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Abstract: The Antarctic Circumpolar Current (ACC) is the major current in the Southern Ocean,
isolating the warm stratified subtropical waters from the more homogeneous cold polar waters.
The ACC flows from west to east around Antarctica and generates an overturning circulation by
fostering deep-cold water upwelling and the formation of new water masses, thus affecting the
Earth’s heat balance and the global distribution of carbon. The ACC is characterized by several water
mass boundaries or fronts, known as the Subtropical Front (STF), Subantarctic Front (SAF), Polar
Front (PF), and South Antarctic Circumpolar Current Front (SACCF), identified by typical physical
and chemical properties. While the physical characteristics of these fronts have been characterized,
there is still poor information regarding the microbial diversity of this area. Here we present the
surface water bacterioplankton community structure based on 16S rRNA sequencing from 13 stations
sampled in 2017 between New Zealand to the Ross Sea crossing the ACC Fronts. Our results show a
distinct succession in the dominant bacterial phylotypes present in the different water masses and
suggest a strong role of sea surface temperatures and the availability of Carbon and Nitrogen in
controlling community composition. This work represents an important baseline for future studies
on the response of Southern Ocean epipelagic microbial communities to climate change.

Keywords: bacterioplankton diversity; Southern Ocean; 16S rRNA sequencing; primary productivity

1. Introduction

Oceans cover more than 70% of Earth’s surface, driving almost half of the global net
primary production [1–3]. The Southern Ocean, in particular, is thought to contribute to
nearly 15% of the oceanic primary production [4], and it is generally defined as the global
ocean south of 60◦ S surrounding the Antarctic continent [5]. Due to the upwelling of
nutrient-rich Circumpolar Deep Waters (CDW), as well as the presence of water masses
with different physicochemical properties, the Southern Ocean plays an important role in
the ocean ecosystem’s functioning and composition [5,6].

The Southern Ocean is home to the world’s strongest and deepest currents that control
thermohaline circulation across the entire world’s oceans. It connects the three main ocean
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basins (Atlantic, Pacific and Indian) and creates a global circulation system that is largely
driven by the Antarctic Circumpolar Current (ACC). The ACC flows from west to east
around Antarctica, and it is considered the major water exchange driver between the
world’s oceans, being the only current that flows entirely around the globe. The ACC
consists of a number of full-depth fronts, defined by changes in water properties that
occur in a short distance, characterized by high velocities and separated by relatively
quiescent zones [7]. These frontal regions also represent a strong exchange between waters,
enabling the upwelling of deep nutrient-rich waters and the downwelling of less enriched
surface waters. Hence, ACC fronts are considered to play an important role in the global
distribution of nutrients (i.e., nitrate) due to the vertical exchange within fronts and the
“mixing barrier” effect across fronts [5].

Traditionally, the Southern Ocean has been divided into three main fronts (from north
to south): the Subantarctic Front (SAF), the Polar Front (PF), and the Southern ACC Front
(sACCF). The northern and southern limits of the ACC are marked by the Subtropical
Front (STF) and the Southern Boundary Front (SBDY) [5,8,9], respectively. Both fronts
have very distinct dynamics with respect to the main ACC fronts, leading some authors to
not consider them as part of the main ACC [7,10]. The ACC fronts are at their narrowest
meridional constriction at the Drake Passage and diverge as the ACC flows downstream
into the Scotia Sea. The island of South Georgia lies on the northeastern side of the Scotia
Sea. It is south of the PF but is strongly influenced by the SACCF that loops anti-cyclonically
around the island’s shelf from the south before retroflecting to the east. Before reaching
South Georgia, the SACCF runs through the southern half of the Scotia Sea, and although
the island itself lies in the polar open ocean zone, the waters that lie off the north coast may
have been seasonally influenced by the presence of ice cover.

Despite the persisting high nutrient and low chlorophyll (HNLC) conditions [11],
primary productivity within the ACC is highly variable. Maximum phytoplankton growth
rates are relatively low due to a combination of low temperatures, micronutrient availability,
and high wind stress leading to a strong mixing over the region. However, the frontal
zones’ primary production generally results elevated compared to surrounding oceanic
areas [12–14] and can be spatially extensive. Different studies show that the enhanced
production in these regions is correlated to increased supplies of iron derived from shelf
sediments, which are available within frontal jets [12,15]. In contrast, oceanic areas to
the north and south of the fronts are iron-limited, and the low chlorophyll levels have a
negative impact on export production [16,17].

The microbial diversity of such environments is shaped by both geography and
environmental variables [18]. Physical barriers in marine environments are less evident
compared to those in terrestrial settings (such as mountains, oceans, and islands) but are
still remarkable [19]. The Antarctic Polar front (APF) [20,21], for instance, can create an open
ocean dispersal barrier due to intense currents and a 3–4 ◦C horizontal thermocline [22,23].
The presence of fronts, such as the APF, has been shown to influence the genetic flow for
larger eukaryotes such as Echinoderms, Annelids, and Chordates (e.g., brittle stars, worms,
and toothfish) [22,24,25]. Prokaryote communities also appear to be separately shaped by
ocean fronts [6,23,26], and the spatial distribution of phytoplankton groups seems to be
highly correlated to ocean surface thermal gradients across the ACC [27].

Marine microorganisms, especially Bacteria and Archaea, are fundamental for the
functioning of the world’s oceans as they are the main players in the biogeochemical cycling
of the elements. Their diversity and abundance have been extensively studied during the
last decades thanks to different oceanographic campaigns that allowed for the collection of
several seawater and sediment samples. For instance, the Tara Ocean Expedition, started in
2009, has allowed for more than 30,000 samples to be collected in more than 200 stations
distributed throughout the world’s oceans [28].

16S rRNA sequencing and shotgun metagenomic analysis from these samples revealed
that the bacterial community of the world’s oceans is dominated by Proteobacteria, like
clades SAR11 and SAR86, both in terms of relative abundance and taxonomic richness,
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followed by Cyanobacteria, Deferribacteres, and Thaumarcheaota [29]. Despite the great
effort in analyzing the ocean’s microbiome, the microbial diversity of the Southern Ocean,
especially related to the water masses crossing this region, is still poorly characterized.

The rapid warming of the Southern Ocean could influence species turnover in the
microbial community with widespread consequences for the global climate [6]. In this
context, our study aims to characterize the bacterioplankton community of surface waters
crossing the Antarctic Circumpolar Current Fronts from New Zealand to the Ross Sea
and to investigate the effect of physicochemical changes of these fronts on the bacterial
community structure.

2. Materials and Methods
2.1. Sampling Procedure and Study Site

Sampling activities were carried out on the R/V Italica during the austral summer
of 2017 in the framework of a plankton biodiversity and functioning of the Ross Sea
ecosystems in a changing Southern Ocean (P-ROSE) project funded by the Ministry of
Education, University and Research (MIUR). Surface water samples (approximate depth
of 5 m) were collected along the transect New Zealand–Ross Sea every 8 h using a plastic
tube pumping water on board (Figure 1a,b). Seawater aliquots of 500 mL were filtered
(Whatman 0.22 µm) and kept frozen (between−20 and−80 ◦C) on board. Of the 24 samples
recovered, high-quality 16S rRNA libraries were obtained only for 13 stations and were
used for downstream analysis.
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Further samples were collected for the biochemical measurements of particulate or-
ganic matter. Water (at least 1000 mL in duplicate for each analysis) was filtered through
Whatman GFF filters (glass fiber, nominal porosity 0.45 µm), and stored at −20 ◦C un-
til analysis.

2.2. Environmental Parameters

For each sampling station, data for Surface Primary Productivity (SPP) were obtained
from the Ocean Productivity Database [30], based on the generalized vertical produc-
tion model developed by [31]. Sea Surface Temperature (SST), Sea Surface Temperature
Anomalies (SSTA), and Wind Speed (WS) data were obtained from the National Oceanic
and Atmospheric Administration database [32], while data for the Current Speed (CS)
were obtained from the NASA-funded research project, Ocean Surface Current Analysis
Real-Time (OSCAR) [33]. Sea Surface Salinity (SSS) data were obtained from the Physical
Oceanography Distributed Active Archive Center [34].

2.3. Community DNA Extraction

DNA extraction was carried out according to Giovannelli et al. (2016) with minor
modifications (extra elution steps). Briefly, each filter was soaked in a saline lysing solution
(100 mM NaCl (pH 8.0), 20 mM EDTA, 50 mM Tris-HCl (pH 8.0)) to which 50 µL of lysozyme
(100 mg/mL) was added. The resulting solution was incubated at 37 ◦C for 1 h and treated
with 50 µL of Proteinase K (20 mg/mL), followed by an incubation step at 37 ◦C for 1 h with
shaking every 15 min. Subsequently, 1 mL of 20% sodium dodecyl sulfate (SDS) was added
to the resulting solution, and the sample was incubated at 65 ◦C for 1 h. Afterward, samples
were centrifuged at 13.000 rpm × 15 min. The supernatant was transferred in a sterile
2 mL Eppendorf tube. Nucleic acids were separated from the other cellular components by
performing two consecutive liquid:liquid extractions with phenol:chloroform:isoamylic
alcohol (25:24:1), each followed by a centrifugation step of 15 min at room temperature.
After obtaining a phase separation, DNA was precipitated by adding 0.7 volumes of
isopropanol (100%) and 0.1 volumes of sodium acetate and incubated overnight at room
temperature. Finally, samples were centrifuged at 13.000 rpm × 30 min. The resulting pellet
was washed with ethanol and re-precipitated by centrifuging at 13.000 rpm × 5 min. After
drying the pellet at room temperature, the obtained DNA was resuspended with 50 µL of
Tris-HCl (50 mM, pH 8.0). The effectiveness of the extraction was evaluated after performing
runs on the electrophoresis cell, using 1% agarose gel stained with ethidium bromide, and
visualizing the gel at the UV transilluminator [35–37]. The DNA integrity was checked
spectrophotometrically and by PCR amplification. Briefly, a 500 bp fragment of the 16S
rRNA gene was PCR amplified with MyTaq DNA Polymerase (Bioline) by using total DNA
from each sample as a template and the oligo Ribo-For (5′-AGTTTGATCCTGGCTCAG-3′)
and Ribo-rev (5′-ACCTACGTATTACCGCGGC-3′) as primers. PCR conditions were: 5 min
at 95 ◦C, followed by 30 cycles of 95 ◦C for 30 s, 50 ◦C for 30 s, 72 ◦C for 30 s, concluding
with an extension at 72 ◦C for 5 min. The PCR products were analyzed as previously
reported [38,39].

2.4. 16S rRNA Gene Sequencing

The obtained DNA was sequenced at the Integrated Microbiome Resource (IMR, [40])
using primers targeting the V4-V5 of the 16S rRNA (515FB = GTGYCAGCMGCCGCGGTAA
926R = CCGYCAATTYMTTTRAGTTT), using Illumina MiSeq technology.

2.5. Biochemical Measurements

Particulate Organic Carbon (POC) and Particulate Nitrogen (PN) were analyzed as
previously reported [41]. Briefly, filters were exposed to fumes of HCl for 4 h to remove
inorganic carbon [41]. After drying (60 ◦C), filters were placed into tin capsules and ana-
lyzed using a Carlo Erba Mod. 1110 CHN Elemental Analyzer (dynamic flash combustion).
Cyclohexanone 2–4-dinitrophenyl hydrazone (purchased from Sigma-Aldrich, Steinheim,
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Germany) was used as a reference standard. For the determination of fractionated Chloro-
phyll, a protocol of serial filtration was followed, as reported by Mangoni et al. [42]. Frozen
filters were processed in Italy for the determination of Chl a and phaeopigments (phaeo)
content, using a solution of 90% acetone according to [43,44], with a spectrofluorometer
(Shimadzu, Mod. RF–6000; Shimadzu Corporation-Japan) checked daily with a Chl a stan-
dard solution (Sigma-Aldrich). Particulate carbohydrate and protein concentrations were
determined following [45,46], respectively. The method for carbohydrate determination
is based on the reaction of the carbohydrates to phenol (5% in water solution) in an acid
medium (sulfuric acid). For protein determination, copper sulfate pentahydrate was added
to the samples, leading to the bond of Cu to amino acids. The Folin–Ciocalteu′s phenol
reagent completes the reaction with the development of a blue coloration. A Jasco V-530
spectrophotometer was calibrated with D-glucose solutions for carbohydrates (absorbance
490 nm) and with bovine serum albumin solutions for proteins (absorbance 650 nm). All
materials were purchased from Sigma-Aldrich (Steinheim, Germany).

2.6. Bioinformatics and Statistical Analyses

Raw reads received from the sequencing center were processed using the DADA2
package [47]. Primers and adapters were trimmed, followed by a quality profile step,
where only sequences with a call quality for each base between 20 and 40, were kept for
further analysis. Amplicon sequence variants (ASVs) were estimated through the error
profile and assigned taxonomy with the SILVA database (release 138) [48]. The resulting
taxonomic assignments, in combination with variant abundance tables, were used to
create a phyloseq object with the phyloseq package [49], as previously described in [38].
Subsequently, sequences related to Chloroplasts, Mitochondria, and Eukaryotes, as well as
groups related to human pathogens and common DNA extraction contaminants [50], were
removed from the dataset. The remaining reads represented 53.4% of the original raw reads
with 535 ASVs. Alpha diversity was investigated using the Observed, Shannon, and Chao1
diversity indexes, while beta diversity was investigated using the Jaccard diversity index.
Additionally, correlations between measured environmental variables and the resulting
ordination were achieved using environmental fitting (env_fit function in vegan). The
statistical analysis conducted, as well as data processing and visualization, was carried
out in R software, version 4.1.2 [51], using the vegan [52] and ggplot2 [53] packages. The
sequences analyzed in the present study are publicly available through the European
Nucleotide Archive (ENA) with a bioproject accession number PRJEB45048. A complete
R script describing the analysis can be found in the GitHub repository https://github.
com/giovannellilab/Cordone_et_al_Southern_Ocean_microbial_diversity, accessed on 30
January 2023 and released with Zenodo with https://doi.org/10.5281/zenodo.7584581,
accessed on 30 January 2023.

3. Results
3.1. Environmental and Biogeochemical Parameters

The coordinates of the sampled points and the respective environmental parameters,
such as sea surface temperature (SST), sea surface temperature anomaly (SSTA), sea surface
salinity (SSS), current speed (CS), and wind speed (WS), are listed in Table 1. There is a
steep reduction in sea surface temperature when moving from New Zealand (7.9 ◦C) to the
Antarctic region (−1.8 ◦C), showing a clear trend with the changes in latitude (Figure S1a).
As for the sea surface salinity, it decreases moving towards the Antarctic region and then
increases again once within the Ross Sea area (Figure S1b).

https://github.com/giovannellilab/Cordone_et_al_Southern_Ocean_microbial_diversity
https://github.com/giovannellilab/Cordone_et_al_Southern_Ocean_microbial_diversity
https://doi.org/10.5281/zenodo.7584581
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Table 1. Coordinates and environmental parameters of sequenced stations. SST—Sea Surface
Temperature; SSTA—Sea Surface Temperature Anomaly; SSS—Sea Surface Salinity; CS—Current
Speed; WS—Wind Speed; NSAF—North Sub-Antarctic Front; SSAF—South Sub-Antarctic Front;
PF—Polar Front; SACCF—Southern Antarctic Circumpolar Current Front; RSCS—Ross Sea Conti-
nental shelf; STF—Sub-Tropical Front; SAF—Sub-Antarctic Front; sBdy—Southern Boundary Front.

Station Latitude
[◦N]

Longitude
[◦E]

SST
[◦C]

SSTA
[◦C]

SSS
[PSU]

cs
[m/s]

ws
[km/h]

Antarctic
Current

Oceanic
Front

5 −51.8092 175.0061 7.9 −0.8 34.4 0.32 62 NSAF STF
6 −52.3100 175.0749 7.5 −0.7 34.3 0.29 14 NSAF STF
7 −52.7343 175.0708 7.5 −0.7 34.3 0.24 15 NSAF STF

10 −56.1723 175.8037 6.9 0 33.9 0.1 26 SSAF STF
12 −58.8349 176.6923 4.9 −0.3 34 0.06 37 SSAF SAF
15 −64.2124 178.3410 1.7 0.6 33.8 0.24 39 PF PF
16 −65.9702 178.5408 −0.4 0 33.6 0.01 30 SACCF SACCF
17 −67.4229 178.9109 −1.3 −0.3 33 0.01 13 SACCF sBdy
18 −68.3780 179.7789 −1.6 −0.5 33.2 0.02 16 SACCF sBdy
19 −69.7571 177.9027 −1.8 −0.6 33.8 0.03 17 SACCF sBdy
20 −70.2680 176.2240 −1.8 −0.7 34.3 0.03 7 SACCF sBdy
23 −74.0641 178.1007 −1.8 −1.5 34.5 0.05 17 RSCS RSCS
24 −74.4742 172.4104 −1.8 −1.7 35.2 0.03 23 RSCS RSCS

The biogeochemical parameters determined for all sequenced stations are shown
in Table 2. Among the biogeochemical parameters analyzed, only the C fraction of dis-
solved organic matter (C-DOM), total carbohydrates (cho_tot) and particulate nitrogen (PN)
showed significant correlations with the geographical location (latitude) of the sequenced
stations. As expected, Particulate Organic Carbon (POC) was significantly correlated to
PN and total protein content (pr_tot), while pr_tot was also significantly correlated to
surface primary productivity (spp), and pn was also correlated to dissolved organic carbon
(C-DOM) (Table S1).

Table 2. Biogeochemical parameters determined for the sequenced stations. spp—surface primary
productivity; prt_tot—total proteins; cho_tot—total carbohydrates; PN—Particulate Nitrogen; POC—
Particulate Organic Carbon; C-DOM—C fraction of Dissolved Organic Matter; Chl-a—Chlorophyll-a;
Micro-chla—Microfraction of chlorophyll-a; Nano-chla—Nanofraction of chlorophyll-a; Pico-chla—
Picofraction of chlorophyll-a.

Station
ssp

[mg C/m2

Day]

prt_tot
[µg/L]

cho_tot
[µg/L]

PN
[µg/L]

POC
[µg/L]

C-DOM
[µg/L]

Chl-a
[µg/L]

Micro-
Chla [%]

Nano-
Chla [%]

Pico-Chla
[%]

5 398.14 66.84 41.60 9.00 69.77 11.11 0.32 12.98 30.81 56.20
6 323.15 56.58 35.98 6.71 57.22 8.12 0.41 1.63 54.14 44.23
7 290.04 48.64 33.71 4.91 52.76 8.70 0.58 12.66 40.06 47.28

10 282.89 46.76 18.05 7.38 46.41 8.49 0.69 14.22 64.64 21.14
12 265.15 56.56 34.37 14.87 90.08 11.72 1.44 15.28 56.38 28.33
15 211.15 56.81 58.67 17.94 97.71 16.74 1.56 23.13 62.66 14.21
16 275.82 98.02 63.21 28.90 216.08 17.41 1.06 24.51 56.68 18.81
17 285.45 49.86 59.06 16.59 79.81 14.90 0.55 31.24 51.44 17.32
18 249.01 53.63 54.32 22.27 106.55 12.12 1.44 21.42 55.29 23.29
19 244.42 36.57 43.70 10.49 50.87 10.08 0.63 19.80 51.32 28.88
20 103.30 23.87 31.64 8.92 45.32 10.25 0.55 14.85 54.89 30.26
23 475.60 71.14 64.82 20.80 116.38 18.08 0.99 20.91 53.31 25.78
24 943.99 124.22 34.73 54.01 274.66 19.13 2.47 3.15 49.46 47.39

3.2. Diversity of Bacterial Communities

Bacterial diversity along the transect New Zealand–Ross Sea was evaluated using
the 16S rRNA gene sequence as reported in the materials and methods section. A total of
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130,906 reads were obtained after quality check and data filtering and were used to identify
535 unique ASVs. The number of reads, ASVs, phyla, classes, orders, families, and genera
per station has been reported in Table S2.

The rarefaction curves for the total reads–ASVs relationship were created to calculate
the coverage of retrieved ASVs over the predicted ASVs obtained using the value of
the Chao1 alpha diversity index (Figure S2). The coverages for all the sampled stations
(Table S3) show that the sequencing depth reached in our study is adequate to analyze
and characterize the bacterioplankton community structure crossing the ACCF, ranging
from 83% and 96%. The alpha diversity evidenced a decreasing trend from the stations
belonging to STF until SACCF, which sharply increased towards the southernmost part of
the transect (Figure S3, Table S3).

As shown in Figure 2, in the station belonging to STF (stations 5, 6, 7, and 10), we
mainly found Proteobacteria (recently reclassified as Pseudomonadota), Bacteroidota, and
Cyanobacteria with an average of 44.78%, 40.94%, and 9.64% of reads assigned, respectively.
Station 12, present on the SAF, had a similar distribution, with Proteobacteria (67.43%)
and Bacteroidota (27.36%) being the two most abundant phyla, followed by Myxococcota
(0.35%). Reads from the only station influenced by the PF (station 15) were also assigned to
Proteobacteria (58.85%), Bacteroidota (38.92%), and Cyanobacteria (0.57%). In the case of
station 16, associated with the SACCF, 57.16% of the reads were assigned to Bacteroidota,
while 41.10% corresponded to Proteobacteria. In stations 17, 18, 19, and 20, all influenced
by the SBDY, we mainly found Proteobacteria (50.90%) and Bacteroidota (47.84%), with
Verrucomicrobiota having assigned just 0.12% of the reads. Finally, the two stations (23
and 24) belonging to the RSCS were also characterized by a predominance of Bacteroidota
(49.57%) and Proteobacteria (46.69%), with nearly 0.1% of the reads (0.06%) assigned to the
SAR324 clade (Marine group B).
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Within the Bacteroidota, the Bacteroidia class was the most abundant among the
stations influenced by the STF, SACCF, and RSCS, with average reads assigned of 36.91%,
57.16%, and 55.64%, respectively, while the stations influenced by the SAF, SPF, and SBDY,
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had an average of reads assigned equal to 27.36%, 38.92%, and 33.80%, respectively. At the
order level, Flavobacteriales represent the most abundant order, similarly distributed in all
stations (Figure 3A), with the exception of station 12 (influenced by the SAF front), with an
average of reads assigned of 44.43%, 38.66%, 55.06%, 46.59%, 45.91%, and 24.36% to the
stations influenced by STF, SPF, SACCF, SBDY, RSCS, and SAF, respectively.
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A different distribution is observed for the Cytophagales and Chitinophagales orders,
with the Cytophagales mainly detected in station 12 (2.86%) localized in the Sub-Antarctic
front, and the Chitinophagales mainly present in the southern area of the transect—on
average 3.31% for stations within the RSCS. Among the Flavobacteriales, different genera
can be distinguished. The stations in the south are dominated by sequences assigned to the
genera Polaribacter (40.78% in station 16 and 26% in the RSCS stations) and Aurantivirga
(5.78% in the RSCS stations), while the stations in the north, influenced by STF, SAF, and
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SPF, are dominated by sequences assigned to the genera Formosa, with an average read
assigned equal to 4%, 4.20%, and 2.12%, respectively. The NS2b marine group is present in
all the stations analyzed (Figure S4).

Within the Proteobacteria, most sequences are affiliated with the classes Alphaproteobac-
teria and Gammaproteobacteria. Among Alphaproteobacteria, SAR11 clade (STF = 16.25%,
SAF = 27.95%, PF = 24.27%, SACCF = 5.39%, SBDY = 14.56%, RSCS = 12.26%) and Rhodobac-
terales (STF = 6.22%, SAF = 18.54%, PF = 14.42%, SACCF = 13.78%, SBDY = 10.05%,
RSCS = 11.8%) represent the most abundant orders in all the stations, whereas Puniceispir-
illales are mainly present in the northern part of the transect, with a maximum of 5.68% in
station 12 (SAF front) and a minimum of 1.55% in the PF (Figure 3B). Gammaproteobacteria
are mainly represented by the orders SAR86 clade (STF = 4.63%, SAF = 2.99%, PF = 3.06%,
SACCF = 0.20%, SBDY = 1.99%, RSCS = 1.25%) more abundant in the northernmost part of
the transect, and Cellvibionales (STF = 0.85%, SAF = 5.09%, PF = 6.88%, SACCF = 6.51%,
SBDY = 4.93%, RSCS = 8.59%), which instead are mainly distributed in the southernmost
part. The order Thiomicrorpirales is detected in all the stations, with average reads assigned
varying from 0.51% in station 15 (within PF) to 6.70% for stations 17, 18, 19, and 20 (SBDY).
Stations within the STF had an average of 3.96%, while station 12 (SAF) had 1.33%, station
16 (SACCF) 1.01%, and stations 23 and 24 (RSCS) had an average of 4.18%. The orders
Oceanospirillales and Alteromonadales are mainly detected in the southernmost stations
(Figure 3C), with the highest percentage of average reads assigned to Oceanospirillales
(8.28%) to the station within the SACCF (station 16) and the lowest (0.39%) to the stations
belonging to the STF (stations 5, 6, 7 and 10); while Alteromonadales where mostly as-
signed to the reads from the SACCF and the SBDY stations (4.87% and 4.03%, respectively)
(Figure 3C) with stations from the STF, SAF, PF, and RSCS having lower averages of
assigned reads (0.09%, 0.12%, 1.64%, and 1.07%, respectively).

As mentioned before, sequences belonging to the phylum Cyanobacteria were de-
tected mainly in the four northern stations of the transect (9.6% relative abundance), all
influenced by the STF. In particular, within this phylum, most sequences are affiliated with
the Synechococcales order (Figure 4).
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To explain the bacterial community structure across the different fronts, we performed
a principal coordinate analysis (PCoA) based on the relative abundance of the assigned
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ASVs to each station and generated using a weighted Jaccard similarity distance. The first
two axes of the PCoA were able to explain about 63% of the variance. As shown in Figure 5,
there is a “U” pattern along Axis 1, also known as a “horseshoe” effect. This pattern has been
associated with species turnover along an environmental gradient [54]. The site distribution
follows a latitudinal trend, from north to south, with the only exception of station 16. The
ASVs that mainly contribute to the distribution of our samples within the PCoA ordination
are shown in Figure 6. Bacteroidota and Proteobacteria are distributed within the whole
ordination, together with Cyanobacteria, Verrucomicrobia and Actinobacteriota, while the
left part of the ordination is more characterized by Marinimicrobia, Thermoplasmatota,
and Bdellovibrionota.

Microorganisms 2023, 11, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 5. Principal Coordinate Analysis using a weighted Jaccard similarity distance illustrating the 
shifts in the community structure according to Southern Ocean waterfronts. SST—Sea Surface 
Temperature; POC:PN—Ratio between Particulate Organic Carbon and Particulate Nitrogen; STF—
Sub-Tropical Front; SAF: Sub-Antarctic Front; PF—Polar Front; SACCF—Southern Antarctic 
Circumpolar Current Front; SBDY—Southern Boundary Front; RSCS—Ross Sea Continental Shelf. 
The amount of variance explained by each axis is reported within square brackets. 

 

Figure 5. Principal Coordinate Analysis using a weighted Jaccard similarity distance illustrating
the shifts in the community structure according to Southern Ocean waterfronts. SST—Sea Sur-
face Temperature; POC:PN—Ratio between Particulate Organic Carbon and Particulate Nitrogen;
STF—Sub-Tropical Front; SAF: Sub-Antarctic Front; PF—Polar Front; SACCF—Southern Antarctic
Circumpolar Current Front; SBDY—Southern Boundary Front; RSCS—Ross Sea Continental Shelf.
The amount of variance explained by each axis is reported within square brackets.

To further investigate the differences between the sampling sites and to discern the
influence of the biogeochemical parameters on the community structure, we performed
a principal component analysis (PCA). The PCA was able to explain 77.2% of the total
variance associated with our community. A bi-plot of the PCA obtained is shown in Figure 7
and confirms the presence of a gradient between the different sites. In particular, samples
associated with the STF (northern sampling sites) are influenced by sea surface temperature
(sst), latitude (lat), and the chlorophyll-a picofraction (pico_chla). On the other hand,
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samples associated with the most southern fronts (PF, SBDY, and RSCS) seem to be more
influenced by variables such as the carbon fraction of dissolved organic matter (C-DOM)
and total carbohydrates (cho_tot). Only the sample from station 24 and associated with the
RSCS is more influenced by parameters like particulate nitrogen (PN), total protein content
(prt_tot), sea primary productivity (spp), and particulate organic carbon (POC) contents of
the seawater.
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Figure 7. Principal Component Analysis biplot with each individual sample colored by front. STF—
Sub=Tropical Front; SAF—Sub-Antarctic Front; PF—Polar Front; SACCF—Southern Antarctic Cir-
cumpolar Current Front; SBDY—Southern Boundary Front; RSCS—Ross Sea Continental Shelf.
Lat—latitude; sst—sea surface temperature; sss—sea surface salinity; spp—surface primary pro-
ductivity; prt_tot—total proteins; poc—particulate organic carbon; cho_tot—total carbohydrates;
pn—particulate nitrogen; c-dom—carbon fraction of dissolved organic matter; chl-a—chlorophyll-a;
chla-micro—microfraction of chlorophyll-a; chla-nano—nanofraction of chlorophyll-a; chla-pico—
picofraction of chlorophyll-a.
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4. Discussion

The Southern Ocean is the least studied oceanic region of the world, mainly as a
consequence of its harsh climate and remoteness, making systematic sampling campaigns
both difficult and expensive to conduct [5,55]. Water masses characterizing the Southern
Ocean have different physicochemical properties, particularly surface temperature and
salinity, which allow for their division into fronts [5,8,9]. These differences have led
researchers to hypothesize the establishment of a zonation within the distribution of
the microbial communities, with fronts playing a key role in structuring the microbial
ecosystem. Our results supported this idea as the PCoA analysis shows a horseshoe pattern
usually associated with species turnover over environmental gradients. The environmental
gradients recovered by the PCA analysis follow the same general trend as the PCoA,
suggesting a tight coupling between environmental variations across the transect and
species turnover. In fact, stations that fall under the influence of the same front were
clustered together and influenced by the same set of environmental variables, with sea
surface temperature being among the strongest drivers and having a significant correlation
with the PCoA axis 1 (p < 0.005).

We also observed a significant change in the phyla present as we moved further south
and away from the influence of the SubTropical Front (STF), where warmer waters favor the
presence of Cyanobacteria alongside members of the Proteobacteria and Bacteroidota phyla.
Proteobacteria are mainly represented by Alphaproteobacteria and Gammaproteobacteria,
while within Bacteroidota, the Flavobacteriales order was detected in all the stations with
higher abundance. The presence of these phyla is consistent with previously reported
results [6,56,57]. Additionally, the stations under the influence of the STF current are the
only ones where the Cyanobacteria phylum is present, with an average abundance of 9.6%
in stations 5, 6, 7, and 10

Among Alphaproteobacteria, SAR11 is thought to be the dominant bacterial group in
Southern Ocean waters regardless of depth and distance from shore; however, it appears
to be more abundant in the epipelagic zone [6]. Our results are in agreement with the
biogeographic partitioning reported by several authors [6,58], where the abundance of
SAR11 is higher near the Sub-Artic Front (SAF) and the Polar Front (PF) and decreases
towards the Antarctic zones. According to Wilkins and coauthors [6], this behavior could be
a consequence of the oligotrophic nature of SAR11, which gives it a competitive advantage
in a High Nutrient–Low Chlorophyll (HNLC) environment compared to the Antarctic zone
where phytoplankton blooms increase the concentration of high molecular weight dissolved
organic matter and organic particulates. Among Gammaproteobacteria, the SAR86 clade
follows the same trend as SAR11, as its presence is generally detected in HNLC waters [59],
while Alteromonadales and Oceanospirillales, comprising heterotrophic cold-adapted
bacteria, were mainly detected at the stations between the Southern ACC front and the
Ross Sea continental shelf, where the concentration of particulate organic carbon was
higher. This result is consistent with other reports suggesting that these taxa are major
players in the POC remineralization process [60]. Bacteroidota were mainly represented
by members of the Flavobacteriales order, which includes members capable of degrading
High Molecular Weight (HMW) DOM and whose presence is generally associated with
the phytoplankton blooms in such an area [6,61,62]. In particular, within Flavobacteriales,
members belonging to Polaribacter and Formosa genus showed an interesting trend with an
increase in the relative abundance of ASVs assigned to Polaribacter when approaching the
RSCS and a concomitant decrease in the relative abundance of ASVs assigned to the Formosa
genus. Abell and Bowman [63] hinted at a possible influence of water temperature over the
diversity of the Flavobacteria clades in the Southern Ocean, showing that samples from the
temperate zone and the Sub-Antarctic zone had relatively lower Flavobacteria diversity
than samples from the Polar Front zone and the Antarctic zone. We also observed that there
was a higher relative abundance of Flavobacteria in stations where the Alphaproteobacteria
clade was at its lowest abundance. According to the literature [63–67], this trend could
be a consequence of the differential degradation of organic matter capacity exhibited
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by both groups of organisms, where Flavobacteria are able to produce proteins used to
degrade complex organic substrates while Alphaproteobacteria SAR11 have the capability
of synthesizing high-affinity uptake systems that allow the utilization of simpler byproducts
of algal polymer degradation (i.e., sugars, acetate, ammonia), as metaproteomic assessments
showed [67].

Recent evidence has shown an increase in cyanobacterial communities in response
to increasing seawater temperatures [68]. Our results further support this trend since we
are detecting Cyanobacteria only in the stations with higher temperatures and under the
influence of the STF. Given the increase in Antarctic seawater temperatures [69], we could
expect a future species turnover in the microbial communities inhabiting the different
Antarctic current fronts, similar to what we found in this study. However, the consequences
of this turnover in the overall community structure and trophic levels are still not known.

Taken together, our results show a clear ecological succession of bacterial taxa linked
to the oceanic fronts crossing the Southern Ocean during the austral summer of 2017 and
suggest a key role of microdiversity in separating the different water masses. Further
metagenomic analysis, as well as a temporal re-sampling of the same area (seasonally or
annually), will better clarify the specific functions of the dominant taxa living there.
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