Time (min) Area %

1 Glyceryl acetate C5H10O4 134 12.22 0.41

2 Glycerol 1,2-diacetate C7H12O5 176 12.54 1.20

3 1,5-Anhydroglucitol C6H12O5 164 12.59 1.50

4 2,3-dihydroxypropyl acetate C5H10O4 134 13.25 5.32

5 1,2,3-Propanetriol triacetate C9H14O6 218 13.57 0.66

6
2,3-bis (Acetyloxy)-1-
[(acetyloxy)methyl]

propylacetate
C12H18O8 290 14.55 1.62

7 Methyl palmitate C17H34O2 270 20.43 1.83

8 n-Hexadecanoic acid
(palmitic acid) C16H32O2 256 21.49 7.80

9 5,7-dimethoxy-1-
Naphthalenol, C12H12O3 204 21.86 1.19

10

4,4,8a-Trimethyl-7-
methylidene-8-[(2E)-3-

methylpenta-2,4-dienyl]-
2,3,4a,5,6,8-hexahydro-1H-

naphthalene
(Biformen)

C20H32 272 22.87 0.88

11 9,12-Octadecadienoic acid
(Z, Z)-, methyl ester C19H34O2 294 23.05 4.81

12 11-Octadecenoic acid,
methyl ester C19H36O2 296 23.15 2.91

13 Methyl stearate C19H38O2 298 23.56 0.77

14 (Z)-18-Octadec-9-enolide C18H32O2 280 24.21 36.28

15 Octadecanoic acid C18H36O2 284 24.46 1.79

16

[1,1’-Bicyclopropyl]-2-
octanoic acid, 2’-hexyl-,
methyl ester 56687-68-4

DTXSID301016055
2’-Hexyl-1,1’-

bicyclopropane-2-octanoic
acid methyl ester

C21H38O2 322 25.97 0.46

17 Hexanedioic acid,
bis(2-ethylhexyl) ester C22H42O4 370 27.37 0.34

18 1,2- Benzenedicarboxylic
acid C24H38O4 390 29.39 26.73

19 1-Heptatriacotanol C37H76O 536 30.26 0.29

20 Butyl
9,12,15-octadecatrienoate C22H38O2 444 30.86 3.22
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Table 6. The Docking energy scores (kcal/mol) for the identified molecules.

∆G rmsd E.vdw E.Int E.H.B ∆G Rmsd E.vdw E.Int E.H.B ∆G rmsd E.vdw E.Int E.H.B

6M1J 13GS 1ACJ

1 −4.81 1.47 −7.21 −43.20 −8.70 −4.81 1.46 −9.43 −5.83 2.47 −4.95 1.16 −9.58 −8.59 −9.70

2 −7.78 1.63 38.65 −16.40 −8.11 −7.78 1.16 −6.77 20.65 1.63 −8.34 141 9.33 −13.12 −5.96

3 −5.08 1.29 75.79 −50.89 −12.08 −5.08 1.22 −3.81 94.18 1.29 −8.44 1.87 23.75 −19.11 −8.32

4 −5.14 1.24 −7.81 −51.91 −9.07 −5.14 1.30 −3.06 467.93 2.24 −8.72 1.07 27.24 −9.68 −7.02

5 −6.60 1.62 34.15 −41.51 −9.74 −6.60 0.96 −9.61 −1.21 1.62 −5.05 1.89 −8.36 −10.65 −9.55

6 −7.33 1.33 20.53 −57.93 −9.28 −7.33 1.55 −7.88 17.57 1.33 −5.83 0.86 −36.81 −12.70 −9.18

7 −6.52 1.26 151.64 −56.57 −11.23 −6.52 1.77 −8.01 22.37 1.26 −7.72 1.41 28.78 −15.85 −10.59

8 −7.76 1.43 28.39 −41.65 −9.06 −7.76 1.95 −9.56 148.97 1.43 −8.31 1.86 28.54 −14.61 −8.72

9 −6.13 1.65 −74.75 −47.34 −8.27 −6.13 1.38 −6.13 25.10 1.65 −6.80 1.26 170.25 −17.94 −9.60

10 −4.72 1.76 −4.69 −45.57 −8.96 −4.72 1.38 −7.07 −75.53 2.76 −8.80 1.03 30.61 −12.23 −4.94

11 −4.64 1.42 −5.24 −49.54 −9.79 −4.64 1.21 −8.50 −6.66 1.42 −8.54 1.17 37.63 −12.92 −6.88

12 −4.62 1.42 −8.33 −49.96 −9.07 −4.62 1.66 −7.12 16.17 4.42 −5.84 1.76 −4.40 −15.34 −9.33

13 −4.56 1.10 −7.04 −43.75 −8.71 −4.56 1.30 −3.06 467.93 2.10 −8.28 1.88 36.96 −16.97 −9.04

14 −4.84 1.02 74.63 −57.86 −11.22 −4.84 1.17 −11.10 87.17 2.02 −7.71 1.28 61.95 0.03 −1.18

15 −4.77 1.88 77.57 −51.50 −11.51 −4.77 1.53 −8.91 −7.16 1.88 −5.34 1.90 73.59 −12.84 −9.40

16 −4.70 1.61 73.16 −65.51 −11.22 −4.70 1.82 −7.60 −44.23 2.61 −8.25 1.23 −2.90 −9.71 −5.77

17 −5.14 2.24 −7.81 −51.91 −9.07 −5.14 1.45 −8.58 16.83 2.24 −7.58 1.67 33.96 −19.36 −11.18

18 −5.13 1.92 −6.97 −52.68 −10.11 −5.13 1.86 −7.31 24.00 0.92 −6.77 1.92 155.01 −25.88 −9.63

19 −4.84 1.44 −5.89 −47.97 −8.69 −4.84 1.00 −10.09 152.42 1.44 −7.96 1.67 29.16 −17.06 −9.26

20 −4.79 1.10 −8.82 −47.96 −8.68 −4.79 1.41 −6.41 19.07 1.10 −6.83 0.90 44.70 −22.36 −8.49
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Molecular docking was performed to examine which isolated compounds displayed 
antioxidant activity. Compounds two, eight, and sixteen exhibited the highest binding 
energy against 13GA (−6.19, −6.51, and −6.13 Kcal/mol, respectively). These compounds 
stabilized in the binding pocket by forming a strong H-bond with the essential amino acid 
Asp98 (Figure 4). All isolated compounds occupied the binding pocket (ASP98, GLN64, 
LEU52, ARG13, SER65, PRO53) with the same type of reference inhibitor. Furthermore, 
the molecular docking performed against Acetylcholinesterase’s active site, “AChE” (PDB 
ID: 1ACJ), post-docking results showed that all docked identified molecules revealed a 
binding efficacy ΔG in the range of −4.95 to −8.72 Kcal/mol. The isolated pa2, 3-dihydrox-
ypropyl acetate (5) has the highest binding efficacy (ΔG = −8.72 kcal/mol) among all iso-
lated components, while the glyceryl acetate (1) showed the lowest binding efficiency 
(−5.82 kcal/mol). The validity of the docking experiment was confirmed by the low RMSD 
value (0.86 to 1.92), as represented in Table 6. 
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antioxidant (13GS), and acetylcholinesterase “AChE” (PDB ID: 1ACJ activity.

Molecular docking was performed to examine which isolated compounds displayed
antioxidant activity. Compounds two, eight, and sixteen exhibited the highest binding energy
against 13GA (−6.19, −6.51, and −6.13 Kcal/mol, respectively). These compounds stabilized
in the binding pocket by forming a strong H-bond with the essential amino acid Asp98
(Figure 4). All isolated compounds occupied the binding pocket (ASP98, GLN64, LEU52,
ARG13, SER65, PRO53) with the same type of reference inhibitor. Furthermore, the molecular
docking performed against Acetylcholinesterase’s active site, “AChE” (PDB ID: 1ACJ), post-
docking results showed that all docked identified molecules revealed a binding efficacy ∆G in
the range of −4.95 to −8.72 Kcal/mol. The isolated pa2, 3-dihydroxypropyl acetate (5) has the
highest binding efficacy (∆G = −8.72 kcal/mol) among all isolated components, while the
glyceryl acetate (1) showed the lowest binding efficiency (−5.82 kcal/mol). The validity of
the docking experiment was confirmed by the low RMSD value (0.86 to 1.92), as represented
in Table 6.

3.8. ADMET Profile

The pharmacological and pharmacokinetic features of the molecule must reach the ac-
tion point in a timely manner, in an adequate concentration, and be able to be cleared from
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the body after their action 17. As a result, the in silico ADME properties of the compounds
are crucial in drug discovery. Using the Swiss ADME profile, in silico ADME computational
investigations were carried out. The hydrogen bond acceptor/donor (HBA/HBD), solubil-
ity, lipophilicity, topological surface area (TPSA), and percentage of absorption (%ABS) of
all the drug-like properties have been identified. The %ABS was achieved by the following
formula: %ABS = 109 – (0.345 × TPSA). Table 7 illustrates the data that were attained.
Lipinski’s rule of five states that molecules with the following characteristics—hydrogen
bond donors fewer than five and hydrogen bond acceptors fewer than ten—can have
greater in vivo absorption and bioavailability. These criteria include molecular weight
below 500 and estimated log P less than five. Substances that break more than one of the
aforementioned rules may have bioavailability issues. According to the computational
ADME results, all of the detected compounds showed Log P values between 3.20 and
4.05, which indicates good cell permeability. With the exception of compounds 18 and 19
(MW = 728 and 537), all of the compounds have molecular weights under 500, indicating
simple delivery and absorption.

Table 7. Pharmacokinetics of target compounds’ ADMET predictions.

Compd.
No

Lipinski Parameters
nROTB e TPSA f ABS% g BBB h GI ABS i

MW a HBA b HBD c LogP d Violations

1 134.13 4 2 −3.83 0 4 66.76 85.97 High No

2 176.17 5 1 −3.6 0 6 72.83 83.87 High No

3 164.16 5 4 −3.13 0 1 90.15 77.90 Low No

4 134.13 4 2 −3.83 0 4 66.76 85.97 High No

5 218.2 6 0 −3.45 0 8 78.9 81.78 High No

6 708.7 18 0 −2.05 2 32 228.86 30.04 Low No

7 270.45 2 0 −2.71 1 15 26.3 99.93 High Yes

8 256.42 2 1 −2.77 1 14 37.3 96.13 High Yes

9 144.17 1 1 −2.16 0 0 20.23 102.02 High Yes

10 272.47 0 0 −2.86 1 3 0 109.00 Low No

11 294.47 2 0 −2.86 1 15 26.3 99.93 Low No

12 296.49 2 0 −2.82 1 16 26.3 99.93 High No

13 298.5 2 0 −2.19 1 17 26.3 99.93 High No

14 280.45 2 0 −3.32 1 0 26.3 99.93 High Yes

15 284.48 2 1 −2.19 1 16 37.3 96.13 High No

16 322.53 2 0 −2.57 1 15 26.3 99.93 High No

17 370.57 4 0 −3.7 1 19 52.6 90.85 High No

18 728.69 18 10 −2.11 3 18 338.86 7.91 Low No

19 537 1 1 3.55 2 35 20.23 102.02 Low No

20 334.54 2 0 −3.05 1 17 26.3 99.93 Low No
a Molecular weight; b Hydrogen Bond Acceptor; c Hydrogen Bond Donor; d Partition Coefficient; e Number of
rotable bonds; f Topological Polar Surface Area; g Absorption %; h Blood Brain Barrier; i Gastro-intestinal absorption.

4. Discussion

Microorganisms that can live and thrive in harsh environments are thought to be
a bountiful origin of various naturally occurring bioactive and novel molecules. One
of the challenging environmental factors that microorganisms must adapt to in order to
thrive is high salt. Adaptation involves the overproduction of bioactive metabolites and,
at times, the synthesis of novel biochemicals which can be utilized as new antioxidants
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and antimicrobial sources [29]. This study relied on P. chrysogenum MZ945518 isolated
from the Mediterranean Sea in Egypt. The fungus was identified genetically in a previous
study [17]. In our findings, additional morphological studies were conducted on the
fungus, and the results revealed that in the front view it had heavy sporulation, was mostly
deep green in the middle, and was surrounded by a white border with an irregular edge.
In the back view, it was mostly a pale yellowish color, and clear exudate droplets were
observed on PDA plates. Additionally, under a light microscope, it showed a branched
conidiophore with chains of conidia. Previous studies [30] reported that on PDA media,
Penicillium chrysogenum displayed modest development, with the colony’s backside being
colored yellow and its core being green. Finding the halotolerance index of P. chrysogenum
MZ945518, which was isolated from the Egyptian Mediterranean shore, was one of the
goals of this study. The results of the test revealed that the growth pattern of the fungus and
calculations of the medium tolerance index demonstrated that the fungus is thought to be
permanently halophilic. Genus Penicillium compressed many members, which are classified
as extremophiles [31]. Various strains of the fungus P. chrysogenum have reportedly been
isolated and survive in excessively salty habitats [32,33].

In general, many Penicillium species produce various chemical types of secondary
metabolites, some of which are significant in the field of medicine, others of which are
used to produce mycotoxins, significant drugs, and some of which are used in industry,
particularly in the production of penicillin [32,33]. Our findings involved studying the
different activities (the antimicrobial, antioxidant, and acetylcholine esterase inhibitory
effect) of the Penicillium chrysogenum MZ945518 crude extract. According to a report pub-
lished by the World Health Organization in 2022, antimicrobial resistance is one of the top
ten global public health concerns facing humanity (https://amrcountryprogress.org/#/
visualization-view, accessed on 6 January 2023). Many antimicrobial drugs have lost their
potency in recent years. This highlights the critical need for further research into novel
antimicrobial sources and metabolites. The fungal non-polar extract showed antibacterial
action against all of the pathogenic organisms that were tested, whereas, in comparison to
the commercial antibiotic gentamycin, the activity was most powerful against Micrococcus
luteus and Proteus mirabilis. Proteus mirabilis is considered a human pathogen which infects
the urinary tract, especially in people who have long-term hospitalization [34,35]. Previous
research [36] found that P. chrysogenum has the superior antibacterial activity against nine
bacterial species, including Escherichia coli, Acinetobacter baumannii, and Staphylococcus au-
reus, when compared to Aspergillus oryzae and Aspergillus niger. Furthermore, the fungus
inhibited Pseudomonas aeruginosa growth significantly [37]. Additionally, [38] reported that
on cheap mediums, such as grape waste and cheese whey, the strain P. chrysogenum IFL1
developed active metabolites with antibacterial, antifungal, and amoebicidal properties.
The metabolite xanthocillin isolated from P. chrysogenum demonstrated strong inhibitory
activities against Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aerugi-
nosa [39]. Moreover, a compound called citrinin, which is made from the fungus Penicillium
chrysogenum FF001 and originally found in the sponge Melophlus sp., is effective against
drug-resistant strains of Staphylococcus aureus and Enterococcus faecium [40]. Our results
suggest that the P. chrysogenum extract can be used to combat the human pathogen Candida
albicans. Several human diseases, such as cancer and inflammatory disorders, have been
related to C. albicans [41]. According to research that was published in [37], P. chrysogenum
makes a protein that can stop C. albicans from growing. Al-Saleem et al. [42] showed that
Penicillium chrysogenum extract was highly effective in killing both Candida albicans and
Staphylococcus aureus. Halotolerance fungi are known to have a biologically active substance
which possesses antimicrobial activities [29].

Antifungal activity of the fungal ethyl acetate extract showed that the fungal possesses
antifungal bioactivity against Fusarium oxysporum, Rhizoctonia solani, and Fusarium solani.
Both plants and animals are susceptible to infection by these pathogenic fungi. Fusarium
oxysporum is one of the most harmful plant pathogens around; it can also infect humans and is
increasingly being recognized as a major health threat because of its capacity to cause severe

https://amrcountryprogress.org/#/visualization-view
https://amrcountryprogress.org/#/visualization-view


Microorganisms 2023, 11, 769 15 of 19

illness in those with impaired immune systems [43]. Rhizoctonia solani is a devastating fungus
that attacks economically significant crops all around the world [44]. Fusarium solani causes
rot in a wide variety of crops, including citrus, rice, peas, beans and potatos. Pathogenic
fungi can be combated with biocontrol strategies rather than fungicide, which is less harmful
to ecosystems [45–47]. The antifungal activity of the Penicillium chrysogenum protein has
been stated by [48,49]. P. chrysogenum IFL1 metabolites could inhibit Fusarium spp. and
other phytopathogenic fungi [12]. Biological control of Fusarium oxysporum using Bacillus
velezensis [50] and Streptomyces sp. [51] has been reported. Streptomyces and Bacillus spp was
found to be effective for biological control of Rhizoctonia solani [52,53].

In the current investigation, a non-polar extract from P. chrysogenum showed antioxi-
dant activity based on the DPPH free radicals, FRAP test and metal ion chelating activity.
Antioxidants play an important role in cell protection by blocking free radicals at their active
site and trapping free radicals that cause degenerative processes [54,55]. Previous research
has demonstrated that Penicillium chrysogenum has a strong antioxidant capacity [11,42].
The antioxidant activity of P. chrysogenum MZ945518 has an IC50 of 542.5 µg/mL in the
DPPH test. According to results from DPPH in [56], the whole extract of P. chrysogenum has
an antioxidant activity IC50 of 1086.2 µg/mL.

The GC/MS analyzer was used to determine the fungus’s chemical profile, which re-
sulted in the identification of twenty metabolites, the majority of which have biological
functions. For example, metabolites biformen has anti-inflammatory activity [57]. Palmitic
acid showed potent inhibitory activity against both Gram-positive and Gram-negative bacte-
ria [58,59]. Methyl palmitate has a nematocidal effect, antifibrotic, and anti-inflammatory activ-
ities [60–62]. 9,12-Octadecadienoic acid (Z, Z)-, methyl ester has analgesic, anti-inflammatory,
and ulcerogenic properties [63]. 11-Octadecenoic acid, methyl ester has antidiarrhoeal activ-
ity [64]. Methyl palmitate and methyl stearate have been shown to be nematicidal against
Meloidogyne incognita, an insect pest of bananas [61]. 1,2- Benzenedicarboxylic acid has antimi-
crobial activity [65].

The fungal extract in this investigation was capable of inhibiting the acetylcholinesterase
enzyme (AChE) at a rate of 63%. Our findings contradict the findings of [66], who reported
that after testing fifteen compounds isolated from Penicillium chrysogenum for their ability
to inhibit AChE, the results revealed that none of them had any effect on the enzyme’s activ-
ity. [67] reported that Penicillium sp. metabolites significantly decreased acetylcholinesterase
activity in Culex quinquefasciatus and Aedes aegypti larvae, compared to Aspergillus sp. and
Rhizopus sp. We obtained better results than [56], which said that Penicillium janthinellum
extract only blocked AChE by 36.62%. Acetylcholine is considered one of the best-studied
neurotransmitters and has been linked to Alzheimer’s disease pathogenesis (neurodegen-
erative disease and the leading cause for dementia), and its hydrolysis is catalyzed by
AChE. From this vantage point, blocking the enzyme responsible for producing AChE has
proven to be an efficient Alzheimer’s disease treatment [68,69]. Natural products have been
shown to have anti-AD efficacy and AChE inhibition in a variety of preclinical and clinical
studies [70]. Several sources, including [71], have reported that marine species play a role
as a source of AChE inhibitor metabolites.

A docking study revealed that the compositions of glycerol 1,2-diacetate, 2,3-bis
(Acetyloxy)-1-[(acetyloxy)methyl] propylacetate, and palmitic acid are most commonly
shared in antimicrobial activity via the inhibition of DNA gyrase and interaction with
essential amino acid residues, such as Arg78, Glu79, and Thr167, for DNA gyrase. The
assumption that the inhibitory efficiency for the studied compositions increased with
increasing hydrophilicity resulted from the variance in the interaction mode between
compositions and hydrophilic amino acid backbones. In addition, glycerol 1, 2-diacetate,
palmitic acid, [1, 1’-Bicyclopropyl]-2-octanoic acid, 2’-hexyl, and methyl ester are among
the most identified antioxidant substances. According to its crystallographic structure,
the AChE (PDB [72] has two major binding sites: the catalytic active site (CAS) and the
gorge-connected peripheral anionic site (PAS) [73]. The PAS is composed of (Tyr70, Asp72,
Tyr121, Trp279, and Phe290), whereas the CAS is composed of (Ser200, Glu327, and His440),
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the anionic substrate (Trp84, Glu199, and Phe330), and the acyl binding pocket (Phe288
and Phe299) [72]. All substances interacted with the essential amino acid residue Trp84
at the binding site in the same way as the reference inhibitor. When applied to the AChE
domain, the notable substances two, three, four, eight, ten, eleven, thirteen, and sixteen
caused biological inhibition potency. These substances have the highest binding activities.
According to the Swiss ADME’s (http://www.swissadme.ch/, accessed on 6 January 2023)
ADMET results, all hybrids except for seven and eighteen and nineteen conform to the
Lipinski requirements because the number of hydrogen bond acceptors and donors present
in the hybrids was fewer than ten. Compounds 1–5, 7–17, and 19–20 should be easily
absorbed by the human body, with the exception of compounds 6 and 18. All conjugates,
with the exception of six and eighteen, had percentage absorption values more than 74%.
These findings show that, with the exception of 7–18, compounds 3–12 have favorable
pharmacokinetic characteristics and minimal toxicity.

5. Conclusions

Mycelium extract from the halotolerant Penicillium chrysogenum strain MZ945518
was antimicrobial potent. It was effective against various strains of Gram-positive and
Gram-negative bacteria, with Proteus mirabilis ATCC 29,906 and Micrococcus luteus ATCC
9341 exhibiting the strongest activity. Moreover, it demonstrated antifungal characteristics
against different pathogenic fungi. The DPPH, FRAP, and MIC assays have all revealed
that the fungal extract had potent antioxidant activity. Additionally, it was shown to have
an inhibiting effect on acetylcholine esterase. The non-polar extract comprises a variety
of bioactive molecules with several biological activities, according to the results of the
GC–MS study of fungal metabolites. The docking and ADME studies showed favorable
pharmacokinetic characteristics and minimal toxicity. These remarkable results provide a
path to more investigation into using these compounds in drug preparation and searching
for other natural bioactive compounds obtained from marine fungi.
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