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Abstract: Integration of multi-omics data is a challenging but necessary step to advance our under-
standing of the biology underlying human health and disease processes. To date, investigations
seeking to integrate multi-omics (e.g., microbiome and metabolome) employ simple correlation-
based network analyses; however, these methods are not always well-suited for microbiome analyses
because they do not accommodate the excess zeros typically present in these data. In this paper, we
introduce a bivariate zero-inflated negative binomial (BZINB) model-based network and module
analysis method that addresses this limitation and improves microbiome–metabolome correlation-
based model fitting by accommodating excess zeros. We use real and simulated data based on a
multi-omics study of childhood oral health (ZOE 2.0; investigating early childhood dental caries,
ECC) and find that the accuracy of the BZINB model-based correlation method is superior compared
to Spearman’s rank and Pearson correlations in terms of approximating the underlying relation-
ships between microbial taxa and metabolites. The new method, BZINB-iMMPath, facilitates the
construction of metabolite–species and species–species correlation networks using BZINB and
identifies modules of (i.e., correlated) species by combining BZINB and similarity-based clustering.
Perturbations in correlation networks and modules can be efficiently tested between groups (i.e.,
healthy and diseased study participants). Upon application of the new method in the ZOE 2.0
study microbiome–metabolome data, we identify that several biologically-relevant correlations of
ECC-associated microbial taxa with carbohydrate metabolites differ between healthy and dental
caries-affected participants. In sum, we find that the BZINB model is a useful alternative to Spear-
man or Pearson correlations for estimating the underlying correlation of zero-inflated bivariate count
data and thus is suitable for integrative analyses of multi-omics data such as those encountered in
microbiome and metabolome studies.

Keywords: correlation; microbiome; metabolomics; multi-omics; zero-inflation; counts; caries;
clustering; pathways; network
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1. Introduction

Microbiome data are essential for advancing our understanding of the biological
basis of many human diseases and are becoming increasingly available. While descrip-
tions of taxonomic aspects of the human microbiome are valuable, functional insights
are arguably more informative. Accordingly, characterizations of the ways that bacteria
interact with the host and the environment via metabolic byproducts and other biochem-
icals can offer important biological insights into disease pathogenesis and offer targets
for prevention and treatment. However, the complexity of these interactions cannot be
underestimated. For example, relevant metabolites can be microbial products, whereas
host- or environment-derived metabolites may serve as nutrients or environmental stres-
sors for microbial communities. While the availability of microbiome–metabolome and
health-disease associated phenotype data is increasing, suitable analysis method develop-
ment has not kept pace. Leveraging data on microbiome–metabolome interactions could
help illuminate important biological pathways at play and identify bacterial species that
influence each other via inter-species activities [1,2]. Importantly, these biological networks
and microbial correlations may be influenced by the environment and differ between
states of health and disease, as in the case of the oral biofilm microbiome–metabolome
and dental caries [3,4]. Therefore, defining and measuring networks among microbial
taxa, pathways in which taxa and metabolites are involved, and clusters of inter-correlated
taxa are critical for understanding the function of microbial communities in health and
diseases. Curated pathway datasets such as KEGG can provide known metabolic pathways
involving metabolite networks, but they are not context-specific. The newly available
Whole Genome Sequencing shotgun (WGS) DNAseq for metagenomics and RNAseq for
metatranscriptomics (providing information at the at the taxon or gene level), or the earlier
16S sequencing for bacterial taxonomic abundance, paired with metabolome data from the
same biofilm samples can provide unique new opportunities for context-specific integrative
microbial pathway analyses.

Although joint network analyses of microbiome and metabolome data are critical for
understanding host–microbiome interactions, the existing computational methods have not
been designed for the specific characteristics of microbiome data. Until recently, Pearson
or Spearman correlation-based pathway analyses [5] have been popular and robust for
gene–gene network analysis for gene expression data; however, these approaches do not
consider the excess zeros in microbiome data. Kendall’s Tau and Mutual Information (MI)
have been suggested as possible replacements for Pearson or Spearman correlations for
non-normal distributions, such as in single-cell RNAseq data [6–8]; however, MI is sensitive
to threshold grids in data with excess zeros, whereas Kendall’s Tau loses information on
the continuous scale. More recently, copula-based pathway analysis [9] has been developed
to model interactions between genes in single-cell RNAseq data while accommodating
their non-normal distribution. Moreover, most existing approaches do not allow for testing
pathway changes among sample groups. Therefore, it is challenging to infer, for example,
disease-specific microbiome–metabolome pathways and the essential hubs of microbial
taxa and metabolites.

We propose a de novo pathway discovery analysis that is independent of prior path-
way knowledge and learns from the observed microbiome and metabolome data generated
from matched samples, or at least from the same body sites or subjects, as long as a bio-
logical interaction hypothesis is valid. Our proposed method, BZINB-based integration
of microbiome and metabolome for pathway analysis (BZINB-iMMPath), uses the newly
developed bivariate zero-inflated negative binomial (BZINB) model to directly model the
joint distribution of a pair of count vectors, where one vector represents microbial species
and the other vector represents metabolites, to estimate model-based correlations. The ad-
vantage of our method, which uses BZINB, is that we can rigorously handle the excess
zeros in the distribution of microbiome counts [10].
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Similar to single-cell RNAseq data, microbiome data typically exhibit large numbers
of zeros (“excess zeros”) for several possible reasons, including structural zeros (e.g., due to
the fact that some species may not be present in some samples, also referred to as biological
zeros), or sampling zeros (e.g., due to technical artifacts, frequently referred to as “dropout
events”). Specifically, two advantages of using BZINB include the realistic assumption
of dropouts [11] in the zero-inflated negative binomial (ZINB) distribution that allows
for the flexible modeling of both biological zeros (in the negative binomial component)
and structural zeros (in logistic regression) to improve model fitting, and the feasibility of
estimating correlations in the bivariate negative binomial (BNB) component conditional of
the zero inflation component to reflect the underlying correlations.

We additionally propose, as another component of BZINB-iMMPath, the use of BZINB
correlation measurements to represent the similarities [12] between species in species-wise
clustering analysis to identify species modules (i.e., clusters) wherein species are highly
correlated. Because the BZINB model accounts for zero inflation in a pair of species,
or in individual species and metabolites when investigating microbiome–metabolome
correlations, most species and metabolites can be retained in the analysis rather than
excluded because of zero inflation, a feature that may be of biological importance.

To compare the accuracy of BZINB-based correlation with other popular correlation
measures, we simulated pairs of correlated microbiome species and metabolite count vec-
tors using the bivariate lognormal distribution and the BZINB distribution. We carried
out simulations and applications using matched microbiome–metabolome data from a
community-based study of childhood oral health/disease (ZOE 2.0 study, investigating
early childhood caries or ECC) that sampled 3–5-year-old children’s supragingival den-
tal biofilm. We also evaluated the accuracy of module identification using BZINB as a
measure of similarity for cut-based clustering by crafting co-varying clusters of count
vectors to represent species in semi-parametric simulations. We show that, in real data
applications, the new method can identify the crafted clusters with high accuracy. More-
over, the integrated pathway analysis identified biologically significant and disease-specific
microbial–metabolite pathways and meaningful inter-species interactions.

The BZINB framework introduces the correlation between the two variables by adding
one variable, so it only allows non-negative correlations between species and metabolites
or between species, which can limit the utility of our method. However, in most omics
contexts, positively correlated features are arguably of greatest interest. For example,
in gene expression data, the vast majority of genes do have positive or near-zero correla-
tion [13,14]. Positive correlations among bacterial species are also more common compared
to negative correlations (Figure 1a, top). Although we observe more negative correlations
between microbial species and metabolites (Figure 1a, bottom), positive correlations are
overall larger are more biological and clinically interesting, as that may, for example, re-
flect the metabolites that provide nutrition to bacteria or metabolites that are produced
by bacteria.
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Figure 1. (a) Observed Spearman and Pearson correlations between pairs of (Kraken2/Bracken)
species (417); and between pairs of (Kraken2/Bracken) species (417) and metabolites (503); in ZOE
2.0 (n = 289). Correlations among complete data exclude subjects with one or more zeros in the pair;
correlations among data with zeros include all subjects. The red vertical line in each plot represents a
correlation of 0. (b) Number of zeros plotted against mean log nonzero count for each metabolite
and number of zeros plotted against mean log nonzero count for each Kraken2/Bracken species.
(c) p-values obtained from lognormal (parameters from models fitted on nonzero counts for each
metabolite and species) Kolmogorov–Smirnov test for ZOE 2.0 metabolites and Kraken2/Bracken
microbiome species. The red vertical line represents a p-value of 0.05 so that p-values below it indicate
statistical significance in the tests.

2. Materials and Methods
2.1. Description of BZINB Model
2.1.1. ZINB Model

Similar to single-cell data analysis, the probability of dropout per species per sample can
be modeled using logistic regression in the framework of a zero-inflated model. The ZINB
model has been previously proposed for the analysis of single-cell RNAseq data as a superior
and more flexible model fitting compared to Poisson-based methods [15] for individual
gene analyses in scRNAseq data, by allowing for both excess zeros and overdispersion.

2.1.2. BNB Model

Cho et al. 2021 [10] began by introducing a bivariate negative binomial (BNB) model
based on the Poisson–Gamma mixture model. First, let Rj ∼ Gamma

(
αj, β

)
for j = 0, 1, 2.

Consider a pair of random variables (X1, X2), where X1 and X2 are each Poisson-distributed
with means of R0 + R1 and δ(R0 + R2), respectively, where δ ∈ R+. These two mean



Microorganisms 2023, 11, 766 5 of 27

variables are related through a common Gamma-distributed component, R0. There-
fore, marginally, X1 and X2 each follow the negative binomial distribution such that
Xi ∼ NB

(
α0 + αi, 1

βi+1

)
for i = 1, 2, where β1 = β, β2 = δβ. Thus, mean(Xi) = α0+αi

βi
,

var(Xi) = (α0+αi)(βi+1)
β2

i
, and ρBNB = Cor(X1, X2) = α0√

(α0+α1)(α0+α2)

√
β1β2

(β1+1)(β2+1) . We

henceforth denote (X1, X2) ∼ BNB(α0, α1, α2, β1, β2). Therefore, the parameters in ρBNB are
estimated by fitting all the data to the BNB model.

2.1.3. BZINB Model and BZINB-Based Correlation

For correlation between a pair of genes in scRNaseq data, a bivariate zero-inflated
(BZINB) model was proposed by Cho et al. 2021 [10] that has the ZINB marginals, more
parameters to flexibly accommodate the complexity of the single-cell biology, and the
estimated correlation conditional for the non-dropout events. With similar assumptions of
dropouts observed as excess zeros and the overdispersion problem accentuated in micro-
biome data, here we extend the BZINB framework for microbial data modeling to compute
a unique correlation measured between species or between species and metabolites. This
new unique correlation analysis approach (i.e., BZINB-iMMPath) is model-based and uses
the parameters estimated for the BNB component that is conditional on the probability of
there being non-dropouts in the BZINB model, defined as described below.

A pair of Bivariate Zero-Inflated Negative Binomial (BZINB) variables (Y1, Y2) ∼
BZINB(α0, α1, α2, β1, β2, π1, π2, π3, π4) follows a zero-inflated extension of the Bivariate
Negative Binomial (BNB) distribution, where π1, π2, π3, and π4, respectively, represent the
probabilities of observing nonzero Y1 and Y2, nonzero Y1 only, nonzero Y2 only, and zero Y1
and Y2. Note that πs do not represent the probability of observing zero but represent the
probability of zero inflation. Without zero inflation, we could still observe zeros. In other
words, with higher π3 + π4 and π2 + π4 values, we expect to observe extra zero values in
Y1 and Y2, respectively. Therefore, there is an underlying BNB component of the BZINB
model, which is partially unobserved. Marginally, Yj ∼ ZINB

(
α0 + αj, 1

β j+1 , π4−j + π4

)
for j = 1, 2. In other words, without zero inflation, Yj follows NB

(
α0 + αj, 1

β j+1

)
. Yj is

masked with zeros with probability π4−j + π4.
Based on our understanding of excess zeros in the microbiome, the BNB components—

which can include zeros from the negative binomial distribution—in the BZINB model
reflect the underlying correlation between species after accounting for the dropouts
(whether structural or technical) in BZINB. It follows that we use the same formula as
ρBNB as in the model-based correlation. Therefore, we have ρBZINB = Cor(Y1, Y2) =

α0√
(α0+α1)(α0+α2)

√
β1β2

(β1+1)(β2+1) , which is seemingly the same as the BNB correlation ρBNB.

The difference is that we estimate all the parameters (α0, α1, α2, β1, β2, π1, π2, π3, π4) and
use the BNB component parameters (α0, α1, α2, β1, β2) only for ρBZINB, while the BNB
correlation ρBNB is obtained by estimating (α0, α1, α2, β1, β2) only—the latter does adjust
for zero inflations in BNB. This difference reflects the different assumptions of the presence
of zero inflation.

There is a naive correlation of the BZINB model; namely, a correlation measure without
adjustment for zero inflation in the BZINB model. This correlation involves all BZINB
parameters:

ρ̃BZINB(Y1, Y2) =
σ12

σ1σ2
,

where σ12 = {α0 +(α0 + α1)(α0 + α2)}β1β2π1− (α0 + α1)(α0 + α2)β1β2(π1 +π2)(π1 +π3)
and σ2

j = (α0 + αj)
2β2

j (π1 + πj + 1)(1− π1 − πj + 1) + (α0 + αj)β j(β j + 1)(π1 + πj + 1),
j = 1, 2. Simulation results (not shown) suggest this “naive BZINB correlation” introduces
noise in the estimation and decreases the estimation accuracy of the underlying correlations.
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2.2. Existing Correlation Calculation Methods for Network/Pathway Analysis

In correlation-based analyses such as network estimation for multi-omics count data,
Pearson’s correlations are often used with the assumption of linearity. Previously, weighted
correlation network analysis (WGCNA) has been used [5] to identify co-expressed clusters
(modules) of highly correlated genes or other features. However, both microbiome and
metabolome data contain excessive zeros and therefore there may be excessive ties in
the data. In this case, Spearman’s rank correlation, even with less stringent assumptions
compared to Pearson’s correlation, may still not be an appropriate measure.

In this study, we compare ρBZINB used in BZINB-iMMPath to both ρBNB and the
Spearman and Pearson correlations. The formula for the Spearman correlation between

vectors X1 = (X1,1, X1,2, . . . , X1,n) and X2 = (X2,1, X2,2, . . . , X2,n) is ρSpearman = 1− 6 ∑ d2
i

n(n2−1) ,
where di = rank(X1i)− rank(X2,i). In the case of ties, the average of the ranks is used.

The formula for the Pearson correlation is ρPearson =
∑(X1,i−X1)(X2,i−X2)√
∑(X1,i−X1)

2
(X2,i−X2)

2 .

2.3. Description of Microbiome and Metabolome Data from the ZOE 2.0 Study

The ZOE 2.0 study includes 6404 3–5-year-old children enrolled in public preschools
in North Carolina, United States, who underwent clinical dental examinations and biospec-
imen collection [16]. Of those, a subset of 300 participants’ supragingival biofilm sam-
ples were analyzed and made available for multi-omics (including metagenomics, meta-
transcriptomics, and metabolomics) analyses. Accordingly, 300 children have metage-
nomics data (WGS DNAseq, called DNA in this paper), 297 have metatranscriptomics
(RNASeq) data, and 289 have metabolite data. Microbiome data have been made avail-
able via https://www.ncbi.nlm.nih.gov/bioproject/671299; (accessed on 4 March 2023)
and metabolome data via https://www.ebi.ac.uk/metabolights/MTBLS2215; (accessed
on 4 March 2023). As in a previous investigation [17], ten participants with greater than
30% missing metabolite data and one ineligible participant were excluded. Among the
289 with metabolite data, 109 met the clinical criteria for ECC (i.e., cases) and 180 did not
(i.e., non-cases) [18,19].

To allow for comparisons of goodness-of-fit and variations in data sparsity (i.e., per-
centage of zeros), we used microbiome data generated by two different popular procedures
for mapping and preprocessing metagenomics. Primarily, microbiome DNA data were
classified into species-level profiles using a pipeline based on Kraken2 [20] and Bracken
2.5 [21], referred to as Kraken2/Bracken in this paper. The pipeline was built using a custom
database including human, fungal, bacterial, and the expanded Human Oral Microbiome
Database (eHOMD) [22] for microbial reference genomes. There were 417 microbial species
identified as “core species” after excluding rare and low-prevalence taxa that were kept in
the analysis [23]. In a secondary procedure, the same DNA sequence reads were processed
using MetaPhlAn2.2 through the HUMAnN 2.0 pipeline [24,25] with the default microbial
reference genome in HUMAnN 2.0. Viruses, biosatellites, and unidentified species were
filtered out, resulting in 205 species-level taxa remaining available for analysis. The ad-
vantage of Kraken2/Bracken for our application is due to the fact that it allowed for the
use of a custom and contemporary oral microbiome reference database and thus mapped
oral/dental species more accurately than HUMAnN 2.0. On the other hand, HUMAnN 2.0
allowed not only for the identification of species, but also for the generation of gene family
and pathway-level data that can be of interest and value in some applications. The real
data application of BZINB-iMMPath was done only using Kraken2/Bracken species-level
data. Of note, all presented results rely on Kraken2/Bracken data unless HUMAnN 2.0 is
explicitly mentioned, such as in goodness-of-fit and percentage of zeros comparisons that
are presented in Appendix A.

The focus of the work reported in this paper is metagenomics data at the species
level, but our new method can be applied to metatranscriptomics (i.e., RNAseq) as well as

https://www.ncbi.nlm.nih.gov/bioproject/671299
https://www.ebi.ac.uk/metabolights/MTBLS2215
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other levels of data, including gene family or genes, because all data types are similarly
characterized by excess zeros and overdispersion [26].

To obtain metabolomics data, samples were processed using Metabolon’s Ultra Per-
formance Liquid Chromatography-tandem Mass Spectrometry pipeline [27,28]. A total of
503 named metabolites were identified through peak identification, QC, and correction
for day-dependent technical variations [16]. Procedures and descriptions of the obtained
metabolite data have been previously reported in detail [17,29].

2.4. Simulation Study
2.4.1. Lognormal Based Simulation

We simulated data based on the bivariate lognormal distribution, then replaced some
numbers with zero to mimic the excess zeros in the following way, so that each simulated
vector can be considered to be drawn from the zero-inflated lognormal distribution. We
simulated vectors representing pairs of metabolites and species, with theoretical correlations
of 0.05, 0.1, 0.3, and 0.5, representing weak to strong correlations, based on the empirical
distribution of correlations between the observed counts of pairs of species and metabolites
(Figure 1a). Each vector consisted of 300 elements drawn from a lognormal distribution,
representing natural log-transformed counts. After transformation, the numbers were
rounded to the nearest integer to represent counts. For simplicity, the marginal variance
of the log counts in each vector was set to 1, which was well within the range of the
sample variances of the metabolite- and species-wise log counts in ZOE 2.0. Assuming
that most missing values in metabolite data are due to low concentration, the counts in
each metabolite vector were ranked and assigned a probability based on their rank. These
probabilities spanned an interval of 0.3, centered at the pre-determined proportion missing.
Let ranki represent the rank of the ith element in the metabolite vector, and let pzero be the
proportion of zeros in the vector. Then, the ith element of the vector is set to zero with a
probability of pi = (0.5− (ranki)/300) ∗ 0.3 + pzero. Under the assumption that zeros in
microbiome species are typically structural zeros, the elements in each vector representing
a species were randomly chosen to be set to zero after the counts were simulated. Figure 1b
and Appendix A Figure A4 illustrate the number of zero counts against the mean of
nonzero counts of each metabolite and species. These data revealed a decreasing trend in
mean counts as the number of zeros increased and informed the selection of simulation
parameters. Therefore, vector pairs representing metabolites and species were simulated
under the scenarios outlined in the first four rows in Table 1.

In addition, the four correlation types were compared in simulated vector pairs that
represent the relationships between two microbial species. These vectors were simulated
based on the scenarios in the last three rows in Table 2. Zero counts were assigned randomly.

Table 1. Marginal log-scale means (before introducing zeros) and number of zeros for simulation
of bivariate lognormal vectors with excess zeros that represent metabolite–species pairs (where X1

represents a metabolite and X2 represents a species) and species–species pairs. Levels of zero inflation
include balanced (similar number of zeros in each vector), with either low or high zero inflation,
and unbalanced (one vector has substantially more zeros than the other). The letter labels (a, b, c, d) of
each combination denote different simulation scenarios in that the different zero inflation parameters
were used to obtain results for each line of Appendix A Table A3.

Relationship Zero Inflation Number of Zeros Means

Metabolite–Species

a Balanced, low 30, 60 14, 11
b Balanced, high 150, 200 12, 9
c Nzero,X1 < Nzero,X2 30, 200 14, 9
d Nzero,X1 > Nzero,X2 150, 60 12, 11

Species–Species
a Balanced, low 60, 60 11, 11
b Balanced, high 200, 200 9, 9
c Nzero,X1 < Nzero,X2 60, 200 11, 9
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Table 2. Zero inflation parameters and resulting expected zeros for simulation of bivariate zero-
inflated negative binomial vectors to represent pairs of metabolites and species (where X1 represents
a metabolite and X2 represents a species) and pairs of species. Similar to the scenarios outlined
in Table 1, there are balanced and unbalanced levels of zero inflation. The other BZINB model
parameters are outlined in Appendix A Tables A1 and A2. The letter labels of each combination
denote the zero inflation parameters used to obtain results for each line of Appendix A Table A3.

Zero Inflation Expected Zeros π1 π2 π3 π4

a Balanced, low 30, 60 0.75 0.15 0.05 0.05
b Balanced, high 210, 240 0.1 0.2 0.1 0.6
c Nzero,X1 < Nzero,X2 60, 225 0.2 0.6 0.05 0.15
d Nzero,X1 > Nzero,X2 225, 60 0.2 0.05 0.6 0.15

2.4.2. BZINB-Based Simulation

To represent typical pairs, also called vector pairs, as in the real data with various
amounts of pairwise and non-pairwise zeros, vector pairs, we carried out simulations using
several combinations of parameters, as summarized in Appendix A Table A1. For com-
putational efficiency, these vector pairs represent rescaled pairs of count vectors obtained
from the real data

(
Xi/

sd(Xi)
30 , i = 1, 2

)
, without altering the correlations. We considered

underlying correlations of ρBNB = 0.05, 0.1, 0.30, and 0.5 by using different combinations
of shape and scale parameters in the BZINB distribution (Appendix A Table A1). For each
combination of shape and scale parameters (and accordingly, level of correlation of the
nonzero counts), we conducted simulations using four combinations of zero inflation
parameters (π1, π2, π3, π4), representing balanced low, two combinations of unbalanced,
and balanced high zero inflations (Table 2).

We also simulated vector pairs under the BZINB distribution to represent typical
pairs of microbial species. These vectors had the same zero inflation parameters as the
microbiome–metabolome simulated vector pairs (Table 2) but different means and slightly
different correlations. The corresponding shape and scale parameters are presented in
Appendix A Table A2.

2.5. Spectral Clustering for Module Identification
2.5.1. Approach for BZINB Application in Spectral Clustering

Spectral clustering is a flexible method for partitioning networks using the eigenvectors
of nodes’ similarity matrices [12] and has been used in many applications, including
bioinformatics. Although similarity is typically quantified through the Gaussian kernel,
other measures such as cosine similarity [30] have been used to better represent certain
data types. In correlation networks, the positive correlation between a pair of nodes (or,
in our data, species or metabolites) is scale-invariant and is often used as a measure of
similarity when the co-varying dynamics of the nodes is of interest. Therefore, one can
reasonably use the estimated correlations in constructing affinity matrices in applications
such as spectral clustering to discover novel pathways that differ between study groups or
that are potentially associated with health or disease states. In this paper, we compare the
Spearman, BNB, and BZINB correlations in spectral clustering for microbiome count data.

For vectors xi and xj, the affinity aij is a measure of similarity such that aij is bounded
by 0 and 1, aij is closer to 1 as xi and xj are more similar, and ai j = 0 when i = j. To obtain
each affinity matrix from a correlation matrix, we set the diagonal entries to zero. Since the
BZINB model-based correlation can only be positive, we force any negative values obtained
from Spearman correlations to be zero. This allows us to only predict clusters with and
based on positive inter-dependencies. Next, we cluster the nodes using SpectraLib_A [31].
While the affinity matrices are all symmetric, this method can account for directed networks,
for example, to incorporate known interactions between species or metabolites, by using
asymmetric affinity matrices.
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2.5.2. Evaluation of Cut-Based Spectral Clustering Using Crafted
Semi-Parametric Simulation

We simulated correlated clusters to compare the accuracy of the three types of affinity
matrices as follows. We permuted the first 400 species in the caries-free (i.e., healthy group)
ZOE 2.0 participants and split them into 10 clusters of 40 species each. For each cluster k,
we generated a random vector Rk ∼ Pois(17, 968) (since 17,968 was the mean count of the
400 species). For the nonzero counts of each species j in cluster k, we computed a weighted
sum, Zj = 0.9 ∗Yj + 0.1 ∗ Rk, of each original species’ counts

(
Yj
)

and the random vector
to introduce additional correlation within each cluster. We then estimated the Spearman,
BNB, and BZINB correlations between all 400 species to construct three types of affinity
matrices. Then, we clustered the species for each affinity matrix using SpectraLib_A with
10 clusters. In cases where biological knowledge exists regarding the direction of effects in
relationships between different omics layers, the affinity matrix can be altered to reflect it.

To evaluate the accuracy of each correlation type in spectral clustering, we contrasted
predicted and assigned clusters to optimize the prediction accuracy as follows:

1. If the most common predicted cluster for an assigned cluster is the same as the most
common assigned cluster for that predicted cluster, those clusters are matched.

2. Then, the overall proportion of accurate predicted cluster assignments is calculated
for each possible combination of the remaining clusters.

3. The remaining clusters are matched with the combination that maximizes the propor-
tion of accurate predicted cluster assignments.

2.6. Network Visualization

To create visual representations of networks, we represented each metabolite and
species as a node and each correlation as an edge. For easier interpretation of the network
diagrams, we included only a subset of metabolites and species. Heimisdottir et al. 2021 [17]
identified 16 metabolites, and Cho et al. 2022 [23] identified 15 species in ZOE 2.0 that
were significantly associated with the childhood dental disease outcome of interest (i.e.,
ECC). In this work, we focused on the patterns of co-occurrence between these species
and metabolites and examined whether they differ between health and disease states.
In network visualizations, we included only the strongest correlations that were of interest.
We visually assessed histograms of all correlations for each correlation type and disease
group to determine optimal correlation cutoff points. We applied Cytoscape’s Organic
layout and removed node overlaps. To accomplish this, we first obtained the BZINB-
based and Spearman correlations between each pair of 16 metabolites and 15 species of
interest, as well as between each pair of the 15 species in ZOE 2.0 in each of the two
heath/disease (non-ECC/ECC) participant groups. Next, we sought to determine optimal
cutoff correlation values to prevent the network visualization from being too large, even
for 16 metabolites and 15 species. Therefore, we created network visualizations only
for the most correlated species and the most correlated species–metabolites for the ECC
and the non-ECC groups. To maintain comparability of the network diagrams, we used
the same percentage of strongest correlations for each. After comparing several cut-off
values, we determined that using the top 30% of metabolite–species correlations resulted in
approximately 100 edges when the two disease groups were plotted on the same diagram,
so that the edges and nodes were mostly visible when the network was large enough to
illustrate high-degree nodes.

Network visualizations were generated with Cytoscape 3.9.1 [32]. Metabolite su-
perpathways were highlighted by node color, and edge stroke color was used to denote
health/disease (non-ECC/ECC) when correlations from both participant groups were
plotted together.
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3. Results
3.1. BZINB Model Is a Good Fit for the ZOE 2.0 Microbiome and Metabolome Data

First, we sought to identify suitable distributions to model the paired metabolome and
species-level microbiome count data. We assumed that proper normalization in microbiome
and metabolome data had been carried out. Zeros present in the original counts remain as
zeros after normalization (RPK, RPKM, or CPM).

Specifically, we evaluated model fits for three distributions with multiple randomly
selected pairs of species and metabolites from ZOE 2.0. Count data naturally correspond to
a Poisson distribution, while the negative binomial distribution is an extension of Poisson
that allows for overdispersion. Non-zero data can be transformed to lognormal to improve
fit, particularly due to the long right-tailed distribution. It is important to consider that
many species and metabolites exhibit large proportions of zeros. Therefore, candidate
distributions included: (1) zero-inflated Poisson, (2) zero-inflated negative binomial, and
(3) zero-inflated lognormal. For each vector, model parameters were estimated using the
nonzero counts from the real data. Numbers of zeros were simulated following a binomial
distribution with probability p equal to the proportion of zeros in the real data vector,
and the remaining counts were simulated based on the estimated model parameters.

The simulated vectors from the zero-inflated Poisson distribution did not capture the
overdispersion in most of the real data vectors (Appendix A Figure A2). The zero-inflated
negative binomial distribution was found to adequately capture the data distribution
of metabolites and microbiomes (Appendix A Figure A1). Because the negative bino-
mial distribution takes on discrete values, we did not evaluate goodness-of-fit using the
Kolmogorov–Smirnov test in this case.

Further, using the Kolmogorov–Smirnov test, we assessed the goodness-of-fit of the
lognormal distribution for metabolite and species data in ZOE 2.0 (Figure 1c). Because the
Kolmogorov–Smirnov test is only applicable to continuous distributions, only the nonzero
counts were included. Regarding metabolites, 11.5% had p values less than 0.05, suggesting
that the zero-inflated lognormal distribution was a good fit for most metabolite data.
On the other hand, the zero-inflated lognormal distribution was not a good fit for over
20% of the Kraken2/Bracken species, while it was a good fit for almost all HUMAnN
2.0-derived species in ZOE 2.0 (Appendix A Figure A3). Additionally, based on a visual
comparison of Kraken2/Bracken real data and simulated zero-inflated lognormal count
vectors (Appendix A Figure A1), the zero-inflated lognormal distribution appeared to
represent species data well.

3.2. Estimation Accuracy of Underlying Correlation in Simulated Correlated Pairs of Count
Data Vectors

We evaluated the estimation accuracy of underlying correlations across our measures
of correlation for each simulated pair of vectors. The four methods are: (1) correlation based
on the BZINB model (fitted with, at most, 1000 E–M iterations); (2) correlation based on the
BNB model (fitted with, at most, 1000 E–M iterations); and (3) Pearson and (4) Spearman
correlations for the vectors after elements were set to zero. For each of these simulations,
the mean and median correlation approximations were based on 1000 replicates.

In nearly all cases, BZINB and BNB-based correlations were closer to the true and the-
oretical correlation compared to the Spearman correlation (Figure 2, Appendix A Table A3).
As the number of zeros in either vector increased, the Spearman and model-based cor-
relations tended to be lower than the true value. Similarly, as the theoretical correlation
increased, the Spearman and model-based correlations also tended to be lower than the true
value. These patterns were more noticeable with the Spearman correlation compared to the
model-based correlations. BZINB-based correlations were more accurate than Spearman
and BNB-based correlations in cases of high simulated underlying correlation or with more
zeros, which was more noticeable when the simulated correlation was approximately 0.3
or higher.
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Figure 2. (Upper panel) Mean approximated correlation for simulation of lognormal vectors repre-
senting pairs of metabolites and species corresponding to the (a) balanced, low, (b) balanced, high,
(c) unbalanced, case 1, (d) unbalanced, case 2 expected numbers of zeros (parameters in Table 1);
mean approximated correlation for simulation of lognormal vectors representing pairs of species
corresponding to the (e) balanced, low, (f) balanced, high, (g) unbalanced expected numbers of zeros
(parameters in Table 2). Each figure compares Spearman, Pearson, BNB-based, and BZINB-based
correlations for five values of underlying correlation from the distributions from which the simulated
vectors are drawn. In each plot, the x-axis represents the underlying correlation of the bivariate
lognormal distribution from which the simulated vector pairs are drawn; the y-axis represents the
mean estimated correlation for 1000 simulated replicates. (Lower panel) Mean approximated correla-
tion for simulation of BZINB vectors representing pairs of metabolites and species corresponding
to the (a) balanced, low, (b) balanced, high, (c) unbalanced, case 1, (d) unbalanced, case 2 expected
numbers of zeros (parameters in Table 2 and Appendix A Table A1); mean approximated correlation
for simulation of BZINB vectors representing pairs of species corresponding to the (e) balanced, low,
(f) balanced, high, (g) unbalanced, case 1, (h) unbalanced, case 2 expected numbers of zeros (parame-
ters in Table 2 and Appendix A Table A2). Each figure compares Spearman, Pearson, BNB-based,
and BZINB-based correlations for five values of underlying correlation from the distributions from
which the simulated vectors are drawn. In each plot, the x-axis represents the underlying correlation
of the BZINB distribution from which the simulated vector pairs are drawn; the y-axis represents the
mean estimated correlation for 1000 simulated replicates.

3.3. Accuracy Evaluation of Identified Species Modules Using Semi-Parametric Simulation

We sought to evaluate the accuracy of species module identification using BZINB-
based correlations compared to other correlations for spectral clustering. The ground truth
was simulated using semi-parametric simulations as described in the Methods section.

In the crafted semi-parametric simulated dataset representing counts for species
belonging to 10 clusters (Figure 3a,b), we constructed affinity (distance) matrices using
correlations from three methods (BZINB, BNB, and Spearman correlations) in spectral
clustering of species. To evaluate which method produces the most accurate and robust
predicted 10 clusters when different distance matrices were used, we compared: (1) pro-
portions of correctly predicted clusters, (2) the Adjusted Rand Index (ARI), and (3) the
distance between the correlation matrices of the count matrices before and after adding
cluster signals. For all resulting predicted clusters, there were instances where two or more
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separately assigned clusters were predicted to be essentially the same cluster (Figure 3c–e).
This is likely due to the underlying similarities between species of different clusters in the
original count data.

Figure 3. Results of BZINB-based spectral clustering of species. (a) Heatmap of BZINB-based
correlation between Kraken2/Bracken counts of 400 of the species in ZOE 2.0 in a random order;
(b) Heatmap of BZINB-based correlation of the Kraken2/Bracken count data (in the same order as in
(a)) after introducing simulated clusters; (c–e) Each column of cells represents a true cluster based
on simulation (b), each cell represents one species, and the color is the indicator of the predicted
cluster using the affinity matrix made from (c) BNB, (d) BZINB, and (e) Spearman correlations. There
are 10 distinct colors used to represent the 10 clusters; (f) Distance (Frobenius norm) between the
correlation matrices of nested predicted clusters between data with (as in Figure 3b) and without (as
in Figure 3a) increased correlations that represented the clusters: the first set (number of clusters = 1)
is the predicted cluster with the greatest distance between correlation matrices. For each increase
in the number of clusters, we included an additional cluster in the order of decreasing distances.
This was done using the BNB-based, BZINB-based, and Spearman correlation matrices and their
corresponding cluster predictions; (g) Violin plot of cluster-wise percent accuracy for each of the
10 clusters comparing BNB, BZINB, and Spearman correlation-based affinity matrices.

First, while several approaches exist to quantify clustering accuracy, we considered the
proportions of species in each assigned cluster that were predicted to be in the same cluster.
We found that, in the data with simulated clusters (simulated as in Section 2.4.2), using
the BZINB-based correlation resulted in the highest overall proportion of accurate cluster
assignments, while the BNB-based correlation resulted in the lowest accuracy (Figure 3g).
Clusters that were generated using BZINB correlations had up to 85% accuracy, and most
had at least 65% accuracy. On the other hand, most of the Spearman correlation-based
clusters had between 55% to 75% accuracy. There was a moderate percentage (40–55%) of
inaccurately predicted BNB correlation-based clusters.

Second, we evaluated the accuracy of the predicted clusters for each correlation type
using the ARI. Higher ARI indicates higher consistency between the observed and the
simulated cluster membership. In concordance with the proportion of accurate cluster
assignments, the affinity matrix based on the BZINB-based correlation resulted in an ARI
of 0.43, which was the highest among the three. The ARI for the BNB-based and Spearman
correlations were 0.38 and 0.34, respectively. Therefore, BZINB model-based clustering
provides the best clustering results.
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Third, we compared the three methods according to the distance between correlation
matrices. The distance between two correlation matrices (where BZINB correlations were
calculated for each pair of species) with partitions representing clusters is one way to
compare networks of microbial species or other multi-omics between two health/disease
groups. Further, distances between correlation matrices of two health/disease states within
each species cluster allows for the determination of clusters that are differentially inter-
correlated between these conditions.

Different types of correlation measurements vary in terms of power for detecting
between-network differences. Therefore, to compare the correlation types in quantifying the
difference between a network with clusters of highly correlated species and a network with
clusters of weakly correlated species, we computed distances between the two networks
for nested sets of clusters. The first set was the cluster with the greatest distance, and we
proceeded by sequentially adding clusters in order of decreasing distances. We used the
Frobenius norm of the absolute difference between the correlation (sub-)matrices as the
distance measure because it accounts for all matrix entries and is easily understood as
an extension of the Euclidean distance between vectors. This was done using the BNB-
based, BZINB-based, and Spearman correlation matrices and their corresponding cluster
predictions. Distances between two correlation networks were consistently maximized
using BZINB correlations, while they were the lowest using Spearman correlations for all
but one of the cluster sets (Figure 3f).

3.4. Application in the ZOE 2.0 Study
Interactions among Commensal Species and among ECC-Associated Species

The most abundant species in a microbial community are of natural interest when
examining microbial community dynamics in dysbiotic conditions such as those leading to
the development of dental caries. They represent a group of commensal species that may
be perturbed in the presence of dental disease. Between the top 10 most abundant species
in ZOE 2.0, there are stronger correlations in the context of disease (ECC group) compared
to the caries-free (non-ECC) group (Figure 4). The Spearman, BNB, and BZINB-based
correlations between the 10 most abundant species are very similar because these species
have no missing counts. In contrast, when one or more species have higher proportions of
zeros, there may be a larger difference between the BNB and BZINB correlations. This is
in accordance with simulation results, where all the correlation types were similar under
few zeros in both vectors, while the different correlation types were less similar when there
were excess zeros in one or more of the vectors.

We also examined interactions between metabolites and species that have been pre-
viously shown to be strongly associated with the presence of ECC. Therefore, next, we
focused on the set of 15 metabolites and 16 species that have been previously identified to be
associated with ECC in differential abundance analyses [17,23]. To understand these ECC-
associated interaction networks/pathways, we compared correlations of between-species
networks and species–metabolite networks as follows. First, we compared BZINB-based
(Figure 5a) and Spearman-based correlations between-species networks (Figure 5b). We
found that Veillonella atypica is highly correlated with several ECC-associated Prevotella
species among children affected with ECC using both of these correlations (Figure 5a,b).
On the other hand, many of these Prevotella species tend to be strongly correlated with
Leptotrichia, Lachnospiraceae, and Lachnoanaerobaculum species in children unaffacted by
ECC. This points to two possible co-abundance patterns: one where Prevotella, Leptotrichia,
Lachnospiraceae, and Lachnoanaerobaculum taxa may coexist in biofilms without disease
and another pattern of mutual benefit among V. atypica and Prevotella species when dis-
ease is present. In this case, the co-abundance pattern between these two species can be
explained by their beneficial interrelation in metabolic activities: carbohydrates and sugar
alcohols from the diet are subjected to glycolysis, which creates anaerobic conditions by
consuming oxygen and produces pyruvate that can be converted into lactate by Prevotella
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species. On the other hand, Veillonella atypica is an anaerobic bacterium that uses lactate as
its sole carbon source, converting into weaker acids, such as acetate and propionate [33].

Figure 4. Heatmaps of BZINB-based and Spearman correlations between the top 10 species with the
highest overall abundance for each health/dental disease group (non-ECC versus ECC) in the ZOE
2.0 Kraken2/Bracken data.

Figure 5. (a) BZINB correlations between species. The strongest 30% of correlations are included
in the diagrams, and the color of the lines represents whether the correlation was strong in one or
both of the health/disease groups. (b) Spearman correlations between species. The strongest 30% of
correlations are included in the diagrams, and the color of the lines represents whether the correlation
was strong in one or both of the health/disease groups.
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Among the 15 species of interest, the BZINB correlation network included only one
strong correlation involving Streptococcus mutans and Veillonella atypica in healthy sub-
jects, whereas the Spearman correlation network did not include Streptococcus mutans at
all. Streptococcus and Veillonella species are very common in supragingival oral biofilm,
and [34] showed a Streptococcus–Veillonella link in early dental plaque formation. In fact,
Streptococcus mutans is well known as a major lactic acid producer from the fermentation of
dietary carbohydrates, which benefits Veillonella species since it utilizes lactate produced
by Streptococcus mutans and converts it into weaker acids, such as acetate and propionate,
contributing to acid neutralization. Therefore, the identified strong correlation between
the two species is expected and reasonable. However, when acid production occurs at
a greater rate and frequency than that of acid neutralization, dental caries will develop.
In subjects with caries, Veillonella atypica was more abundant compared to those without
caries (Figure 6). Therefore, the Streptococcus mutans–Veillonella atypica dynamic may be
somewhat overpowered by Streptococcus mutans once disease has been established.

Figure 6. Scatterplot illustrating the comparison of relationships between S. mutans and V. atypica
abundances between healthy (non-ECC) and disease (ECC) groups.

Additionally, we compared BZINB-based (Figure 7) and Spearman correlation-based
species–metabolite networks (Figure 8). In the oral biofilm, when diet-associated carbo-
hydrates are present, carbohydrate-degrading species tend to increase in abundance, and
the local environment pH may decrease [35]. To observe the differences in species that
are highly correlated with carbohydrates of interest in healthy subjects and subjects with
ECC, we focused on interpretation of four carbohydrates that were previously shown to be
significantly and positive associated with ECC in Heimisdottir et al. 2021 [17]. We used
the BZINB-based correlations because some of the species had excess zeros. For each of
the five carbohydrates, we compared the strongest 5% of metabolite–species correlations
between healthy/disease groups. In caries-affected participants, the amount of three of the
carbohydrates (fucose, sedoheptulose-7-phosphate, and N-acetylneuraminate) is strongly
correlated with many Prevotella species. According to Takahashi et al. 2005 [36], Prevotella
neutralizes pH but may also favor the presence of other pathogenic species. In healthy
subjects, we found the carbohydrates to be correlated with Streptococcus, Fusobacterium,
and Selenomonas species, many of which have been described as carbohydrate-degrading
or pH-neutralizing in the oral biofilm [36,37] or are a core part of the normal flora. In the
BZINB network, 3-(4-hydroxyphenyl)lactate (HPLA) had many strong correlations with
various species in participants with ECC but much less among unaffected ones. HPLA is a
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metabolite in the tyrosine metabolism pathway that functions similarly to lactate, which
has been previously shown to be an important metabolic regulator in multiple pathways
(including glucose metabolism) in various parts of the human body [38,39]. The differing
strengths of correlations in the two healthy/disease groups could indicate that HPLA is me-
tabolized differently by ECC-associated species in the context of a dental caries-promoting
environment and may be a candidate for further investigation in its role in ECC develop-
ment. Furthermore, HPLA is strongly associated with many Streptococcus species in healthy
subjects and with many Prevotella species among those with ECC, similar to what was
found for ECC-associated carbohydrates.

Figure 7. BZINB network between species and metabolites including a node degree table. The
strongest 30% of correlations are presented in the diagrams, and line colors represent whether the
correlation was strong in one or both of the healthy/disease groups.

Figure 8. Spearman network between species and metabolites, presenting positive correlations only
and including a node degree table. The strongest 30% of positive correlations are presented in the
diagram, and line colors represent whether the absolute correlation was strong in one or both of the
healthy/disease groups.

Overall, Spearman and Pearson correlations are not suitable for data with excess
zeros because Spearman is influenced by ties and Pearson assumes a linear association.
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The negative binomial distribution accounts for the presence of zeros, which makes the
BNB distribution a better choice for modeling the relationship between a typical pair of
species or metabolites. When there are excess zeros in either or both species or metabolites
in a pair, the BZINB model can account for the zero inflation while approximating the
correlation of the nonzero components.

3.5. Species Modules Identified Using BZINB-Based Correlation and Spectral Clustering

We applied cut-based spectral clustering to the ZOE 2.0 data separately for each
healthy/disease group. We compared results between BZINB-based and Spearman correla-
tions when constructing the affinity matrix. To determine the optimal number of clusters,
we plotted the eigenvalues of the graph Laplacian for each affinity matrix (Appendix A
Figure A5). According to the eigengap method [40], the optimal number of clusters was
2 for each affinity matrix; for more interpretable results, we set the number of clusters to
be 6 in each case. To visualize the results of cut-based clustering, we created heatmaps
of standardized counts for all species, where the species are grouped and annotated by
predicted cluster and the study participants are annotated according to health/disease and
batch group. There were visible within-cluster similarities and differences between the
clusters for count patterns (Figure 9). Many species that were predicted to be in the second
and fifth cluster (shown in blue and orange, respectively, in the top bars of Figure 9) in
the healthy group had been classified in the third cluster (shown in green) in the disease
group. In other words, some species that were more similar to the first and fifth clusters
in the healthy group were instead more similar to the third cluster in subjects with ECC.
The different co-varying patterns in these species may be a reflection of differences in the
microbial community structure and function in ECC.

Figure 9. Heatmap of species-wise standardized counts illustrating species module identification
results (species are columns and modules are presented with different colors) using BZINB-based
species spectral clustering. Each column represents a single species. Columns are ordered by the
clusters predicted from the affinity matrix based on the BZINB correlations between species in
the healthy (non-ECC) group. The columns are annotated to show and compare the estimated
clusters within health (non-ECC) and disease (ECC) groups. Each row represents a participant,
and the rows are ordered based on hierarchical clustering. Rows (n = 289) are annotated to denote
healthy/disease and batch groups. Standardized counts were calculated separately for each species
by first suppressing outliers (defined as greater than 3 × IQR from the first or third quartile), then
centering around the median and dividing by the standard deviation.

4. Discussion

In this paper, we introduced a new method, BZINB-iMMPath, entailing a bivariate
zero-inflated negative binomial (BZINB) model-based correlation for network analysis
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of pairs of vectors of omics count data and module identification. The model makes
reasonable assumptions regarding dropouts and excess zeros as structural zeros in the
observed microbiome data compared to other types of zeros. Therefore, the microbial
correlation distribution is assumed to be that of the latent bivariate negative binomial
model. Our approach improves the estimation of correlations compared to the traditional
Pearson correlation and the more robust Spearman’s rank correlation coefficients. In
contrast to Pearson and Spearman correlations, the BZINB model accommodates zeros
in a flexible manner (in either or both vectors of each pair) and estimates the correlation
under the bivariate negative binomial model. For each pair of omics features, the BZINB
model is fitted, and a model-based correlation is computed from the estimated parameters.
Using the model, we can calculate the correlations between pairs of omics features in
the same layer (i.e., between pairs of microbial species) or between two different layers
(i.e., between pairs of metabolites and species). These correlations may then be used in
other applications such as networks’ visual representations and identification of clusters
of omics features. Accordingly, we applied the new method to microbial species and
metabolite data obtained in an oral microbiome study of early childhood dental disease.
Using visual comparisons and goodness-of-fit tests, we determined that the negative
binomial and lognormal distributions were appropriate for modeling most metabolites
and species. In addition to accounting for zero inflation, marginally, the negative binomial
distribution is a natural choice to model count data. Therefore, our model-based correlation
approach has several advantages over conventional measures of correlation when applied
to bivariate count data with excess zeros. In addition, correlations estimated from BZINB
can be used as the affinity matrix in the cut-based spectral clustering method for species
module identification in zero-inflated microbiome data. Modules can be compared between
groups of interest (e.g., health versus disease) and help identify species that demonstrate
important between-group pattern differences.

To evaluate the performance of BZINB-iMMPath, we used real data-inspired sim-
ulations to estimate the accuracy of underlying correlations in microbiome data; real
data-based semi-parametric simulations to assess the accuracy of module identification;
and finally, we applied it in a sizeable oral microbiome study to identify ECC-associated
microbial networks and modules. Specifically, we simulated pairs of count vectors rep-
resenting typical metabolite and microbial species vectors from ZOE 2.0 to compare the
accuracy of Spearman, BNB, and BZINB model-based correlations. We fitted the BZINB
model to each metabolite–species and species–species pair to construct visualizations of
ECC disease group-specific filtered networks and build affinity matrices for cut-based
spectral clustering. Using the simulated vector pairs, the BZINB model-based correlation
was on average closer to the underlying correlation when there were more zeros in one
or both vectors compared to the Spearman correlation coefficient. Notably, the average
BZINB-based correlation was higher than the other correlation types when the underlying
correlation was high (>0.3) and when there was zero inflation in at least one of the vec-
tors. Therefore, we recommend using the BZINB-based correlation for the identification of
strongly correlated pairs when zero inflation is present. The application in ZOE 2.0 not only
highlighted previously known networks involving carbohydrate metabolites but also re-
vealed novel regulation relationships between species and metabolites and ECC-associated
species modules.

While our method focuses on identifying pathways through identifying species mod-
ules based on correlated abundances and constructing networks, the inferred clusters from
BZINB-iMMPath could be used in extension to perform differential network/pathway
analysis by testing the difference (represented as distance) of species-wise correlation struc-
tures between sample groups in one specific cluster for a more site- or disease-specific
perspective.

The most noticeable limitation of the new approach is that the BZINB model allows
for only positive model-based correlations. Of course, there are cases where negative
correlations are of interest; for example, in the context of species competition, other cor-
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relation measures could be used. If negative correlations are also of interest in network
visualizations and strong (<−0.3) [41] negative Spearman correlations were observed,
the negative Spearman correlations could be directly used in place of near-zero BZINB
model-based correlations, or the weighted Pearson correlation could be used by weighting
the observed abundance counts by the model-based dropout probability as suggested in
Cho et al. 2021 [10]. However, incorporating negative correlations can introduce another
layer of complexity to network analysis applications for multi-omics and cluster identifi-
cation. For example, negative correlations may be considered with different importance
compared to positive correlations. Further, negative correlations within one layer of omics
(such as the microbiome), which could represent competition, may be more of interest
compared to negative correlations between layers (e.g., microbiome and metabolome),
which could be more complex in terms of direction of influence. This leaves room for
future method development, for example, wherein other bivariate (or multivariate) models
can be evaluated in terms of goodness-of-fit for certain types of omics data that could
accommodate negative correlations; however, there are advantages and disadvantages.
For example, the results of goodness-of-fit tests (Figure 1c) suggest that the lognormal dis-
tribution is appropriate for modeling the nonzeros for most of the species and metabolites
in our dataset so that zero-inflated log-normal (ZILN) based multivariate models can be
another option for our purpose. The so-called ZILN distribution is actually a truncated
lognormal that has a point mass at zero and a log-normal distribution for positive values. It
has been previously used for microbial networks and considers both positive and negative
correlations as in Prost et al. 2021 [42]. However, correlation of the multi-LN component
may not fully address the different mechanisms (e.g., biological zeros, technical zeros) that
generate zeros. In reality, some structural zeros representing non-existing species in the
sample can be important, as considered in correlation of the BNB component in BZINB.
Meanwhile, identifying positive correlations between bacteria and metabolites is a logical
priority because of biological interest regarding (1) which bacteria generate or up-regulate
which metabolites, and (2) which biochemicals are associated with bacterial abundance
(e.g., possibly growth). Meanwhile, negative correlation (like inhibition or competition) is
harder to interpret as detailed above, and in our BZINB model, positive correlations are
presented as such and negative correlations are estimated as near-zero.

In our application to the ZOE 2.0 study microbiome data, we determined that: (1) there
were relatively fewer zero counts when taxa were identified through the oral health-specific
Kraken2/Bracken pipeline, compared to the data from the still widely used HUMAnN 2.0
pipeline; (2) zero inflation does not appear to be a significant issue for many of the named
metabolites; and (3) in the absence of excess zeros, other measures of correlation appear to
be just as adequate as the BZINB-based correlation. Because HUMAnN 2.0 generated data
are very sparse, our method is even more powerful in those data, as well as in similarly
sparse gene-level metagenomics or metatranscriptomics data.

In sum, in this paper, we demonstrated that the new method based on the BZINB
model is a useful alternative to Spearman or Pearson correlations in estimating underlying
correlations for bivariate count data that are zero-inflated in one or both dimensions.
Because the model accommodates both technical and true zeros, it is suitable for multi-
omics data types, including the microbiome and metabolome. To identify differences
between healthy/disease groups, we prioritized and illustrated the strongest correlations
within each group, allowing for the visualization of important dynamic relationships and
their between-group comparison. Finally, these correlations can also be used in identifying
modules, i.e., clusters of correlated metabolites and microbial species, which could be of
biological interest both in terms of disease pathogenesis and intervention targeting.
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Appendix A

Table A1. Shape and scale parameters used to obtain various values of correlation for BZINB
simulation for vector pairs that represent pairs of metabolites and species. The number labels of each
line denote the parameters used to obtain results for each line of Appendix A Table A3.

α0 α1 α2 β1 β2 ρBZINB

1 0.2 0.1 0.3 20 40 0.498
2 0.3 0.5 0.8 12 21 0.300
3 0.15 1.1 1.5 20 30 0.100
4 0.05 0.85 1 30 50 0.050

Table A2. Shape and scale parameters used to obtain various values of correlation for BZINB
simulation for vector pairs that represent pairs of species. The number labels of each line denote the
parameters used to obtain results for each line of Appendix A Table A3.

α0 α1 α2 β1 β2 ρBZINB

1 0.3 0.3 0.3 30 40 0.486
2 0.35 0.7 0.8 20 30 0.306
3 0.1 0.75 1 30 30 0.100
4 0.05 0.9 1 50 50 0.049
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Table A3. The estimated correlations for each set of simulations: median (standard deviation). The
number label of each line corresponds to the shape and scale parameters in Appendix A Table A1 or
Appendix A Table A2, and the letter label of each line corresponds to the zero inflation parameters in
Table 1 or Table 2.

Theoretical Spearman Pearson BNB BZINB

lognormal
(metabolome–
microbiome)

1a

0.5

0.273 (0.056) 0.374 (0.115) 0.383 (0.047) 0.524 (0.058)
1b −0.011 (0.06) 0.075 (0.122) 0.112 (0.054) 0.153 (0.21)
1c 0.058 (0.058) 0.213 (0.118) 0.188 (0.049) 0.339 (0.18)
1d −0.064 (0.06) 0.131 (0.123) 0.181 (0.07) 0.435 (0.205)

2a

0.3

0.181 (0.058) 0.223 (0.096) 0.241 (0.058) 0.313 (0.08)
2b −0.007 (0.058) 0.046 (0.099) 0.081 (0.048) 0.064 (0.127)
2c 0.038 (0.06) 0.13 (0.101) 0.124 (0.06) 0.146 (0.144)
2d −0.043 (0.062) 0.08 (0.093) 0.106 (0.064) 0.215 (0.171)

3a

0.1

0.071 (0.058) 0.076 (0.071) 0.08 (0.061) 0.077 (0.068)
3b −0.002 (0.058) 0.019 (0.071) 0.053 (0.041) 0.019 (0.05)
3c 0.015 (0.059) 0.042 (0.071) 0.052 (0.053) 0.027 (0.053)
3d −0.019 (0.059) 0.029 (0.07) 0.049 (0.046) 0.045 (0.07)

4a

0.05

0.039 (0.059) 0.042 (0.065) 0.05 (0.052) 0.042 (0.048)
4b 0 (0.058) 0.007 (0.063) 0.045 (0.036) 0.014 (0.042)
4c 0.009 (0.056) 0.023 (0.061) 0.036 (0.042) 0.016 (0.034)
4d −0.01 (0.059) 0.012 (0.065) 0.04 (0.042) 0.025 (0.045)

lognormal
(within
microbiome)

1a
0.5

0.25 (0.058) 0.367 (0.11) 0.351 (0.047) 0.52 (0.065)
1b 0.011 (0.061) 0.121 (0.13) 0.102 (0.046) 0.228 (0.242)
1c 0.052 (0.06) 0.203 (0.123) 0.173 (0.051) 0.356 (0.191)

2a
0.3

0.167 (0.06) 0.223 (0.102) 0.226 (0.056) 0.319 (0.083)
2b 0.01 (0.057) 0.077 (0.107) 0.073 (0.041) 0.089 (0.151)
2c 0.032 (0.059) 0.124 (0.099) 0.114 (0.054) 0.156 (0.154)

3a
0.1

0.064 (0.059) 0.075 (0.072) 0.082 (0.061) 0.078 (0.073)
3b 0.006 (0.06) 0.027 (0.077) 0.048 (0.037) 0.022 (0.055)
3c 0.014 (0.057) 0.042 (0.073) 0.055 (0.046) 0.028 (0.055)

4a
0.05

0.034 (0.059) 0.04 (0.064) 0.052 (0.051) 0.041 (0.05)
4b 0.002 (0.061) 0.013 (0.063) 0.043 (0.035) 0.014 (0.041)
4c 0.006 (0.059) 0.022 (0.067) 0.039 (0.04) 0.016 (0.034)

BZINB
(metabolome–
microbiome)

1a

0.4978

0.329 (0.056) 0.416 (0.113) 0.409 (0.047) 0.48 (0.07)
1b 0.177 (0.069) 0.192 (0.146) 0.184 (0.067) 0.274 (0.224)
1c 0.064 (0.063) 0.18 (0.128) 0.135 (0.056) 0.321 (0.2)
1d 0.09 (0.058) 0.185 (0.118) 0.162 (0.056) 0.318 (0.203)

2a

0.300

0.228 (0.061) 0.257 (0.083) 0.279 (0.055) 0.275 (0.074)
2b 0.195 (0.065) 0.156 (0.103) 0.166 (0.056) 0.132 (0.164)
2c 0.016 (0.057) 0.086 (0.082) 0.071 (0.047) 0.118 (0.151)
2d 0.026 (0.058) 0.09 (0.085) 0.086 (0.053) 0.131 (0.164)

3a

0.100

0.135 (0.059) 0.114 (0.067) 0.202 (0.068) 0.094 (0.061)
3b 0.209 (0.063) 0.129 (0.076) 0.151 (0.047) 0.046 (0.082)
3c 0.005 (0.057) 0.026 (0.066) 0.053 (0.04) 0.019 (0.046)
3d 0.008 (0.058) 0.028 (0.065) 0.066 (0.047) 0.021 (0.052)

4a

0.050

0.11 (0.06) 0.065 (0.065) 0.125 (0.067) 0.054 (0.047)
4b 0.205 (0.064) 0.105 (0.076) 0.122 (0.049) 0.032 (0.062)
4c 0.002 (0.057) 0.013 (0.063) 0.039 (0.034) 0.013 (0.027)
4d 0.001 (0.058) 0.014 (0.063) 0.04 (0.036) 0.015 (0.038)
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Table A3. Cont.

Theoretical Spearman Pearson BNB BZINB

BZINB
(within
microbiome)

1a

0.486

0.334 (0.057) 0.412 (0.094) 0.407 (0.044) 0.461 (0.061)
1b 0.2 (0.066) 0.198 (0.13) 0.187 (0.059) 0.27 (0.22)
1c 0.046 (0.058) 0.17 (0.108) 0.131 (0.047) 0.287 (0.191)
1d 0.051 (0.06) 0.163 (0.105) 0.131 (0.047) 0.332 (0.194)

2a

0.306

0.239 (0.058) 0.264 (0.081) 0.303 (0.05) 0.282 (0.071)
2b 0.207 (0.061) 0.161 (0.093) 0.167 (0.051) 0.123 (0.157)
2c 0.017 (0.059) 0.088 (0.083) 0.079 (0.047) 0.109 (0.139)
2d 0.019 (0.061) 0.09 (0.082) 0.089 (0.047) 0.126 (0.151)
3a

0.100

0.132 (0.059) 0.104 (0.069) 0.156 (0.061) 0.088 (0.058)
3b 0.204 (0.064) 0.113 (0.077) 0.132 (0.05) 0.045 (0.081)
3c 0.006 (0.058) 0.03 (0.068) 0.045 (0.038) 0.025 (0.056)
3d 0.005 (0.058) 0.028 (0.069) 0.044 (0.039) 0.026 (0.058)

4a

0.049

0.109 (0.06) 0.066 (0.066) 0.135 (0.066) 0.055 (0.047)
4b 0.208 (0.062) 0.107 (0.07) 0.12 (0.046) 0.03 (0.058)
4c 0.004 (0.056) 0.014 (0.06) 0.043 (0.034) 0.011 (0.017)
4d 0.005 (0.056) 0.014 (0.06) 0.04 (0.035) 0.012 (0.022)
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Comparison of Simulated and Real Metabolite and Species Counts

(a)

(b)

Figure A1. Evaluation of Goodness-of-Fit for the ZINB/NB and lognormal models by comparing the
histogram of frequency between the simulated data and real data processed in Kraken2/Bracken.
The 2nd and 4th columns each contain one species or metabolite from ZOE 2.0. The 1st and 3rd
columns contain ZINB simulated data using the parameters estimated from the corresponding
species. The 1st and 2nd columns illustrate metabolites and 3rd and 4th columns present microbial
species. (a) denotes ZINB/NB-based simulation and (b) denotes ZILN/lognormal based simulation.
(a) For two randomly selected metabolites and two randomly selected species (Kraken2/Bracken),
comparison of simulated counts drawn from ZINB distribution (with parameters obtained from
models fitted on the real data) and the real data. If the real data have less than 50 out of 289 zeros,
the simulated counts are drawn from the negative binomial distribution with no zero inflation. Red
vertical lines represent model-based means for each metabolite and species. (b) For two randomly
selected metabolites and two randomly selected species (Kraken2/Bracken), comparison of simulated
counts drawn from (ZI-)lognormal distribution (with parameters obtained from models fitted on the
real data) and the real data. If the real data have no zeros, the simulated counts are drawn from the
lognormal distribution with no zero inflation. Red vertical lines represent the log-scale means of the
counts for each metabolite and species.

Figure A1. Evaluation of goodness-of-fit for the ZINB/NB and lognormal models by comparing the
histogram of frequency between the simulated data and real data processed in Kraken2/Bracken.
The 2nd and 4th columns each contain one species or metabolite from ZOE 2.0. The 1st and 3rd
columns contain ZINB simulated data using the parameters estimated from the corresponding species.
The 1st and 2nd columns illustrate metabolites, and the 3rd and 4th columns present microbial species.
The star at the end of some of the metabolite names indicates that Metabolon, where the metabolome
data were generated, is confident in the metabolite’s identity but it has not been confirmed based on a
standard. (a) denotes ZINB/NB-based simulation, and (b) denotes ZILN/lognormal based simulation.
(a) For two randomly selected metabolites and two randomly selected species (Kraken2/Bracken),
comparison of simulated counts drawn from the ZINB distribution (with parameters obtained from
models fitted on the real data) and the real data. If the real data have less than 50 out of 289 zeros,
the simulated counts are drawn from the negative binomial distribution with no zero inflation. Red
vertical lines represent model-based means for each metabolite and species. (b) For two randomly
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selected metabolites and two randomly selected species (Kraken2/Bracken), comparison of simulated
counts drawn from the (ZI-)lognormal distribution (with parameters obtained from models fitted on
the real data) and the real data. If the real data have no zeros, the simulated counts are drawn from
the lognormal distribution with no zero inflation. Red vertical lines represent the log-scale means of
the counts for each metabolite and species.

Figure A2. Comparison of simulated counts drawn from (ZI-)Poisson distribution (with parameters
from model fitted on the real data) and real data of 4 randomly-selected metabolites and species. The
red vertical line on each plot represents the Poisson model-based mean of the nonzero component for
each metabolite and species.

Figure A3. p-values obtained from lognormal (parameters from models fitted on nonzero counts
for each metabolite and species) Kolmogorov–Smirnov test for ZOE 2.0 metabolites and HUMAnN
2.0 microbiome species. The red vertical line represents a p-value of 0.05 so that p-values below it
indicate statistical significance in the tests.
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Figure A4. Species-wise (HUMAnN 2.0) numbers of zeros plotted against mean log nonzero counts.

Figure A5. Comparison of BNB and BZINB correlations between all pairs of microbial species in
ZOE 2.0 with respect to the total number of zeros in each pair.

Figure A6. Eigenvalues of the Laplacian graph based on each affinity matrix for healthy and disease
(ECC) groups in ZOE 2.0 Kraken2/Bracken microbiome data, used to determine an appropriate
number of clusters.
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Figure A7. Heatmap of species-wise standardized counts illustrating species modules identified by
spectral clustering (shown as the two top bars). Columns represent individual species and are ordered
by the clusters predicted from the affinity matrix based on the BZINB correlations between species
in the disease (ECC) group. Columns are annotated to show and compare the predicted clusters
between healthy (no ECC) and disease (ECC) groups. Each row represents a participant (n = 289).
The rows are ordered based on hierarchical clustering and are annotated to illustrate healthy and
disease groups and the sequencing batch. Standardized counts were calculated separately for each
species by first suppressing outliers (defined by greater than 3 × IQR from the first or third quartile),
then centering around the median and dividing by the standard deviation.

Figure A8. Spearman microbiome–metabolome correlation network including a node degree table.
The strongest 30% absolute correlations are illustrated. Line colors represent correlations’ strength in
health, disease (ECC), or both.
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